首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wetland mitigation and compensation: Canadian experience   总被引:3,自引:0,他引:3  
Since Canada’s accession to the Ramsar Convention on Wetlands in 1981, the nation’s commitment to wetland conservation and management has increased significantly. This includes the adoption of one of the World’s first national wetland conservation policies by the Government of Canada, and the adoption of complementary policy and legislative initiatives by most of the 13 provincial and territorial jurisdictions. Numerous habitat ‘no net loss’ and environmental assessment policies, regulations and guidelines for incorporating mitigation processes into development decisions affecting wetland resources are used throughout Canada. The governments of Canada and six provinces have so far adopted wetland mitigation measures. These are in addition to comprehensive wetland fish and wildlife habitat initiatives, such as the species and habitat joint ventures delivered in Canada through the North American Waterfowl Management Plan by all jurisdictions and numerous non-government partners. This paper examines the current policies, regulations and programs, as well as past implementation experience with wetland mitigation and compensation in Canada.  相似文献   

2.
Many wetlands have been constructed in West Virginia as mitigation for a variety of human disturbances, but no comprehensive evaluation on their success has been conducted. Macroinvertebrates are extremely valuable components of functioning wetland ecosystems. As such, benthic and water column invertebrate communities were chosen as surrogates for wetland function in the evaluation of 11 mitigation and 4 reference wetlands in West Virginia. Mitigation wetlands ranged in age from 4 to 21 years old. Overall familial richness, diversity, density and biomass were similar between mitigation and reference wetlands (p > 0.05). Within open water habitats, total benthic invertebrate density was higher in reference wetlands, but mass of common taxa from water column samples was higher in mitigation wetlands (p < 0.05) Planorbidae density from benthic samples in emergent habitats was higher in reference than mitigated wetlands. Benthic Oligochaeta density was higher across open water habitats in mitigation wetlands. All other benthic taxa were similar between wetland types. Among the most common water column orders, Isopoda density was higher in reference wetlands, but Physidae density was higher in mitigation wetlands. Within mitigation wetlands, emergent areas contained higher richness and diversity than open areas. These data indicate that mitigation and reference wetlands generally support similar invertebrate assemblages, especially among benthic populations. The few observed differences are likely attributable to differences in vegetative community composition and structure. Mitigation wetlands currently support abundant and productive invertebrate communities, and as such, provide quality habitat for wetland dependent wildlife species, especially waterbirds and anurans.  相似文献   

3.
Measuring the success of wetland restoration efforts requires an assessment of the wetland plant community as it changes following restoration. But analyses of restored wetlands often include plant community data from only one time period. We studied the development of plant communities at 13 restored marshes in northern New York for 4 years, including 1 year prior to restoration and 3 years afterwards. Restored wetlands ranged in size from 0.23 to 1.70 ha. Four reference wetlands of similar basin morphology, soil type, and size (0.29–0.48 ha) that occurred naturally in the same area were studied as comparisons. Dike construction to restore hydrology disturbed the existing vegetation in some parts of the restored sites, and vegetation was monitored in both disturbed and undisturbed areas. Undisturbed areas within the restored sites, which were dominated by upland field grasses before restoration, developed wetland plant communities with lower wetland index values but comparable numbers of wetland plant species than the reference wetlands, and they lagged behind the reference sites in terms of total wetland plant cover. There were significantly more plant species valuable as food sources for wetland birds, and a significantly higher percent cover of these species, at the undisturbed areas of the restored sites than at the reference wetlands. Areas of the restored sites that were disturbed by dike construction, however, often developed dense, monospecific cattail stands. In general, the plant communities at restored sites became increasingly similar to those at the reference wetlands over time, but higher numbers of herbaceous plants developed at the restored sites, including food plants for waterfowl, rails, and songbirds. Differences in shrub cover will probably lessen as natural recolonization increases shrub cover at the restored sites. Natural recolonization appears to be an effective technique for restoring wetlands on abandoned agricultural fields with established plant cover, but it is less successful in areas where soil has been exposed by construction activity.  相似文献   

4.
First developed in the USA in the early 1970s, ‘wetland mitigation banks’ provide a framework for conservation activities that are designed to offset residual, unavoidable damage to the natural environment caused by development activities. The concept is now a worldwide phenomenon. In this paper I consider the level of success of wetland mitigation banks in the USA for biodiversity conservation with a view to informing ‘best practice’ in Australia. I conclude that although the concept has merit, even in the USA where the processes have been evolving for over 30 years, the outcomes frequently fall short of the target of a ‘like for like’ swap of habitat. While the outcome for wetland mitigation may not be an ‘unmitigated disaster’ it is, at best, apparently only modestly successful.  相似文献   

5.
Wetland mitigation is implemented to replace ecosystem functions provided by wetlands; however, restoration efforts frequently fail to establish equivalent levels of ecosystem services. Delivery of microbially mediated ecosystem functions, such as denitrification, is influenced by both the structure and activity of the microbial community. The objective of this study was to compare the relationship between soil and vegetation factors and microbial community structure and function in restored and reference wetlands within a mitigation bank. Microbial community composition was assessed using terminal restriction fragment length polymorphism targeting the 16S rRNA gene (total bacteria) and the nosZ gene (denitrifiers). Comparisons of microbial function were based on potential denitrification rates. Bacterial community structures differed significantly between restored and reference wetlands; denitrifier community assemblages were similar among reference sites but highly variable among restored sites throughout the mitigation bank. Potential denitrification was highest in the reference wetland sites. These data demonstrate that wetland restoration efforts in this mitigation bank have not successfully restored denitrification and that differences in potential denitrification rates may be due to distinct microbial assemblages observed in restored and reference (natural) wetlands. Further, we have identified gradients in soil moisture and soil fertility that were associated with differences in microbial community structure. Microbial function was influenced by bacterial community composition and soil fertility. Identifying soil factors that are primary ecological drivers of soil bacterial communities, especially denitrifying populations, can potentially aid the development of predictive models for restoration of biogeochemical transformations and enhance the success of wetland restoration efforts.Wetlands provide more ecosystem services (e.g., flood control, water purification, nutrient cycling, and habitat for wildlife) per hectare than any other ecosystem (16). Riparian wetlands, in particular, are sites of intense biogeochemical activity and play an important role in improving water quality, recycling nutrients, and detoxifying chemicals (41). Changing patterns of land use over the last century have resulted in the loss of over half of the wetlands in the contiguous United States (17) and about 60% of wetlands in the Midwestern United States (82). The loss of ecosystem services through conversion of wetlands to alternative (primarily agricultural) land uses exacerbates nutrient pollution and eutrophication of downstream ecosystems (57). Declines in wetland acreage have continued despite a federal policy goal of no-net-loss of wetland acreage and function adopted in 1990 (7, 55). Wetland mitigation projects provide compensation for impacted wetlands and aim to replace the critical functions provided by wetlands. Despite decades of wetland mitigation, however, restoration efforts frequently fail to reestablish desired levels of ecosystem services. Restoration outcomes remain uncertain, and more information is necessary in order to improve monitoring and assessment of wetland development (13, 18, 50, 80).One approach to wetland compensation is through mitigation banks. These sites are areas that are restored, established, enhanced, or preserved for replacement of wetlands that will be affected by future land use change. Mitigation banks are considered “third-party” compensatory mitigation, where the permittee (e.g., developer planning to destroy a wetland) is responsible for purchasing wetland credits in acreage, but the wetland bank is established and managed by another party (24). Wetland mitigation banks have unique characteristics that distinguish them from smaller individual restoration projects (7, 69, 81). Due to their size, wetland mitigation banks are especially heterogeneous and may have a great deal of within-site variability in hydrology and nutrient status, making it challenging to implement a single restoration design. Thus, wetland mitigation banks require intense management and monitoring for improved success (7, 69, 81).Restoration efforts such as mitigation banks aim to replace chemical, physical, and biological ecosystem functions of wetlands that have been lost through anthropogenic disturbance (24). Monitoring of wetland mitigation sites has largely focused on measures of macro-scale community structure (e.g., vegetation surveys) (52) along with measures of hydrology and soil type (24). Measurement of vegetation is a common proxy for wetland performance but does not provide an accurate assessment of wetland function (6, 52). Quantitative assessment is achievable, however, for ecosystem services such as water quality improvement through nitrate removal, where well-characterized microbial mechanisms underlie denitrification processes.The link between microbial community structure and function in a restoration context is a topic of current interest (33). Relating microbial community composition and dynamics to chemical, physical, and biological variables can help to reveal important ecological drivers of microbial communities and their activities (26, 35, 42). Conserved bacterial functional genes related to specific biogeochemical transformations allow evaluation of the community structure of microbial populations directly involved in these processes (49, 60, 63, 77, 79). Assessing the diversity of microorganisms that are specifically involved in denitrification is possible through amplification of the nosZ gene, which encodes the catalytic subunit of nitrous oxide reductase, the enzyme responsible for the final step of denitrification (60, 63, 66). Phylogenetically diverse microorganisms can carry out denitrification though the majority of previously described denitrifiers belong to subphyla within the Proteobacteria (53, 56, 60, 61). Denitrification is a facultative process that occurs only under anaerobic conditions (53, 75). Complete denitrification to N2 is more prevalent in anaerobic, saturated wetland ecosystems (14, 76), and incomplete denitrification to N2O is the less desirable, more common endpoint of denitrification under more aerobic, drier conditions (14, 62). While the environmental factors (e.g., oxygen, carbon, nitrate, and pH) that influence bulk denitrification rates have been well characterized (31, 72), the influence of these factors on the composition of denitrifier communities, particularly in a restoration context, is unclear. Understanding the relationship between the microbial populations responsible for nitrogen transformations and easily measured environmental parameters (e.g., soil chemical and physical measures) could lead to assessment metrics that are linked directly to ecosystem functions such as denitrification and bridge the current gap in functional assessment methods (36, 60, 70).The objectives of this study were (i) to compare the microbial and plant community composition in restored wetlands to the composition in adjacent reference floodplain forest wetlands; (ii) to assess the relationship between microbial community composition (based on terminal restriction fragment length polymorphism [T-RFLP]) and potential denitrification activity throughout the mitigation bank; and (iii) to examine soil factors correlated with microbial community composition using both phylogenetic and functional gene markers. As soil environmental conditions affect microbial community structure and activity, we expected that sites where wetland hydrology and soil chemistry have been successfully restored would harbor microbial assemblages that are similar in composition and denitrification function to those observed in reference wetlands within this mitigation bank.  相似文献   

6.
湿地生态系统设计的一些基本问题探讨   总被引:54,自引:3,他引:51  
湿地生态系统设计是恢复、调整湿地的重要手段,本文3从湿地生态系统设计概念入手,阐述了设计的基本原则。较详细地讨论了设计中的指标(水文指标、化学指标、基质指标和生物指标)要求,根据湿地生态系统设计的用途不同,探讨了3种主要的湿地生态系统设计类型,即作为废水处理湿地的设计,作为调整湿地的系统设计和作为洪水及非点源污染控制的湿地设计。  相似文献   

7.
Wetlands provide a range of ecosystem services such as drought resistance, flood resistance, nutrient deposition, biodiversity, etc. This study presents a new multi-criteria, ecosystems service value-driven method to drive the optimal placement of restored wetlands in terms of maximizing selected ecosystem services which a wetland can provide or affect. We aim to answer two questions: 1) which of the ecosystem services indicators defines the placement of wetlands today? 2) Based on the ecosystem services indicator assessment, what are the recommendations for future selection of catchments for potential wetland reconstruction (i.e. restoration)?Five key ecosystem services indicators produced or affected by wetlands in Denmark were mapped (recreational potential, biodiversity, nitrogen mitigation potential, inverse land rent, and flash-flood risk). These services were compared to current placements of wetlands. Furthermore, scenario testing and hotspot analysis were combined to provide future recommendations for optimal placements of wetlands. The scenarios investigated were Climate Adaptation and Protection of Aquatic Environment, Land-Based Economy, and Rich Nature. Based on these scenarios, the most suitable areas for wetland reconstruction were mapped, taking both the scenarios and attached weightings of ecosystem services indicators into account.According to statistical results current reconstructed wetlands are situated in catchments with lower biodiversity, higher nitrogen mitigation potential, higher land rent (i.e. agricultural intensive areas), and to some extent higher flash flood risk compared to the median of catchments with wetlands. Hence, recreation potential, high biodiversity, and low land rent has not been prioritized. 35 out of the 3023 catchments investigated were identified with an especially high suitability when optimizing all scenarios. This coincides with a high suitability around peri-urban and urban areas and near natural areas, hence capturing both supply and demand services. Of the 35 identified catchments with potentially high suitability, only 2 actually hold a presently reconstructed wetland. This indicates a prior placement with almost no consideration of maximizing ecosystem services benefits.We recommend a systematic approach, such as the ecosystem service value-driven method demonstrated in the present case study, to target more services and improve the overall benefit from wetlands. This approach seeks to inform decision makers of synergies in the landscape, which is likely to transcend future policy implementations.  相似文献   

8.
Wetland and stream mitigation programs originated to offset the unavoidable impacts to wetlands and streams from activities related to development. Until recently, most mitigation in the United States and globally was done on a case-by-case basis, with site selection based on availability. Today, systematic programs that choose sites based on structural and ecological characteristics that give an indication of the feasibility of the site for wetland and stream mitigation banking are necessary. This paper outlines a three-level framework to select, prioritize, and evaluate potential wetland and stream mitigation banking sites. The framework was tested on three ten-digit hydrologic unit code watersheds in West Virginia that were in three different physiographic regions and near proposed future road construction projects. Level 1 included a Geographic Information System (GIS) based analysis of watersheds and appropriate spatial data. Level 2 was a field reconnaissance survey of sites using evaluation criteria weighted with the pairwise comparison Analytical Hierarchy Process. Level 3 was an on-site evaluation of the highly ranked sites to verify the modeling approach. Results showed successful selection of suitable sites for combined wetland and stream mitigation banking. We found the framework to be an efficient and non-subjective way to identify and prioritize wetland and stream mitigation banking sites and has direct applications for other states or regions.  相似文献   

9.
《Ecological Engineering》2005,24(4):359-377
Despite the fact that landscape level processes dominate wetland ecosystem development and sustainability, restoration decisions (including those for compensatory mitigation) are typically made on a project-by-project basis. Watershed planning designed to strategically restore wetlands has the potential to provide dramatic benefits by restoring ecosystem-level processes (functions) that maintain water resource integrity. We developed a GIS-based model to predict the suitability for wetland restoration for all locations in the Cuyahoga River watershed (2107 km2), in northeastern Ohio (U.S.A.). The model offers a useful tool to focus and set goals for wetland restoration efforts in a spatially explicit way. A two-phase approach was used: the first is to develop criteria, or environmental indicators, to identify the total population of sites suitable for wetland restoration. Locations are identified where restoration has a high likelihood of success and will be sustainable over the long term. Criteria used include hydric soils, land use, topography, stream order, and a saturation index based on slope and flow accumulation in each grid cell in the model. The second phase “filters” the total population of available sites in order to prioritize them according to their potential to contribute to water resource integrity once restored. We generated three versions of the suitability model depicting restoration potential. All versions rely on the same criteria but vary in how the factors were weighted or the hydrology criterion was calculated.  相似文献   

10.
Reliable ecological indicators of wetland integrity are necessary for assessing recovery of restored wetlands; yet, little consensus currently exists on which indicators are most appropriate. We employed indicators derived from simple, standard measures of ecosystem function selected on the basis of ecological succession theory developed by [Science 164 (1969) 262; Bioscience 35 (1985) 419], which suggests that respiration:biomass ratios should increase in disturbed systems due to the diversion of energy from growth to maintenance. This hypothesis holds potential for the development of a simple ecological indicator and therefore was tested among prairie wetlands restored after drainage disturbance. No difference was observed in respiration:biomass ratios in restored wetlands and reference wetlands designated as controls. Plankton respiration or biomass may be poor indicators of disturbance because plankton responds quickly to re-establishment of a wetland hydrology regime and/or because different plankton species may have redundant function. We suggest employing more revealing assessment techniques that employ simultaneous examination of ecosystem structure and function to better characterize subtle or lingering effects of wetland disturbance after restoration.  相似文献   

11.
我国湿地评价研究综述   总被引:34,自引:5,他引:29  
杨波 《生态学杂志》2004,23(4):146-149
湿地评价研究已成为新世纪湿地科学前沿研究领域的热点问题。近年来 ,随着对湿地认识的不断深入 ,我国湿地评价研究内容不断丰富 ,研究水平提高幅度较大 ,研究方法由过去仅局限于湿地特征描述的定性评价 ,发展到湿地价值评价、湿地生态系统健康评价、湿地环境影响评价以及湿地生态风险评价等方面 ,3S技术和数学方法在湿地评价研究中也得到了较为广泛的应用。今后我国湿地评价研究应侧重于湿地评价理论、湿地评价指标体系和模型、湿地对比评价研究、退化湿地评价研究、湿地与全球气候变化以及新技术和新方法应用等方面  相似文献   

12.
Wetlands mitigation for any activity can be applied to avoid or minimize damage and restore, enhance, or create wetlands as well. New tools for mitigating and creating wetlands are available, including the Wetland Impact Assessment. This article explores many current issues in wetland mitigation and mitigation strategies, using case studies for illustration. We include some general guidelines for successful wetland mitigation based primarily on existing literature review in several cities. We use comparison and analyses on biodiversity improvement and various wetland functions, including flood-risk management, linking people to nature through urban regeneration, and connecting with the natural environment. Also, restoration, enhancement, mitigation, and creation analyses are included.  相似文献   

13.
Structural and functional loss in restored wetland ecosystems   总被引:4,自引:0,他引:4  
Wetlands are among the most productive and economically valuable ecosystems in the world. However, because of human activities, over half of the wetland ecosystems existing in North America, Europe, Australia, and China in the early 20th century have been lost. Ecological restoration to recover critical ecosystem services has been widely attempted, but the degree of actual recovery of ecosystem functioning and structure from these efforts remains uncertain. Our results from a meta-analysis of 621 wetland sites from throughout the world show that even a century after restoration efforts, biological structure (driven mostly by plant assemblages), and biogeochemical functioning (driven primarily by the storage of carbon in wetland soils), remained on average 26% and 23% lower, respectively, than in reference sites. Either recovery has been very slow, or postdisturbance systems have moved towards alternative states that differ from reference conditions. We also found significant effects of environmental settings on the rate and degree of recovery. Large wetland areas (>100 ha) and wetlands restored in warm (temperate and tropical) climates recovered more rapidly than smaller wetlands and wetlands restored in cold climates. Also, wetlands experiencing more (riverine and tidal) hydrologic exchange recovered more rapidly than depressional wetlands. Restoration performance is limited: current restoration practice fails to recover original levels of wetland ecosystem functions, even after many decades. If restoration as currently practiced is used to justify further degradation, global loss of wetland ecosystem function and structure will spread.  相似文献   

14.
North American prairie pothole wetlands are known to be important carbon stores. As a result there is interest in using wetland restoration and conservation programs to mitigate the effects of increasing greenhouse gas concentration in the atmosphere. However, the same conditions which cause these systems to accumulate organic carbon also produce the conditions under which methanogenesis can occur. As a result prairie pothole wetlands are potential hotspots for methane emissions. We examined change in soil organic carbon density as well as emissions of methane and nitrous oxide in newly restored, long-term restored, and reference wetlands across the Canadian prairies to determine the net GHG mitigation potential associated with wetland restoration. Our results indicate that methane emissions from seasonal, semi-permanent, and permanent prairie pothole wetlands are quite high while nitrous oxide emissions from these sites are fairly low. Increases in soil organic carbon between newly restored and long-term restored wetlands supports the conclusion that restored wetlands sequester organic carbon. Assuming a sequestration duration of 33 years and a return to historical SOC densities we estimate a mean annual sequestration rate for restored wetlands of 2.7 Mg C ha−1year−1 or 9.9 Mg CO2 eq. ha−1 year−1. Even after accounting for increased CH4 emissions associated with restoration our research indicates that wetland restoration would sequester approximately 3.25 Mg CO2 eq. ha−1year−1. This research indicates that widescale restoration of seasonal, semi-permanent, and permanent wetlands in the Canadian prairies could help mitigate GHG emissions in the near term until a more viable long-term solution to increasing atmospheric concentrations of GHGs can be found.  相似文献   

15.
1. The ’hydrogeomorphic‘ approach to functional assessment of wetlands (HGM) was developed as a synthetic mechanism for compensatory mitigation of wetlands lost or damaged by human activities. The HGM approach is based on: (a) classification of wetlands by geomorphic origin and hydrographic regime (b) assessment models that associate variables as indicators of function, and (c) comparison to reference wetlands that represent the range of conditions that may be expected in a particular region. In this paper, we apply HGM to riparian wetlands of alluvial rivers. 2. In the HGM classification, riverine wetlands are characterized by formative fluvial processes that occur mainly on flood plains. The dominant water sources are overbank flooding from the channel or subsurface hyporheic flows. Examples of riverine wetlands in the U.S.A. are: bottomland hardwood forests that typify the low gradient, fine texture substratum of the south-eastern coastal plain and the alluvial flood plains that typify the high gradient, coarse texture substratum of western montane rivers. 3. Assessment (logic) models for each of fourteen alluvial wetland functions are described. Each model is a composite of two to seven wetland variables that are independently scored in relation to a reference data set developed for alluvial rivers in the western U.S.A. Scores are summarized by a ’functional capacity index‘ (FCI), which is multiplied by the area of the project site to produce a dimensionless ’functional capacity unit‘ (FCU). When HGM is properly used, compensatory mitigation is based on the FCUs lost that must be returned to the riverine landscape under statutory authority. 4. The HGM approach also provides a framework for long-term monitoring of mitigation success or failure and, if failing, a focus on topical remediation. 5. We conclude that HGM is a robust and easy method for protecting riparian wetlands, which are critically important components of alluvial river landscapes.  相似文献   

16.
Few wetland restoration projects include long‐term hydrologic and floristic data collection, limiting our understanding of community assembly over restored hydrologic gradients. Although reference sites are commonly used to evaluate outcomes, it remains unclear whether restoring similar water levels to reference sites also leads to similar plant communities. We evaluated long‐term datasets from reference and restored wetlands 15 years after restoration to test whether similar water levels in reference and restored sites led to vegetation similarity. We compared the hydrologic regimes for three different wetland types, tested whether restored wetland water levels were different from reference water levels, and whether hydrologic similarity between reference and restored wetlands led to similarity in plant species composition. We found restored wetlands had similar water levels to references 15 years after restoration, and that species richness was higher in reference than restored wetlands. Vegetation composition was similar across all wetland types and was weakly correlated to wetland water levels overall. Contrary to our hypothesis, water table depth similarity between restored and reference wetlands did not lead to similar plant species composition. Our results highlight the importance of the initial planting following restoration and the importance of hydrologic monitoring. When the restoration goal is to create a specific wetland type, plant community composition may not be a suitable indicator of restoration progress in all wetland types.  相似文献   

17.
The hydrogeomorphic (HGM) approach to wetland functional assessment has been in place for more than 20 years, yet most models developed to date have not been validated. Although HGM models are typically calibrated to a data set, we lack true validation efforts, especially as wetland scientists and managers continue to assert that measuring structure equates to an assessment of function. This paper is a call for a renewed effort at HGM validation in order to fully assure that we know when structure is measured we are also measuring function.  相似文献   

18.
Wetland restoration has been implemented widely but evaluation of the effectiveness of wetland restoration has been limited. In this study, we aimed to investigate the utility of aquatic invertebrate assemblages as potential indicators of restoration condition in wetlands of the Sanjiang Plain, Northeastern China. Results from non‐metric multidimensional scaling analysis of invertebrate assemblages showed that study wetlands (n = 16) divided into two groups: natural wetlands and wetlands that have been restored for 4 years were classified as a group, and impaired wetlands and wetlands restored for only 1 year were classified into another group. After 4 years of recovery, 47.9% of invertebrate taxa found at the natural wetlands could also be found at the restored wetlands, primarily insects with aerial dispersal capabilities for rapid colonization. Indicator species analysis identified differences in community composition among wetland types, and Amphiagrion sp. and Bezzia sp. were indicators of the restored wetlands. In Northeastern China, aquatic invertebrate assemblages and certain indicator species may provide robust measures of wetland restoration. It is urgent for further exploration to monitor restored wetlands in the long‐time series and fully assess the efficiency of the restoration.  相似文献   

19.
20.
Many jurisdictions in North America use a “mitigation sequence” to protect wetlands: First, avoid impacts; second, minimize unavoidable impacts; and third, compensate for irreducible impacts through the use of wetland restoration, enhancement, creation, or protection. Despite the continued reliance on this sequence in wetland decision-making, there is broad agreement among scholars, scientists, policymakers, regulators, and the regulated community that the first and most important step in the mitigation sequence, avoidance, is ignored more often than it is implemented. This paper draws on literature published between 1989 and 2010, as well as 33 semi-structured, key-informant interviews carried out in 2009 and 2010 with actors intimately involved with wetland policy in Alberta, Canada, to address key reasons why “avoidance” as a policy directive is seldom effective. Five key factors emerged from the literature, and were supported by interview data, as being central to the failure of decision-makers to prioritize wetland avoidance and minimization above compensation in the mitigation sequence: (1) a lack of agreement on what constitutes avoidance; (2) current approaches to land-use planning do not identify high-priority wetlands in advance of development; (3) wetlands are economically undervalued; (4) there is a “techno-arrogance” associated with wetland creation and restoration that results in increased wetland loss, and; (5) compensation requirements are inadequately enforced. Largely untested but proactive ways to re-institute avoidance as a workable option in wetland management include: watershed-based planning; comprehensive economic and social valuation of wetlands; and long-term citizen-based monitoring schemes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号