首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study was conducted to characterize bovine platelets with respect to serotonin (5-HT) concentration and platelet-activating factor (PAF)-activation and to examine the in vitro effects of PAF and platelet-derived compounds on bovine luteal progesterone (P4) production. The concentration of 5-HT in platelets, as determined by high-performance liquid chromatography, was 538.8 +/- 40.83 ng/1 x 10(8) platelets. Based on a circulating platelet concentration range of 2.3 x 10(8) 5.8 x 10(8) platelets/ml, the circulating concentration of 5-HT would be approximately 1239-3125 ng/ml of blood. Bovine platelets were found to aggregate in response to PAF (1-40 ng/0.5 ml), with maximal aggregation occurring at 20-40 ng/0.5 ml. Coincubation of luteal cells with platelets (1 x 10(7)-4 x 10(8] enhanced luteal P4 production (p less than 0.05). Addition of the 5-HT receptor antagonist mianserin blocked the platelet-induced increases in P4 (p less than 0.05). Preincubation of platelets with indomethacin did not alter the production of P4 (p greater than 0.05), nor did the addition of propranolol (p greater than 0.05). Platelet-derived growth factor at 8 and 16 ng/ml enhanced basal P4 production (p less than 0.05) but had no effect on the responsiveness of luteal cells to luteinizing hormone (LH) (p greater than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Experiments were conducted to determine if methylation is a part of the mechanism by which luteinizing hormone (LH) and epinephrine stimulate progesterone production by dispersed bovine luteal cells. Corpora lutea (CL) were collected from 24 Holstein heifers on Day 10 of the estrous cycle and dispersed with collagenase. Net progesterone accumulation, representing total progesterone synthesized by 10(6) cells during a 2-h incubation was determined. Cells from 7 CL were treated with 0 and 5 ng LH, in the presence and absence of methylation inhibitor, S-adenosyl-homocysteine (SAH, 1 mM). LH-stimulated progesterone production was inhibited (P less than 0.05) in the presence of SAH(209 +/- 19 vs. 119 +/- 7 ng/10(6) cells). In the absence of LH, progesterone production was unaffected (87 +/- 22 vs. 68 +/- 28) by SAH. Cells from 4 CL were treated with 10 micrograms epinephrine or 10 micrograms isoproterenol with and without SAH. Both epinephrine and isoproterenol-stimulated progesterone production was inhibited (P less than 0.05) by the presence of SAH (204 +/- 24 vs. 125 +/- 18 and 198 +/- 15 vs. 130 +/- 8). Progesterone production by cells from 4 CL was unaffected by the presence of SAH when treated with Medium 199 (M199) (75 +/- 32), 10 micrograms cholera toxin, which directly stimulates adenylate cyclase on the cytoplasmic side of plasma membranes (168 +/- 19), or 3 mM dibutyryl cAMP (210 +/- 40).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Incubation of bovine luteal cells with the alternative pathway catecholamines octopamine, synephrine and deoxyadrenaline at concentrations of 10(-6) to 10(-3) M enhanced the production of progesterone (P less than 0.05). Tryamine did not alter basal progesterone production (P greater than 0.05). Addition of noradrenaline and adrenaline at concentrations of 10(-4) to 10(-7) M significantly elevated the production of progesterone (P less than 0.05). The steroidogenic response to noradrenaline and adrenaline was greater than that for octopamine, synephrine and deoxyadrenaline (P less than 0.05). Response to both primary (10(-6) M) and alternative (10(-4) M) pathway catecholamines was inhibited by propranolol (10(-5) M, P less than 0.05) but not phentolamine (10(-5) M, P greater than 0.05). These results demonstrate that octopamine, synephrine and deoxyadrenaline can affect steroidogenesis by bovine luteal cells, and their action is mediated by beta-adrenergic receptors.  相似文献   

4.
In polyovular species, it is unclear whether the characteristics of each individual corpus luteum (CL), such as mass, progesterone concentration and receptors for luteinizing hormone (LH), are representative of those of its cohorts during the ovarian cycle. The current study was performed 1) to characterize the conditions for estimation of binding parameters for LH receptors in porcine CL, and 2) to compare LH binding sites, luteal progesterone concentrations and luteal masses among CL of ovaries within individual pigs. Gonadotropin binding sites in porcine CL were characterized via specific binding of 125I-human (h) LH to 20,000 X g particulate fractions of luteal tissue. Specific binding was directly proportional to tissue content and was detectable at the lowest content tested (0.5 mg tissue equivalents/tube). Specific uptake of 0.25 ng LH by 5.0 mg tissue equivalents was time- and temperature-dependent; steady-state binding was achieved within 20 h at 37 and 25 degrees C. Binding of LH after 20 h incubation at 37 degrees C (4718 +/- 192 cpm, means +/- SEM) and 25 degrees C (4112 +/- 340 cpm) was greater than that at 4 degrees C (1930 +/- 5 cpm, P less than 0.01). Luteal particulates from individual CL of ovaries collected from four mature nonpregnant pigs (13-23 CL/pig) were incubated with eight concentrations of 125I-hLH. Steady-state binding depended upon hormone concentration until reaching saturation at 2.5 ng 125I-hLH/tube. Scatchard analyses yielded linear plots. Binding capacities for LH ranged among pigs from 0.71 +/- 0.03 to 3.69 +/- 0.13 fmol/mg CL equivalents and receptor affinities (Kd) ranged from 0.92 +/- 0.05 to 4.89 +/- 0.41 X 10(-11) M.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
6.
Recent reports about tyrosine hydroxylase and alpha 1-adrenoceptors in epileptic foci have suggested increased regional catecholaminergic activity, which may serve a compensatory, inhibitory role. We measured levels of catechols, including the precursor 3,4-dihydroxyphenylalanine (DOPA) and the catecholamines dopamine (DA) and norepinephrine (NE), in surgically removed foci identified by electrocorticography and in nonepileptogenic sites from 23 patients with intractable temporal lobe epilepsy. The following values (mean +/- 1 SD) were obtained: DOPA = 142 +/- 60 ng/g of protein in the focus vs. 115 +/- 39 ng/g in the nonfocus (p less than 0.01); DA = 168 +/- 85 vs. 106 +/- 54 ng/g (p less than 0.001); and NE = 267 +/- 117 vs. 181 +/- 80 ng/g (p less than 0.001). The results are consistent with increased catecholaminergic activity in epileptic foci.  相似文献   

7.
Prostaglandin F2alpha (PGF2alpha) is a major physiological luteolysin in the cow. However, injection of PGF2alpha before day 5 (day 0 = estrus) of the estrous cycle dose not induce luteolysis. On the other hand, the early corpus luteum (CL) actively produces PGF2alpha. This indicates that luteal PGF2alpha may play a key role in the refractoriness to PGF2alpha injected during the early luteal phase when angiogenesis is active in the CL. Thus, this study aimed to investigate the possible interaction between pituitary hormones and local factors (luteal peptides) on secretion of PGF2alpha and progesterone (P) by the early bovine CL, and to evaluate the effect of growth hormone (GH) as well as its interactions on production of PGF2alpha in the developing CL. A RT-PCR analysis revealed that mRNA for GH receptor in CL was fully expressed from early in the luteal phase throughout the estrous cycle, while luteinizing hormone (LH) receptor mRNA was expressed less by the early and regressing CL than those at mid or late luteal phases (P < 0.05). For the stimulation test, an in vitro microdialysis system (MDS) was used as a model. Each bovine early CL (days 3-4) was implanted with the MDS, and maintained in an organ culture chamber. The infusion of GH, insulin-like growth factor-1 (IGF-1) and oxytocin (OT) increased (P < 0.05) PGF2alpha and P release. In contrast, LH had no effect (P > 0.05) on PGF2alpha secretion and little effect on P release. Unexpectedly, there was no distinct interaction between pituitary hormones and luteal peptides on secretion of PGF2alpha and P. These results indicate that GH is a more powerful stimulator of PGF2alpha and P production in the early bovine CL than LH and suggest that GH and luteal peptides, IGF-1 and OT, contribute to maintenance of elevated PGF2alpha production in the developing bovine CL.  相似文献   

8.
Prostaglandin F2alpha (PGF2alpha) is a major physiological luteolysin in the cow. However, injection of PGF2alpha before day 5 (day 0 = estrus) of the estrous cycle dose not induce luteolysis. On the other hand, the early corpus luteum (CL) actively produces PGF2alpha. This indicates that luteal PGF2alpha may play a key role in the refractoriness to PGF2alpha injected during the early luteal phase when angiogenesis is active in the CL. Thus, this study aimed to investigate the possible interaction between pituitary hormones and local factors (luteal peptides) on secretion of PGF2alpha and progesterone (P) by the early bovine CL, and to evaluate the effect of growth hormone (GH) as well as its interactions on production of PGF2alpha in the developing CL. A RT-PCR analysis revealed that mRNA for GH receptor in CL was fully expressed from early in the luteal phase throughout the estrous cycle, while luteinizing hormone (LH) receptor mRNA was expressed less by the early and regressing CL than those at mid or late luteal phases (P < 0.05). For the stimulation test, an in vitro microdialysis system (MDS) was used as a model. Each bovine early CL (days 3-4) was implanted with the MDS, and maintained in an organ culture chamber. The infusion of GH, insulin-like growth factor-I (IGF-I) and oxytocin (OT) increased (P < 0.05) PGF2alpha and P release. In contrast, LH had no effect (P > 0.05) on PGF2alpha secretion and little effect on P release. Unexpectedly, there was no distinct interaction between pituitary hormones and luteal peptides on secretion of PGF2alpha and P. These results indicate that GH is a more powerful stimulator of PGF2alpha and P production in the early bovine CL than LH and suggest that GH and luteal peptides, IGF-1 and OT, contribute to maintenance of elevated PGF2alpha production in the developing bovine CL.  相似文献   

9.
The release of neuropeptide Y like immunoreactivity (NPY-li) from the adrenal gland was studied in relation to the secretion of catecholamines (CA: NE, norepinephrine; E, epinephrine) during the left splanchnic nerve stimulation in thiopental-chloralose anesthetized dogs (n = 16). Plasma concentrations of NE, E, and NPY-li were determined in the left adrenal venous and aortic blood. Adrenal outputs of NPY-li, NE, and E were 2.4 +/- 0.4, 1.4 +/- 0.2, and 7.3 +/- 1.7 ng/min, under basal conditions, respectively. These values increased significantly (p less than 0.05; n = 8) in response to a continuous stepwise stimulation at frequencies of 1, 3, and 10 Hz given at 3-min intervals during 9 min, reaching a maximum output of 4.6 +/- 0.9 (NPY-li), 240.2 +/- 50.2 (NE), and 1412.5 +/- 309.7 ng/min (E) at a frequency of 10 Hz. Burst electrical stimulation at 40 Hz for 1 s at 10-s intervals for a period of 10 min produced similar increases (p less than 0.05) in the release of NPY-li (4.8 +/- 1.0 ng/min, n = 8), NE (283.5 +/- 144.3 ng/min, n = 8), and E (1133.5 +/- 430.6 ng/min, n = 8). Adrenal NPY-li output was significantly correlated with adrenal NE output (r = 0.606; n = 24; p less than 0.05) and adrenal E output (r = 0.640; n = 24; p less than 0.05) in dogs receiving the burst stimulation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
11.
Prostaglandins (PG) are produced by the corpus luteum (CL) of the rhesus monkey and may be involved in luteal regulation. Intracellular calcium has also been implicated as a mediator of luteolysis in domestic and laboratory species; however, its role in primate luteal function has not been investigated. The objectives of this study were to characterize temporal changes in basal and stimulated luteal PG production by CL of rhesus monkeys, and to examine the effects of calcium ionophore (CaI) on basal and gonadotropin-stimulated progesterone (P) production by the CL. CL were collected at various times after the estimated day of the luteinizing hormone (LH) surge: 5 days (early luteal phase, n = 4), 8-10 days (mid-luteal phase, n = 8), and 12-14 days (late luteal phase, n = 5). Dispersed luteal cells were incubated in the absence and presence of CaI, or with human chorionic gonadotropin (hCG) plus CaI at 37 degrees C for 8 h. PG and P concentrations in the medium were measured by radioimmunoassay. PGE2 and 6-keto-PGF1 alpha production decreased (p less than 0.05) from early luteal phase to mid-luteal phase and remained lower (p less than 0.05) during late luteal phase for all treatment groups. PGF2 alpha production decreased (p less than 0.05) from early to mid-luteal phase and rebounded in late luteal phase to the same level (p greater than 0.05) found in early luteal phase. CaI stimulated (p less than 0.05) basal PG production. The degree of stimulation was similar throughout the luteal phase (p greater than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
A luteotropic role for prostaglandins (PGs) during the luteal phase of the menstrual cycle of rhesus monkeys was suggested by the observation that intraluteal infusion of a PG synthesis inhibitor caused premature luteolysis. This study was designed to identify PGs that promote luteal function in primates. First, the effects of various PGs on progesterone (P) production by macaque luteal cells were examined in vitro. Collagenase-dispersed luteal cells from midluteal phase of the menstrual cycle (Day 6-7 after the estimated surge of LH, n = 3) were incubated with 0-5,000 ng/ml PGE2, PGD, 6 beta PGI1 (a stable analogue of PGI2), PGA2, or PGF2 alpha alone or with hCG (100 ng/ml). PGE2, PGD2, and 6 beta PGI1 alone stimulated (p less than 0.05) P production to a similar extent (2- to 3-fold over basal) as hCG alone, whereas PGA2 and PGF2 alpha alone had no effect on P production. Stimulation (p less than 0.05) of P synthesis by PGE2, PGD2, and 6 beta PGI1 in combination with hCG was similar to that of hCG alone. Whereas PGA2 inhibited gonadotropin-induced P production (p less than 0.05), that in the presence of PGF2 alpha plus hCG tended (p = 0.05) to remain elevated. Second, the effects of various PGs on P production during chronic infusion into the CL were studied in vivo. Saline with or without 0.1% BSA (n = 12), PGE2 (300 ng/h; n = 4), PGD2 (300 ng/h; n = 4), 6 beta PGI1 (500 ng/h; n = 3), PGA2 (300 ng/h; n = 4), or PGF2 alpha (10 ng/h; n = 8) was infused via osmotic minipump beginning at midluteal phase (Days 5-8 after the estimated LH surge) until menses. In addition, the same dose of PGE, PGD, PGI, or PGA was infused in combination with PGF2 alpha (n = 3-4/group) for 7 days. P levels over 5 days preceding treatment were not different among groups. In 5 of 8 monkeys receiving PGF2 alpha alone, P declined to less than 0.5 ng/ml within 72 h after initiation of infusion and was lower (p less than 0.05) than controls. The length of the luteal phase in PGF2 alpha-infused monkeys was shortened (12.3 +/- 0.9 days; mean +/- SEM, n = 8; p less than 0.05) compared to controls (15.8 +/- 0.5). Intraluteal infusion of PGE, PGD, PGI, or PGA alone did not affect patterns of circulating P or luteal phase length.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Corpora lutea (CL) were collected from Holstein heifers on Days 5, 10, 15 and 18 (5/day) of the estrous cycle. Dispersed luteal cell preparations were made and 10(6) viable luteal cells were incubated with bovine luteinizing hormone (LH) and different amounts of arachidonic acid in the presence and absence of the prostaglandin (PG) synthetase inhibitor indomethacin. The concentrations of progesterone, PGF2 alpha and 6-keto-PGF1 alpha, the stable inactive metabolite of prostacyclin (PGI2), were measured. Day 5 CL had the greatest initial content of 6-keto-PGF1 alpha (1.01 +/- 0.16 ng/10(6) cells), and synthesized more 6-keto-PGF1 alpha (2.55 +/- 0.43) than CL collected on Days 10 (0.57 +/- 0.11), 15 (0.08 +/- 0.05) and 18 (0.19 +/- 0.03) during a 2-h incubation period. Arachidonic acid stimulated the production of 6-keto-PGF1 alpha by Days 10, 15 and 18 luteal tissue. PGF2 alpha was produced at a greater rate on Day 5 (0.69 +/- 0.17 ng/10(6) cells) than on Days 10 (0.06 +/- 0.01), 15 (0.04 +/- 0.02) and 18 (0.08 +/- 0.01). Arachidonic acid stimulated and indomethacin inhibited the production of PGF2 alpha, in most cases. The initial content of 6-keto-PGF1 alpha was higher than that of PGF2 alpha on all days of the cycle and more 6-keto-PGF1 alpha was synthesized in response to arachidonic acid addition. The ratio of 6-keto-PGF1 alpha content to PGF2 alpha content was 4.39, 2.30, 1.25 and 1.13 on Days 5, 10, 15 and 18, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The objective of this study was to determine whether nitric oxide (NO) is produced locally in the bovine corpus luteum (CL) and whether NO mediates prostaglandin F2alpha (PGF2alpha)-induced regression of the bovine CL in vivo. The local production of NO was determined in early I, early II, mid, late, and regressed stages of CL by determining NADPH-d activity and the presence of inducible and endothelial NO synthase immunolabeling. To determine whether inhibition of NO production counteracts the PGF2alpha-induced regression of the CL, saline (10 ml/h; n = 10) or a nonselective NOS inhibitor (Nomega-nitro-l-arginine methyl ester dihydrochloride [L-NAME]; 400 mg/h; n = 9) was infused for 2 h on Day 15 of the estrous cycle into the aorta abdominalis of Holstein/Polish Black and White heifers. After 30 min of infusion, saline or cloprostenol, an analogue of PGF2alpha (aPGF2alpha; 100 microg) was injected into the aorta abdominalis of animals infused with saline or L-NAME. NADPH-diaphorase activity was present in bovine CL, with the highest activity at mid and late luteal stages (P < 0.05). Inducible and endothelial NO synthases were observed with the strongest immunolabeling in the late CL (P < 0.05). Injection of aPGF2alpha increased nitrite/nitrate concentrations (P < 0.01) and inhibited P4 secretion (P < 0.05) in heifers that were infused with saline. Infusion of L-NAME stimulated P4 secretion (P < 0.05) and concomitantly inhibited plasma concentrations of nitrite/nitrate (P < 0.05). Concentrations of P4 in heifers infused with L-NAME and injected with aPGF2alpha were higher (P < 0.05) than in animals injected only with aPGF2alpha. The PGF2alpha analogue shortened the cycle length compared with that of saline (17.5 +/- 0.22 days vs. 21.5 +/- 0.65 days P < 0.05). L-NAME blocked the luteolytic action of the aPGF2alpha (22.6 +/- 1.07 days vs. 17.5 +/- 0.22 days, P < 0.05). These results suggest that NO is produced in the bovine CL. NO inhibits luteal steroidogenesis and it may be one of the components of an autocrine/paracrine luteolytic cascade induced by PGF2alpha.  相似文献   

15.
The effects of subcutaneous injection of L-beta-3,4-dihydroxyphenylalamine (L-DOPA) on the concentrations of the catecholamines and catecholamine sulfates in the central and peripheral nervous systems of the rat were studied. The results showed that free 3,4-dihydroxyphenylethylamine (DA, dopamine) increased rapidly and markedly in the hypothalamus and striatum after L-DOPA but DA sulfate did not change. Increased concentrations of DA sulfate were detected in the CSF and in the plasma, where it reached a concentration of 130.8 +/- 12.8 ng/ml at 2 h, seven times the level of free DA (19.1 +/- 2.9 ng/ml). In the kidney the ratio of DA sulfate to free DA was reversed in favor of free DA. Urine samples of L-DOPA-treated rats showed a higher increase of free DA than DA sulfate, but free norepinephrine (NE) and NE sulfate remained unchanged. Concentrations of free DA and free NE in the adrenal glands of L-DOPA-treated rats showed no change. Adrenal DA sulfate and NE sulfate were not detectable in the control and L-DOPA-treated rats, suggesting that the adrenal glands lack the capacity to take up or store catecholamines and their sulfate counterparts from the plasma.  相似文献   

16.
Corpora lutea (CL) from naturally cycling Corriedale ewes were obtained in the mid- and late luteal phases of the oestrous cycle (Days 9 and 13; 5 ewes per group). The cellular composition of these CL was compared by ultrastructural morphometry to determine whether there were changes in numbers of large and small luteal cells consistent with differentiation of some small luteal cells to large luteal cells during the last part of the luteal phase. No differences between Days 9 and 13 were detected in luteal volume, plasma progesterone concentration, or volume density of any component of the luteal tissue. Large luteal cell numbers (mean +/- s.e.m.) were lower per unit volume of luteal tissue on Day 13 than on Day 9 (14.1 +/- 0.5 vs 18.4 +/- 1.3 X 10(3)/mm3, P less than 0.05). Mean volume of the individual large luteal cells was greater on Day 13 than on Day 9 (19.65 +/- 0.72 vs' 15.60 +/- 1.34 micrograms 3 X 10(3), P less than 0.05). However, there were no significant differences in numbers or volumes of small luteal cells between Days 9 and 13, and total numbers of large luteal cells per CL were not different between these two days. These results provide no support for the hypothesis that small luteal cells differentiate into large luteal cells during the oestrous cycle of the sheep.  相似文献   

17.
Small (less than or equal to 15 microns diameter) and large (greater than 20 microns diam.) luteal cells of the rhesus monkey have been separated by flow cytometry based on light scatter properties. To determine whether the steroidogenic ability and agonist responsiveness of luteal cell subpopulations vary during the life span of the corpus luteum, small and large cells were obtained at early (Days 3-5), mid (Days 7-8), mid-late (Days 11-12), and late (Days 14-15) luteal phase of the cycle. Cells (n = 4 exp./group) were incubated in Ham's F-10 medium + 0.1% BSA for 3 h at 37 degrees C with or without hCG (100 ng/ml), prostaglandin E2 (PGE2; 14 microM), dibutyryl-cAMP (db-cAMP; 5 mM), or pregnenolone (1 microM). Basal progesterone (P) production by large cells was up to 30-fold that by small cells depending on the stage of the cycle. HCG stimulated (p less than 0.05) P secretion by both small (1.8 +/- 0.2-fold) and large (3.7 +/- 0.7-fold) cells in the early luteal phase. HCG responsiveness declined during the luteal lifespan; P production by small cells was not significantly enhanced by hCG by mid luteal phase, whereas that by large cells was stimulated 1.7 +/- 0.2-fold (p less than 0.05) even at late luteal phase. Cell responses to db-cAMP were similar to those for hCG.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
19.
Stimulation of the primate corpus luteum (CL) by endogenous chorionic gonadotropin (CG) in early pregnancy, or by exogenous human (h)CG in simulated early pregnancy, results in a transient elevation of serum progesterone (P) and a persistent elevation of serum 17 beta-estradiol (E). Luteal prostaglandins (PG) may play a role in these responses. The objective of the current study was to correlate luteal PG production and steroidogenic response of CL in vitro with patterns of serum steroids during simulated early pregnancy. CL were removed from rhesus monkeys (n = 26) at 0 h, 9 h, 3 days, 6 days, and 10 days, during prolonged CG exposure of simulated early pregnancy. Dispersed cells were incubated in vitro at 37 degrees C for 8 h. Changes in basal production of P were not significantly correlated with patterns of serum steroids. Maximal stimulation of P production by hCG in vitro (stimulated minus basal) continuously declined (p less than 0.01) from 0 h (means +/- SE, 59.6 +/- 17.9 ng/ml) to 10 days (4.7 +/- 1.8 ng/ml) of simulated early pregnancy. In contrast to patterns of response to hCG, the level of enhancement in P production in response to a maximally stimulatory dose of dibutyryl (db) cyclic adenosine 3',5'-monophosphate (cAMP) declined (p less than 0.05) from 0 h (52.4 +/- 17.6 ng/ml) to 3 days (20.3 +/- 8.4 ng/ml), but was maintained through 10 days (23.7 +/- 11.6 ng/ml) of simulated early pregnancy. As such, desensitization to gonadotropin, which occurred in terms of P production, appears to involve an event subsequent to stimulation of adenylate cyclase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Prostaglandins (PGs) are produced by the corpus luteum (CL) of many domestic and laboratory species and may play a role in CL regulation. The production of PGs by luteal tissue of the rhesus monkey has yet to be clearly elucidated. The production of PGE2, PGF2 alpha, and 6-keto-PGF1 alpha by CL from rhesus monkeys and the incubation conditions (time and cell number) that permit assessment of their synthesis were examined. CL (n = 3 per characterization) were surgically removed from nonpregnant monkeys during the mid-luteal phase of the menstrual cycle (approximately 8-10 days after ovulation). Luteal tissue was dissociated and the cells were incubated at varying concentrations for increasing periods of time at 37 degrees C. Subsequent to defining incubation conditions, various exogenous factors were examined for their potential to modify PG production. Indomethacin, calcium ionophore, human chorionic gonadotropin (hCG), estradiol-17 beta (E2), progesterone (P), testosterone (T), dihydrotestosterone (DHT), and 1-4-6 androstatriene-3, 17-dione (ATD) were incubated with luteal cells in increasing doses. PG and P concentrations in the medium were determined by radioimmunoassay. PGs in the medium after 6 h incubation were detectable at all cell concentrations tested (50,000, 100,000, 200,000 cells/tube). Concentrations of PGs and P increased with cell number (p less than 0.05). Luteal cells (50,000 cells/tube) were incubated for times of 0-24 h. Concentrations of P, PGE2, and PGF2 alpha in the medium were relatively low prior to incubation (0 h), increased (p less than 0.05) linearly within the first 6-12 h, and plateaued through the remaining 24 h.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号