首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of post-irradiation inhibition of protein synthesis with cycloheximide was studied on UV-induced mitotic gene conversion in yeast. The frequency of UV-induced mitotic gene convertants as well as survival were reduced when post-irradiation protein synthesis was inhibited beyond 8 h. It is concluded that proteins required for mitotic recombination are not induced by UV irradiation and are already present in mitotic cells.  相似文献   

2.
Isolation of a stimulatory factor for nuclear DNA replication   总被引:1,自引:0,他引:1  
Aqueous extracts of isolated nuclei and intact plasmodia of Physarum contain a heat-stable stimulator of nuclear DNA replication. The stimulatory factor is present throughout the mitotic cycle, and its activity is unaffected by prior exposure of plasmodia to cycloheximide. The stimulatory substance has been partially purified by heat treatment, precipitation with ethanol, chromatography on DEAE cellulose, and gel filtration. The purified material contains both carbohydrate and protein, and exhibits a molecular weight of about 30 000. The active substance increases the rate and overall extent of DNA replication in S-phase nuclei, but does not trigger the initiation of DNA synthesis in nuclei isolated from G2-phase plasmodia. The stimulatory material contains little or no deoxyribonuclease or DNA polymerase activity, and it does not affect DNA polymerase activity assayed using a purified DNA template.  相似文献   

3.
Synchronously mitotic surface Plasmodia ofPhysarum polycephalum were ultra-violet-irradiated at different times during G2-phase (—4 h to —20 min with respect to metaphase), and treated immediately thereafter with varying concentrations of caffeine. It was observed that ultraviolet-induced mitotic delay is reduced significantly by this methylxanthine. In plasmodia irradiated between —4 and —1 h with respect to metaphase, the effect was concentration-dependent and the need for a certain threshold dose for obtaining the reduction in delay was apparent. However, higher doses than this were fairly toxic when applied at this part of the cycle and led to more mitotic delay than that obtained with UV alone. The most striking observation made during this study was the phase-specific precipitous effect seen in those plasmodia irradiated at about 20 min before mitosis which almost eliminated the long delay due to ultraviolet-irradiation. These results are discussed in the context of some of the known effects of ultraviolet and caffeine on a mitosis-promoting factor. It is proposed that the significant reduction of ultraviolet-induced mitotic delay reported here is due to the reactivation of the ultraviolet-inactivated mitosis-promoting factor by caffeine. Alternatively, it is possible that caffeine may prevent the inactivation of this factor by ultraviolet.  相似文献   

4.
5.
In the myxomycete Physarum polycephalum, tubulin synthesis is subject to mitotic cycle control. Virtually all tubulin synthesis is limited to a 2-h period immediately preceding mitosis, and the peak of tubulin protein synthesis is accompanied by a parallel increase in the level of tubulin mRNA. The mechanism by which the accumulation of tubulin mRNA is turned on and off is not clear. To probe the relationship between tubulin regulation and cell cycle controls, we have used heat shocks to delay mitosis and have followed the pattern of tubulin synthesis during these delays. Two peaks of tubulin synthesis are observed after a heat shock. One occurs at a time when synthesis would have occurred without a heat shock, and a second peak immediately precedes the eventual delayed mitosis. These results are clearly due to altered cell cycle regulation. No mitotic activity is detected in delayed plasmodia at the time of the control mitosis, and tubulin behavior is shown to be clearly distinct from that of heat shock proteins. We believe that the tubulin family of proteins is subject to regulation by a thermolabile mitotic control mechanism but that once the cell has been committed to a round of tubulin synthesis the "tubulin clock" runs independently of the heat sensitive system. In delayed plasmodia, the second peak of synthesis may be turned on by a repeat of the commitment event.  相似文献   

6.
The levels of cyclic AMP and cyclic GMP have been measured in Physarum plasmodia before and after treatment with gamma-radiation, 2 mM caffeine, or combinations of the two agents and compared to the length of the radiation-induced mitotic delay. Caffeine alone produces a rapid transient elevation of cyclic AMP and a slower delayed elevation of cyclic GMP. Irradiation elicits an immediate transient increase in cyclic AMP and a later cyclic GMP increase which accompanies or precedes the delayed mitosis. A composite pattern is produced by combinations of radiation and caffeine, a distinctive feature of which is an elevated level of cyclic GMP near the time of the radiation-delayed and caffeine-promoted mitosis. With pretreatment by caffeine, the least radiation-induced mitotic delay occurs when plasmodia are irradiated during the caffeine-elicited increase in cyclic GMP. The plasmodium becomes refractory to the reduction of mitotic delay by caffeine at approximately the time it becomes refractory to the further elevation of cyclic GMP by caffeine. The data support a role for cyclic AMP in the onset of and for cyclic GMP in the recovery from mitotic delay induced by ionizing radiation.  相似文献   

7.
K. Yamada 《Cell proliferation》1998,31(5-6):203-215
Abstract. To understand what processes affect the cell-cycle timing of mitotic events in early cleavage cycles of sea urchin embryos, a study was made on the effects of (a) reducing protein synthesis with emetine and (b) DNA replication with aphidi-colin, on the timing of nuclear envelope breakdown, anaphase onset and cytokinesis. When protein synthesis was slightly inhibited by administration of emetine, the delay in the mitotic events increased, with an increase in the delay in accumulation of proteins up to the levels to which cells must synthesize the proteins to execute the cleavage. This indicated that protein synthesis affects the timing of mitotic events. The delay in cleavage cycles caused by a slight inhibition of DNA replication with aphidicolin was in proportion to the concentration of aphidicolin administered, suggesting that DNA replication also affects the timing of mitotic events. Furthermore, it was confirmed that accumulation of the proteins to the levels required for execution of the first cleavage precedes completion of DNA replication as a requirement for execution of the first cleavage. These results imply the existence of process(es) affected by protein synthesis that are included in a feedback control system which prevents the initiation of mitosis until after the completion of DNA replication; it is the characteristic of a cell-cycle control system that has been predicted theoretically.  相似文献   

8.
The multinucleated plasmodia ofPhysarum polycephalum, a myxomycete, have been extensively used in cell cycle studies. The natural synchrony of mitosis and DNA synthesis, easy culture methods, the ready fusions obtainable between plasmodia, and the amenability to phase specific studies, employing physical and chemical perturbers, are some of the attractive features of this organism. Because of the absence of a Gl phase in the plasmodia, there is a crowding of cell cycle specific marker events at the G2/M boundary, which reflect features of both the G2/M and the Gl/S boundaries of a typical eukaryotic cell. Prominent among these are the synthesis and overall activity of thymidine kinase, the co-triggering of tubulin and histone genes, translation of their mRNA, the organization and duplication of the microtubular organizing centres of the mitotic spindle and the triggering of cdc 2 kinase activity. These above events have not only served as good markers to monitor the progress of the plasmodial cell cycle, but have also been fairly thoroughly analysed by means of specific perturbers such as DNA synthesis inhibitors, antimicrotubular drugs, UV-irradiation, heat-shock etc. Along with fusion studies, these perturbation studies have been helpful in the formulation of various models on regulation of mitosis. These above aspects as well as prospects for future studies employing this organism are discussed This paper is dedicated to the memory of the late Prof. S C K Nair, formerly University Professor of Physics.  相似文献   

9.
Summary Physarum synchronous plasmodia were submitted to temperature shifts during the cell cycle and the onset of mitosis was followed at both temperatures. After 22 to 31 or 32° shifts, delays in mitosis onset, dependent upon protein synthesis, were observed at 32° and found to increase as the time separating the shift from the control mitosis decreases. The modification of a general metabolic process or the inactivation of a catalytic heat sensitive substance cannot account for such a result. The proposed model postulates a substance acting in a stoichiometric way, which can occur under three structural forms: two active forms synthesized at low and high temperatures respectively and an inactive one which comes from the transformation of the low temperature active form placed at high temperature. The constant delays observed after some shifts (29 to 32°) suggest that this substance is acting through a polymeric structure which would be necessary for the mitotic process and the initiation of the following DNA synthesis.  相似文献   

10.
11.
Using a selfing strain of Physarum polycephalum that forms haploid plasmodia, we have isolated temperature-sensitive growth mutants in two ways. The negative selectant, netropsin, was used to enrich for temperature-sensitive mutants among a population of mutagenized amoebae, and, separately, a nonselective screening method was used to isolate plasmodial temperature-sensitive mutants among clonal plasmodia derived from mutagenized amoebae. Complementation in heterokaryons was used to sort the mutants into nine functional groups. When transferred to the restrictive temperature, two mutants immediately lysed, whereas the remainder slowed or stopped growing. Of the two lytic mutants, one affected both amoebae and plasmodia, and the other affected plasmodia alone. The growth-defective mutants were examined for protein and deoxyribonucleic acid synthesis and for aberrations in mitotic behavior. One mutant may be defective in both protein and deoxyribonucleic acid synthesis, and another only in deoxyribonucleic acid synthesis. The latter shows a striking reduction in the frequency of postmitotic reconstruction nuclei at the restrictive temperature. We believe that this mutant, MA67, is affected in a step in the nuclear replication cycle occurring late in G2. Execution of this step is necessary for both mitosis and chromosome replication.  相似文献   

12.
The effect of UV irradiation on replicating cells during interphase has been studied extensively. However, how the mitotic cell responds to UV irradiation is less well defined. Herein, we found that UV-C irradiation (254 nm) increases recruitment of the spindle checkpoint proteins Mps1 and Mad2 to the kinetochore during metaphase, suggesting that the spindle assembly checkpoint (SAC) is reactivated. In accordance with this, cells exposed to UV-C showed delayed mitotic progression, characterized by a prolonged chromosomal alignment during metaphase. UV-C irradiation also induced the DNA damage response and caused a significant accumulation of γ-H2AX on mitotic chromosomes. Unexpectedly, the mitotic delay upon UV-C irradiation is not due to the DNA damage response but to the relocation of Mps1 to the kinetochore. Further, we found that UV-C irradiation activates Aurora B kinase. Importantly, the kinase activity of Aurora B is indispensable for full recruitment of Mps1 to the kinetochore during both prometaphase and metaphase. Taking these findings together, we propose that UV irradiation delays mitotic progression by evoking the Aurora B-Mps1 signaling cascade, which exerts its role through promoting the association of Mps1 with the kinetochore in metaphase.  相似文献   

13.
A 90 min inhibition of protein synthesis induced by starvation for amino acids (AA-) or by treatment with chloramphenicol (CAP) prior to UV irradiation (2.5 J m-2) increased the resistance of the strainEscherichia coli K12 SR19 to UV radiation more than ten-fold. Under these conditions, cultures in which protein synthesis was inhibited before the UV irradiation rejoin short regions of DNA synthesized after the irradiation to a normal-size molecule, whereas an exponentially growing culture does not rejoin DNA synthesized after UV irradiation to a molecule of a normal size. In the exponentially growing culture both the parental and the newly synthesized DNA are unstable after the irradiation. In cultures with inhibited protein synthesis only the parental DNA is somewhat unstable. InEscherichia coli K12 SR19 where protein synthesis was inhibited before the irradiation, a correlation between the survival of cells, the ability to rejoin short regions of DNA synthesized after UV irradiation and a higher stability of both parental and newly synthesized DNAs could be demonstrated.  相似文献   

14.
When arabinose-grown Escherichia coli B/r is ultraviolet (UV) irradiated in the logarithmic phase of growth, the dose inactivation curve for both colony formation and deoxyribonucleic acid (DNA) synthesis (based on the relative rates of synthesis) is exponential in nature. When protein synthesis is inhibited before UV-irradiation, both inactivation curves have a large shoulder. Pre-irradiation inhibition of protein synthesis increases considerably the colony-forming ability of a UV-irradiated Hcr(-) and Rec(-) strain of E. coli B/r. However, with the repair-deficient strains, both the shoulder and slope of the survival curve are affected. We investigated the effect of UV irradiation on DNA synthesis in Hcr(-) bacteria and found that pre-irradiation inhibition of protein synthesis increases UV resistance of DNA replication in this strain also. The results suggest that inhibition of protein synthesis before irradiation increases UV resistance in E. coli B/r by a mechanism which is independent of both the excision and recombination repair systems.  相似文献   

15.
The purpose of this work was to study the effects of ultraviolet (UV) irradiation on denucleation of eggs and investigate the heat-shock conditions for diploidization for induction of androgenesis in muskellunge, Esox masquinongy. Several egg incubation media, including saline, Ringer's solution, and Ringer's solution supplemented with bovine serum albumin (BSA), were found suitable to maintain the egg fertility as high as in muskellunge ovarian fluid. The optimal doses of UV radiation were 660–1320 J/m2, at which 100% haploid larvae were produced at a hatching rate of 22.5 ± 2.8%. UV irradiation at low doses (165–330 J/m2) generated abnormal larvae, which were morphologically identical to haploids. Using a flow cytometry method, it was found that cellular DNA content of these larvae was close to that of diploids but significantly lower in value and had a wider distribution (expressed as coefficient of variation) than that of control fish. This suggested that a low dose of UV irradiation might cause gene mutations, alteration of chromosomal conformation and fragmentation, but did not prevent maternal DNA from participating in mitotic division. Interference of maternal DNA residues could be another reason for the poor viability of androgenetic fish. A high dose of UV radiation (1980 J/m2) caused development of severely deformed embryos, indicating that UV radiation also damaged molecules in the eggs other than the denucleation. Our results suggest that classic color and allozyme markers might not be sufficient to prove a complete androgenesis. In order to optimize time and duration of shock for induced diploidization, we investigated the heat-shock conditions for inhibiting the first mitotic cleavage through induction of homozygous gynogenesis. We found that heat-shock treatment at 31°C for 9 min starting at 1.4τ0 (a dimensionless factor describing progress in embryo development) after fertilization produced the highest percentage of diploids at hatching. Mol. Reprod. Dev. 49:10–18, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

16.
The objective of this study was to compare the ability of heat shock (HS) with that of another type of cellular stress, UV irradiation, to cause the induction of enhanced viral reactivation, a process that may represent an SOS-type repair process in mammalian cells. Studies performed to evaluate the effect of HS on growth of Vero cells revealed that HS at 45 degrees C for 45 min caused inhibition of cell growth similar to that caused by UV irradiation at 12 J/m2, but this inhibition was not observed at HS treatment for 5-15 min, or at a UV fluence of 2 J/m2. Enhanced reactivation of UV-irradiated Herpesvirus was observed in cells which had been pretreated by HS for greater than 30 min or UV at 12 J/m2. The synthesis of new proteins following HS for 15 and 45 min and UV at 12 J/m2 was examined by [35S]methionine-labeling experiments. The new synthesis of two HS proteins with molecular weights of 46 000 and 78 000 was induced by both levels of HS, but to a much greater extent at the high dose. These proteins were not detected in response to UV irradiation. These results indicate that, like UV irradiation, HS at levels inhibitory to cell growth induced enhanced viral reactivation in Vero cells. The results also suggest that at least two proteins in the HS protein family are not necessary for this response to occur.  相似文献   

17.
DNA repair systems in the phototrophic bacterium Rhodobacter capsulatus   总被引:2,自引:0,他引:2  
UV irradiation and mitomycin C exposure trigger a protease-activity-dependent inhibition of cell division in Rhodobacter capsulatus, which begins about 2 h after the treatment is applied. UV irradiation also induces a dose-dependent mutagenesis with a maximal rate between 5 and 10 J m-2, with increased synthesis of a protein of Mr approximately 30,000 between 2 and 3 h after UV irradiation. In addition, R. capsulatus has an efficient photoreactivation system that reverses the lethal effects of UV irradiation in the presence of intense visible light.  相似文献   

18.
The fidelity of chromosomal duplication is monitored by cell cycle checkpoints operational during mitosis. One such cell cycle delay is invoked by microtubule-targeting agents such as nocodazole or paclitaxel (Taxol) and is mediated by mitotic checkpoint proteins that include BubR1. Relatively little is known about the regulation of expression and stability of BubR1 (or other checkpoint proteins) and how these factors dictate the durability of the cell cycle delay. We report here that treatment of HeLa cells with spindle-disrupting agents resulted in caspase activation and precipitated the cleavage of BubR1. This mechanism ultimately leads to reduced levels of full-length protein, which are accompanied by abrogation of the mitotic block; the checkpoint abrogation is substantially accelerated by inhibition of de novo protein synthesis. In contrast, inhibition of caspase activity blocked BubR1 degradation and prolonged mitosis. To confirm a direct link between caspase activity and BubR1 protein expression, we identified by site-directed mutagenesis the specific caspase cleavage sites cleaved after exposure to paclitaxel. Surprisingly, BubR1 has two sites of cleavage: primarily at Asp607/Asp610 and secondarily at Asp576/Asp579. BubR1 mutated at both locations (BubR1Delta579Delta610) was resistant to paclitaxel-induced degradation. Expression of BubR1Delta579Delta610 augmented the mitotic delay induced by spindle disruption in transfected cells as well as in clones engineered to inducibly express the mutant protein upon exposure to doxycycline and ultimately led to increased aneuploidy. Underscoring the importance of these caspase cleavage sites, both tetrapeptide motifs are identified in the amino acid sequences of human, mouse, chicken, and Xenopus BubR1. These results are potentially the first to link the control of the stability of a key mitotic checkpoint protein to caspase activation, a regulatory pathway that may be involved in killing defective cells and that has been evolutionarily conserved.  相似文献   

19.
Induced formation of tryptophanase in Escherichia coli B/r is temporarily inhibited by near-ultraviolet (UV) irradiation. The inhibition is greater when irradiation is at 5 C than when at room temperature. Hence, the inhibition is the result of a photochemical, rather than photoenzymatic, alteration of some cellular component. The action spectrum has a peak in the region of 334 nm and is similar to that for growth delay. However, inhibition of tryptophanase formation is more sensitive to near-UV irradiation than are growth, respiration, and the induced formation of beta-galactosidase. Thus, for tryptophanase the lack of formation cannot be due to general inhibition of metabolism. Pyridoxal phosphate absorbs in the near-UV region of the spectrum and is a cofactor for tryptophanase, but this enzyme in induced cells is not inactivated by near UV-radiations. An experiment in which toluene-treated suspensions from irradiated and unirradiated cells were mixed showed that irradiation does not cause the formation of an inhibitor of tryptophanase activity. The possibility remains that the absorption of radiant energy by pyridoxal phosphate interferes with the synthesis of tryptophanase.  相似文献   

20.
The ability of poliovirus that was irradiated with UV light at energies up to 2,160 ergs/mm2 to subsequently inhibit host cell protein synthesis was measured. The inactivation of the host cell shutoff function followed one-hit kinetics. Increasing irradiation did not affect the rate of inhibition until the multiplicity of infection after irradiation was reduced to approximately 1 PFU/cell. At higher functional multiplicities, the rate was unchanged, but an increasing lag before the onset of inhibition was observed with increasing irradiation. The energy levels required to inactivate virus-induced inhibition of host cell protein synthesis suggest that damage to virus RNA rather than to virus capsid proteins is responsible for the loss of function. When the inactivation of host cell shutoff was compared with the inactivation of other viral functions by UV irradiation, it correlated exactly with the loss of infectivity but not with other viral functions measured. Guanidine treatment, which prevents detectable viral RNA and protein synthesis, completely inhibited host cell shutoff by low multiplicities of unirradiated virus infection but not higher multiplicities. When a high multiplicity of virus was first reduced to a low titer by irradiation, host cell shutoff was still evident in the presence of guanidine. The results demonstrate that the complete inhibition of host cell protein synthesis can be accomplished by one infectious viral genome per cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号