首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
For populations undergoing mass selection, previous studies have shown that the rate of inbreeding is directly related to the mean and variance of long-term contributions from ancestors to descendants, and thus prediction of the rate of inbreeding can be achieved via the prediction of long-term contributions. In this paper, it is shown that the same relationship between the rate of inbreeding and long-term contributions is found when selection is based on an index of individual and sib records (index selection) and where sib records may be influenced by a common environment. In these situations, rates of inbreeding may be considerably higher than under mass selection. An expression for the rate of inbreeding is derived for populations undergoing index selection based on variances of (one-generation) family size and incorporating the concept of long-term selective advantage. When the mating structure is hierarchical, and when half-sib records are included in the index, the correlation between parental breeding values and the index values of their offspring is higher for male parents than female parents. This introduces an important asymmetry between the contributions of male and female ancestors to the evolution of inbreeding which is not present when selection is based on individual and/or full-sib records alone. The prediction equation for index selection accounts for this asymmetry. The prediction is compared to rates of inbreeding calculated from simulation. The prediction is good when family size is small relative to the number selected. The reasons for overprediction in other situations are discussed.  相似文献   

2.
    
Phenotypic selection is modified by introducing upper limits on the portion (P1) of individuals selected from a family as well as on the portion (P2) of family number that are allowed to contribute. At a preset selection proportion, P and P1, the maximum genetic gain is obtained by finding an optimum restriction on family number (P2*). A numerical procedure for solving the problem of optimization is developed for infinite populations. In small populations, maximum gain and P2*can be found by simply comparing all possible P2. Numerical examples are demonstrated for infinite breeding populations, assuming a normally-distributed family mean and within-family deviation. Selection and its simulation were applied to the fieldtest results of two tree species. Optimum restriction on family number is very close to P/P1, especially when heritability is low. In the real world of tree breeding, P2*is given, or approximated, by P/P1+1/tm where m is the initial family number. The improvement of gain and the conservation of inbreeding effective population size are easy with high heritability and could be simultaneously obtained by using intense selection with a relatively low P1.  相似文献   

3.
4.
A method for predicting response to selection and inbreeding coefficient under the continuous use of assortative mating was derived. Using the method, numerical computation was carried out, and the utility of assortative mating in the selection programmes was evaluated. It was shown that the continuous use of assortative mating could not produce an appreciable additional increase in intermediate- or long-term selection response.  相似文献   

5.
    
Experimental evolution, particularly experimental sexual selection in which sexual selection strength is manipulated by altering the mating system, is an increasingly popular method for testing evolutionary theory. Concerns have arisen regarding genetic diversity variation across experimental treatments: differences in the number and sex ratio of breeders (effective population size; Ne ) and the potential for genetic hitchhiking, both of which may cause different levels of genetic variation between treatments. Such differences may affect the selection response and confound interpretation of results. Here we use both census-based estimators and molecular marker-based estimates to empirically test how experimental evolution of sexual selection in Drosophila pseudoobscura impacts Ne and autosomal genetic diversity. We also consider effects of treatment on X-linked Ne s, which have previously been ignored. Molecular autosomal marker-based estimators indicate that neither Ne nor genetic diversity differs between treatments experiencing different sexual selection intensities; thus observed evolutionary responses reflect selection rather than any confounding effects of experimental design. Given the increasing number of studies on experimental sexual selection, we also review the census Ne s of other experimental systems, calculate X-linked Ne , and compare how different studies have dealt with the issues of inbreeding, genetic drift, and genetic hitchhiking to help inform future designs.  相似文献   

6.
Gu X 《Genetica》2007,130(1):93-97
In this study, I take a new approach to modeling the evolutionary constraint of protein sequence, introducing the stabilizing selection of protein function into the nearly-neutral theory. In other words, protein function under stabilizing selection generates the evolutionary conservation at the sequence level. With the help of random mutational effects of nucleotides on protein function, I have derived the distribution of selection coefficient among sites, called the S-distribution whose parameters have clear biological interpretations. Moreover, I have studied the inverse relationship between the evolutionary rate and the effective population size, showing that the number of molecular phenotypes of protein function, i.e., independent components in the fitness of the organism, may play a key role for the molecular clock under the nearly-neutral theory. These results are helpful for having a better understanding of the underlying evolutionary mechanism of protein sequences, as well as human disease-related mutations.  相似文献   

7.
    
The effective population size (Ne) is formulated based on a stage-structured population model and is estimated for two populations of Fritillaria camtschatcensis (L.) Ker-Gawl. (Liliaceae), a perennial, mainly clonally reproducing herb. Plants in these populations change life-history stages year by year, either upward or downward across three unambiguously identifiable stages: one-leaf, nonflowering; multileaf nonflowering; and multileaf, flowering stages. Plants of all stages produce clonal progeny (bulblets) each year, and death of plants occurs only in the first stage. The populations are nearly at equilibrium in both population size and stage structure. Ne is estimated to be 20-30% of the census population size (N), leading to the prediction that a population size of about 20,000 or more will be needed to conserve the normal level of the gene diversity (Ne > or = 5000). With the current demographic pattern of this species, accelerated growth of the first-stage plants with reduced survival of the second- and third-stage plants will increase both the annual (Ny/N) and generation time (Ne/N) effective sizes of population.  相似文献   

8.
9.
Contrasting the efficacy of selection on the X and autosomes in Drosophila   总被引:1,自引:0,他引:1  
To investigate the relative efficacy of both positive and purifying natural selection on the X chromosome and the autosomes in Drosophila, we compared rates and patterns of molecular evolution between these chromosome sets using the newly available alignments of orthologous genes from 12 species. Parameters that may influence the relative X versus autosomal substitution rates include the relative effective population sizes, the male and female germline mutation rates, the distribution of allelic effects on fitness, and the degree of dominance of novel mutations. Our analysis reveals that codon usage bias is consistently greater for X-linked genes, suggesting that purifying selection consistently has greater efficacy on the X chromosome than on the autosomes across the Drosophila phylogeny. However, our results are less consistent with respect to the efficacy of positive selection, with only some lineages showing a higher substitution rate on the X chromosome. This suggests that either the distribution of selective effects of mutations or other relevant parameters are sufficiently variable across species to tip the balance in different ways in individual lineages. These data suggest that rates of substitution are not solely governed by adaptive evolution. This genome-wide analysis provides a clear picture that the efficacy of selection varies intragenomically and that this effect is markedly more consistent across the phylogeny in the case of purifying selection. Our results also suggest that simple models that predict systematic differences in rates of evolution between the X and the autosomes can only be made to be compatible with these Drosophila data if the relevant population genetic parameters that drive substitution rates differ among species and chromosomal contexts.  相似文献   

10.
    
Recent theoretical studies have illustrated the potential role of spontaneous deleterious mutation as a cause of extinction in small populations. However, these studies have not addressed several genetic issues, which can in principle have a substantial influence on the risk of extinction. These include the presence of synergistic epistasis, which can reduce the rate of mutation accumulation by progressively magnifying the selective effects of mutations, and the occurrence of beneficial mutations, which can offset the effects of previous deleterious mutations. In stochastic simulations of small populations (effective sizes on the order of 100 or less), we show that both synergistic epistasis and the rate of beneficial mutation must be unrealistically high to substantially reduce the risk of extinction due to random fixation of deleterious mutations. However, in analytical calculations based on diffusion theory, we show that in large, outcrossing populations (effective sizes greater than a few hundred), very low levels of beneficial mutation are sufficient to prevent mutational decay. Further simulation results indicate that in populations small enough to be highly vulnerable to mutational decay, variance in deleterious mutational effects reduces the risk of extinction, assuming that the mean deleterious mutational effect is on the order of a few percent or less. We also examine the magnitude of outcrossing that is necessary to liberate a predominantly selfing population from the threat of long-term mutational deterioration. The critical amount of outcrossing appears to be greater than is common in near-obligately selfing plant species, supporting the contention that such species are generally doomed to extinction via random drift of new mutations. Our results support the hypothesis that a long-term effective population size in the neighborhood of a few hundred individuals defines an approximate threshold, below which outcrossing populations are vulnerable to extinction via fixation of deleterious mutations, and above which immunity is acquired.  相似文献   

11.
Coalescent process with fluctuating population size and its effective size   总被引:3,自引:0,他引:3  
We consider a Wright-Fisher model whose population size is a finite Markov chain. We introduce a sequence of two-dimensional discrete time Markov chains whose components describe the coalescent process and the fluctuation of population size. For the limiting process of the sequence of Markov chains, the relationship of the expectation of coalescence time to the harmonic and the arithmetic means of population sizes is shown, and the Laplace transform of the distribution of coalescence time is calculated. We define the coalescence effective population size (cEPS) by the expectation of coalescence time. We show that cEPS is strictly larger (resp. smaller) than the harmonic (resp. arithmetic) mean. As the population size fluctuates more quickly (resp. slowly), cEPS is closer to the harmonic (resp. arithmetic) mean. For the case of a two-valued Markov chain, we show the explicit expression of cEPS and its dependency on the sample size.  相似文献   

12.
    
Genome sizes vary widely across the tree of life and the evolutionary mechanism underlined remains largely unknown. Lynch and Conery (2003) proposed that evolution of genome complexity was driven mainly by nonadaptive stochastic forces and presented the observation that genome size was negatively correlated with effective population size (Ne) as a strong support for their hypothesis. Here, we analyzed the relation between Ne and genome size for 10 diploid Oryza species that showed about fourfold genome size variation. Using sequences of more than 20 nuclear genes, we estimated Ne for each species after correction for the effects of demography and heterogeneity of mutation rates among loci and species. Pairwise comparisons and correlation analyses did not detect a negative relationship between Ne and genome size despite about 6.5‐fold interspecies Ne variation. By calculating phylogenetically independent contrasts (PICs) for Ne, we repeated correlation analysis and did not find any correlation between Ne and genome size. These observations suggest that the genome size variation in the Oryza species cannot be explained simply by the effect of effective population size.  相似文献   

13.
    
The objective of this study was to describe the population structure and inbreeding level of the population of Polish Red Cattle (PRC). The structure of the breed was analysed in the context of the existing genetic resources conservation programme. The level of genetic diversity and the effective population size were also determined. The analyses were carried out based on pedigree records of 9 170 animals. Data and pedigree information were collected during the time period of 1950–2014. Records were collected by the National Research Institute of Animal Production in Balice, Poland. The population structure was analysed using the CFC programme. All the animals were grouped into five classes according to their inbreeding coefficient: the first class included non-inbred animals; and the next classes included inbred animals 0% < F ≤ 5%, 5% < F ≤ 10%, 10% < F ≤ 20%, 20% < F ≤ 30% or F > 30%. The average inbreeding in PRC population was 4% and there were 2 182 (23.8%) inbred animals. The study also included the determination of ancestral paths for the PRC population. The longest ancestral path (LAP) consisted of 12 generations (three animals) while only 229 animals (2.53%) had an LAP comprising at least 10 generations. Therefore, a need exists, particularly in PRC as a small local breed, to manage selection and mating decisions to control future coancestry and inbreeding, which would lead to better handling of the effective population size. The study results showed the possibility of disrupting the balance of the structure of a small population like PRC. Hence, endangered populations need to be monitored on a continuous basis.  相似文献   

14.
为了解选育对中华绒螯蟹(Eriocheir sinensis)“长荡湖1号”遗传多样性的影响, 研究采用20个微卫星位点对“长荡湖1号”A系和B系各连续3个世代进行遗传多样性分析。结果如下: 20个微卫星标记在6个群体中共检测到551个等位基因, 各位点的平均等位基因数(Na)和平均有效等位基因数(Ne)分别为27.55和13.61, 平均观测杂合度(Ho)和平均期望杂合度(He)分别为0.72和0.90, 平均香农信息指数(I)和多态信息含量(PIC)分别为2.73和0.89。在选育过程中, A系和B系3个世代的PIC均有下降趋势, 各群体的He和Ho均维持较高水平。A系子一代(G1)和子二代(G2)的有效群体数量(Ne)分别为72.7和111.8, B系G1和G2的有效群体数量分别为67.7和115.8, 均维持在较高水平。Hardy-Weinber平衡检验结果显示, 有72.5%的数据偏离Hardy-Weinber平衡, 表明选育群体的遗传结构处于相对不稳定的状态。A系和B系后代与G0的遗传距离均逐代增大, 其中A系从0.2455增大到0.2607, B系从0.1736增大到0.1751。各群体之间遗传分化指数(Fst)均小于0.05, 表明各群体间遗传分化程度微弱。AMOVA分析结果表明, “长荡湖1号”仅0.87%的变异存在于各群体间, 而99.13%的变异发生在群体内个体间。综上所述, 中华绒螯蟹“长荡湖1号”经过2代选育, 选育群体的遗传多样性和有效群体数量依然保持较高水平, 但群体遗传结构处于相对不稳定状态, 今后选育过程中应该保持足够的繁殖亲本数量和遗传多样性, 防止近交退化。  相似文献   

15.
We consider haploid and dioecious age-structured populations that vary over time in cycles of length k. Results are obtained for both autosomal and sex-linked loci if the population is dioecious. It is assumed that k is small in comparison with numbers of haploid individuals (or of numbers of males and females) in any generation of a cycle. The inbreeding effective population size N(e) is then approximately given by the expression [T summation operator (k-1)(j=0)1/[N(e)(j)T(j)]](-1), where N(e)(j) and T(j) are, respectively, the effective population size and generation interval that would hold if the population was at all times generated in the same way as at time j. The constant T, which is the effective overall generation interval, is defined to be k times the harmonic mean of the quantities T(j). Our expressions for T and N(e), in terms of N(e)(j) and T(j), are general, but the N(e)(j)s are derived under the assumption that offspring are produced according to Poisson distributions.  相似文献   

16.
Sublines are used in the third-generation breeding and testing of coastal Douglas-fir in British Columbia, with the original intent of selecting only one genotype per subline for production populations (e.g., seed orchards) to eliminate relatedness among parents (therein called “1/SL”). We evaluated three additional selection scenarios that did not consider the subline structure. One of the scenarios strictly selected on the basis of the highest breeding values of the trees (“TOP”); another scenario used the TOP selections, but assigned the number of ramets per selection proportionally to the selection breeding value (“LIND”); lastly, a simulated annealing technique was applied to maximize gain under explicit constraints on coancestry (“OPTS”). All three alternative selection scenarios resulted in some relatedness and coancestry among selections, but the last two provided increases in average breeding values compared to those obtained by the 1/SL scenario. Effective population sizes (and consequently inbreeding coefficients) varied among the three selection scenarios. Effects of the various selections on merchantable volume at rotation age were determined using a linear regression model based on an individual tree model (TASS), which was first run to determine the relationship between merchantable volume and inbreeding (f). LIND and TOP selections yielded the highest breeding values but, due to the increased coancestry among selections, paid a penalty in the merchantable volume determination. OPTS maximized merchantable volume at rotation age 60 after including more than 13 selections with an increase of around 3% over that obtained by the 1/SL selection scenario, with an associated increase in Ne of 50%. Other implications of the three alternative selection scenarios are discussed.  相似文献   

17.
Wright's metaphor of sampling is extended to consider three components of genetic drift: those occurring before, during, and after migration. To the extent that drift at each stage behaves like an independent random sample, the order of events does not matter. When sampling is not random, the order does matter, and the effect of population size is confounded with that of mobility. The widely cited result that genetic differentiation of local groups depends only on the product of group size and migration rate holds only when nonrandom sampling does not occur prior to migration in the life cycle.  相似文献   

18.
    
We show that a sex difference in the opportunity for selection results in sex differences in the strength of random genetic drift and thus creates different patterns of genetic diversity for maternally and paternally inherited haploid genes. We derive the effective population size Ne for a male-limited or female-limited haploid gene in terms of I, the \"opportunity for selection\" or the variance in relative fitness. Because the variance in relative fitness of males can be an order of magnitude larger than that of females, the Ne is much smaller for males than it is for females. We derive both nonequilibrium and equilibrium expressions for F(ST) in terms of I and show how the portion of I owing to sexual selection, Imates, that is, the variation among males in mate numbers, is a simple function of the F's for cytoplasmic (female inherited) and Y-linked (male inherited) genes. Because multiple, transgenerational data are lacking to apply the nonequilibrium expression, we apply only the equilibrium model to published data on Y chromosome and mitochondrial sequence divergence in Homo sapiens to quantify the opportunity for sexual selection. The estimate suggests that sexual selection in humans represents a minimum of 54.8% of total selection, supporting Darwin's proposal that sexual selection has played a significant role in human evolution and the recent proposal regarding a shift from polygamy to monogamy in humans.  相似文献   

19.
  总被引:2,自引:0,他引:2  
RNA viruses are characterized by high genetic variability resulting in rapid adaptation to new or resistant hosts. Research for plant RNA virus genetic structure and its variability has been relatively scarce compared to abundant research done for human and animal RNA viruses. Here, we utilized a molecular population genetic framework to characterize the evolution of a highly pathogenic plant RNA virus [Tomato spotted wilt virus (TSWV), Tospovirus, Bunyaviridae]. Data from genes encoding five viral proteins were used for phylogenetic analysis, and for estimation of population parameters, subpopulation differentiation, recombination, divergence between Tospovirus species, and selective constraints on the TSWV genome. Our analysis has defined the geographical structure of TSWV, attributed possibly to founder effects. Also, we identify positive selection favouring divergence between Tospovirus species. At the species level, purifying selection has acted to preserve protein function, although certain amino acids appear to be under positive selection. This analysis provides demonstration of population structuring and species-wide population expansions in a multisegmented plant RNA virus, using sequence-based molecular population genetic analyses. It also identifies specific amino acid sites subject to selection within Bunyaviridae and estimates the level of genetic heterogeneity of a highly pathogenic plant RNA virus. The study of the variability of TSWV populations lays the foundation in the development of strategies for the control of other viral diseases in floral crops.  相似文献   

20.
Summary Sex-linked effective population size (Ne) is derived for a variety of control population structures relevant to normal diploid and/or, more importantly, to haplo-diploid species. For equal sex ratio, it is shown that the control population structure which doubles autosomal effective population size trebles sex-linked effective size. For haplo-diploid species where the number of males exceeds the number of reproductive females, several different control structures are described, which tend to increase effective population size by about 1/3. These would be suitable for stock maintenance of honeybees. Directional selection programmes employing within-family selection would maintain most of the minimum drift/inbreeding properties of these control populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号