首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Computer simulation of the conformations of short antigenic peptides (5-10 residues) either free or bound to their receptor, the major histocompatibility complex (MHC)-encoded glycoprotein H-2 Ld, was employed to explain experimentally determined differences in the antigenic activities within a set of related peptides. Starting for each sequence from the most probable conformations disclosed by a pattern-recognition technique, several energy-minimized structures were subjected to molecular dynamics simulations (MD) either in vacuo or solvated by water molecules. Notably, antigenic potencies were found to correlate to the peptides propensity to form and maintain an overall alpha-helical conformation through regular i,i + 4 hydrogen bonds. Accordingly, less active or inactive peptides showed a strong tendency to form i,i + 3 hydrogen bonds at their N-terminal end. Experimental data documented that the C-terminal residue is critical for interaction of the peptide with H-2 Ld. This finding could be satisfactorily explained by a 3-D Q.S.A.R. analysis postulating interactions between ligand and receptor by hydrophobic forces. A 3-D model is proposed for the complex between a high-affinity nonapeptide and the H-2 Ld receptor. First, the H-2 Ld molecule was built from X-ray coordinates of two homologous proteins: HLA-A2 and HLA-Aw68, energy-minimized and studied by MD simulations. With HLA-A2 as template, the only realistic simulation was achieved for a solvated model with minor deviations of the MD mean structure from the X-ray conformation. Water simulation of the H-2 Ld protein in complex with the antigenic nonapeptide was then achieved with the template-derived optimal parameters. The bound peptide retains mainly its alpha-helical conformation and binds to hydrophobic residues of H-2 Ld that correspond to highly polymorphic positions of MHC proteins. The orientation of the nonapeptide in the binding cleft is in accordance with the experimentally determined distribution of its MHC receptor-binding residues (agretope residues). Thus, computer simulation was successfully employed to explain functional data and predicts alpha-helical conformation for the bound peptide.  相似文献   

2.
Functional reproduction of discontinuous antigenic site D of foot-and-mouth disease virus (FMDV) has been achieved by means of synthetic peptide constructions that integrate into a single molecule each of the three protein loops that define the antigenic site. The site D mimics are designed on the basis of the X-ray structure of FMDV type C-S8c1 with the aid of molecular dynamics, so that the five residues assumed to be involved in antigenic recognition are located on the same face of the molecule, exposed to solvent and defining a set of native-like distances and angles. The designed site D mimics are disulphide-linked heterodimers that consist of a larger unit containing VP2(71-84), followed by a polyproline module and by VP3(52-62), and a smaller unit corresponding to VP1(188-194). Guinea pig antisera to the peptides recognize the viral particle and compete with site D-specific monoclonal antibodies, while inoculation with a simple (non-covalently bound) admixture of the three VP1-VP3 sequences yields no detectable virus-specific serum conversion. Similar results have been reproduced in two cattle. Antisera to the peptides are also moderately neutralizing of FMDV in cell culture and partially protective of guinea pigs against challenge with the virus. These results demonstrate functional mimicry of the discontinuous site D by the peptides, which are therefore obvious candidates for a multicomponent peptide-based vaccine against FMDV.  相似文献   

3.
The flexibility of a series of cyclic peptides derived from the epitope of a snake toxin is investigated using computer simulation techniques. Molecular dynamics (MD) simulations and vibrational analyses are performed on chemically constrained peptides modeled on the parent protein loop. In the 50 ps MD simulations, large variations in the atomic fluctuations are seen between the peptides, and can be related to the nature of the chemical constraints present in the molecules. Normal mode analyses are performed on energy-minimized configurations derived from the dynamics trajectories. The atomic fluctuations calculated from the normal modes are about 30% of those of the molecular dynamics for the more flexible peptides and 70% for the more constrained molecules. The calculated differences in flexibility between the molecules are much less significant in the harmonic approximation. © 1993 John Wiley & Sons, Inc.  相似文献   

4.
5.
6.
【背景】EB病毒是一个常见的病原,它能引起霍奇金淋巴瘤、伯基特淋巴瘤以及胃癌、鼻咽癌。该病毒编码的膜蛋白BNLF2a抑制抗原转运蛋白TAP (Transporter associated with antigen processing)从而逃逸T细胞的清除。TAP属于ABC(ATP-bindingcassette)转运蛋白超家族,是由TAP1和TAP2两个亚基构成的。TAP通过ATP提供能量,跨膜转运抗原多肽,这一过程伴随着构象变化。【目的】旨在揭示BNLF2a是否影响TAP的构象变化。【方法】TAP蛋白核酸结合结构域的二聚体界面的D-loop进行点突变,引入半胱氨酸。在表达和不表达BNLF2a情况下,采用氧化性的二价铜离子交联半胱氨酸,并通过Westernblot对比TAP的半胱氨酸形成二硫键的比例。【结果】BNLF2a表达使TAP被交联的比例增高。【结论】BNLF2a可能将TAP稳定在核苷酸结合结构域二聚化的构象,从而同时抑制ATP和抗原多肽结合到TAP上来。  相似文献   

7.
8.
Deciding what constitutes an object, and what background, is an essential task for the visual system. This presents a conundrum: averaging over the visual scene is required to obtain a precise signal for object segregation, but segregation is required to define the region over which averaging should take place. Depth, obtained via binocular disparity (the differences between two eyes’ views), could help with segregation by enabling identification of object and background via differences in depth. Here, we explore depth perception in disparity-defined objects. We show that a simple object segregation rule, followed by averaging over that segregated area, can account for depth estimation errors. To do this, we compared objects with smoothly varying depth edges to those with sharp depth edges, and found that perceived peak depth was reduced for the former. A computational model used a rule based on object shape to segregate and average over a central portion of the object, and was able to emulate the reduction in perceived depth. We also demonstrated that the segregated area is not predefined but is dependent on the object shape. We discuss how this segregation strategy could be employed by animals seeking to deter binocular predators.This article is part of the themed issue ‘Vision in our three-dimensional world’.  相似文献   

9.
Summary The antigenicity and conformational properties of the Ser-Arg-Tyr-Asp (SRYD) segment (252–255) of the major surface glycoprotein ofLeishmania, gp63, which plays a key role in the parasite-macrophage attachement, are presented. It was found that the antibody recognition, using anti-IASRYDQL antibodies, of the SRYD-containing analogues, Ac-SRYD-NH2 (1), ANIASRYD-NH2 (2), Ac-SRYD (3), SRYD (4) and ANIASRYD (5), is rather similar. The structure of the SRYD moiety in analogues 1 and 2 is characterized by the presence of a type I -turn, stabilized by the formation of a hydrogen bonding between the C-terminaltrans-carboxamide proton and the Arg-CO and an ionic bridge between arginine and aspartic acid side chains, while the conformation of compounds 3, 4 and 5 is stabilized by an ionic bridge between the arginine side chain and the C-terminal carboxylate group. A common structural motif involving the arginine side chain in an ionic interaction is identified in all the SRYD analogues, which may explain the observed similarities in the antibody recognition of the reported peptides.  相似文献   

10.
Kanduc D  Stufano A  Lucchese G  Kusalik A 《Peptides》2008,29(10):1755-1766
Thirty viral proteomes were examined for amino acid sequence similarity to the human proteome, and, in parallel, a control of 30 sets of human proteins was analyzed for internal human overlapping. We find that all of the analyzed 30 viral proteomes, independently of their structural or pathogenic characteristics, present a high number of pentapeptide overlaps to the human proteome. Among the examined viruses, human T-lymphotropic virus 1, Rubella virus, and hepatitis C virus present the highest number of viral overlaps to the human proteome. The widespread and ample distribution of viral amino acid sequences through the human proteome indicates that viral and human proteins are formed of common peptide backbone units and suggests a fluid compositional chimerism in phylogenetic entities canonically classified distantly as viruses and Homo sapiens. Importantly, the massive viral to human peptide overlapping calls into question the possibility of a direct causal association between virus-host sharing of amino acid sequences and incitement to autoimmune reactions through molecular recognition of common motifs.  相似文献   

11.

Background

Immunity against the bovine protozoan parasite Theileria parva has previously been shown to be mediated through lysis of parasite-infected cells by MHC class I restricted CD8+ cytotoxic T lymphocytes. It is hypothesized that identification of CTL target schizont antigens will aid the development of a sub-unit vaccine. We exploited the availability of the complete genome sequence data and bioinformatics tools to identify genes encoding secreted or membrane anchored proteins that may be processed and presented by the MHC class I molecules of infected cells to CTL.

Results

Of the 986 predicted open reading frames (ORFs) encoded by chromosome 1 of the T. parva genome, 55 were selected based on the presence of a signal peptide and/or a transmembrane helix domain. Thirty six selected ORFs were successfully cloned into a eukaryotic expression vector, transiently transfected into immortalized bovine skin fibroblasts and screened in vitro using T. parva-specific CTL. Recognition of gene products by CTL was assessed using an IFN-γ ELISpot assay. A 525 base pair ORF encoding a 174 amino acid protein, designated Tp2, was identified by T. parva-specific CTL from 4 animals. These CTL recognized and lysed Tp2 transfected skin fibroblasts and recognized 4 distinct epitopes. Significantly, Tp2 specific CD8+ T cell responses were observed during the protective immune response against sporozoite challenge.

Conclusion

The identification of an antigen containing multiple CTL epitopes and its apparent immunodominance during a protective anti-parasite response makes Tp2 an attractive candidate for evaluation of its vaccine potential.  相似文献   

12.
As our understanding of cellular behaviour grows, and we identify more and more genes involved in the control of such basic processes as cell division and programmed cell death, it becomes increasingly difficult to integrate such detailed knowledge into a meaningful whole. This is an area where mathematical modelling can complement experimental approaches, and even simple mathematical models can yield useful biological insights. This review presents examples of this in the context of understanding the combined effects of different levels of cell death and cell division in a number of biological systems including tumour growth, the homeostasis of immune memory and pre-implantation embryo development. The models we describe, although simplistic, yield insight into several phenomena that are difficult to understand using a purely experimental approach. This includes the different roles played by the apoptosis of stem cells and differentiated cells in determining whether or not a tumour can grow; the way in which a density dependent rate of apoptosis (for instance mediated by cell-cell contact or cytokine signalling) can lead to homeostasis; and the effect of stochastic fluctuations when the number of cells involved is small. We also highlight how models can maximize the amount of information that can be extracted from limited experimental data. The review concludes by summarizing the various mathematical frameworks that can be used to develop new models and the type of biological information that is required to do this.  相似文献   

13.
Y Paterson 《Biochemistry》1985,24(4):1048-1055
Two regions of rodent cytochrome c, one within the first four residues of the molecule, which is N-acetylated, and one at a beta bend around residue 44, are known to be immunogenic and antigenic in rabbits. Using sequential peptide synthesis, we have determined the residues required for linear synthetic peptides within these sequences to bind to antibody raised in rabbits to intact rat cytochrome c. The residues that were important in binding the N-terminal peptides were N-acetylglycine at position 1 and valine at position 3. The smallest peptide sequence around residue 44 that would bind to antibodies was Gln-Ala-Ala-Gly-Phe. A theoretical conformational analysis of these peptides showed that the amino-terminal tetrapeptide adopts a wide statistical ensemble of conformational states and that the addition of residues beyond 41 and 45 in the other sequence does not appear to stabilize longer peptides in the native beta-bend conformation. Thus, the antigenicity conferred by Phe-46 and Gln-42 in this peptide is most likely due to the direct interaction of the side chains of these residues with the antibody binding site. The demonstration here that native conformation is not essential for antigenic peptides to bind to antibodies raised against the whole protein indicates that the association energy between antigen and antibody can be sufficient to induce conformation in conformationally flexible peptides. This supports the concept that anti-protein and anti-peptide antibodies may invoke conformational changes in cross-reactive protein antigens and may explain why longer peptides, which may adopt stable nonnative secondary structure, often do not bind to antibodies raised to the whole molecule.  相似文献   

14.
Rabbit antiserum was prepared against hexokinase isoenzyme type I which was purified from rat brain mitochondria. The antiserum inhibited the activity of the mitochondrial hexokinase type I as well as that of the cytosolic type I enzyme prepared from rat brain, kidney and spleen. It did not, however, inhibit the activity of type II hexokinase from muscle and spleen or that of the type III enzyme from spleen. The results suggest that all hexokinase type I isoenzymes may have a common antigenic site irrespective of their sources, though their responses to a thiol inhibitor are different.  相似文献   

15.
The natural function of dendritic cells (DCs) is to capture and degrade pathogens for Ag presentation. However, HIV-1 can evade viral degradation by DCs and hijack DCs for migration to susceptible CD4(+) T lymphocytes. It is unknown what factors decide whether a virus is degraded or transmitted to T cells. The interaction of DCs with HIV-1 involves C-type lectin receptors, such as DC-specific ICAM-3-grabbing nonintegrin, which bind to the envelope glycoprotein complex (Env), which is decorated heavily with N-linked glycans. We hypothesized that the saccharide composition of the Env N-glycans is involved in avoiding viral degradation and Ag presentation, as well as preserving infectious virus for the transmission to target cells. Therefore, we studied the fate of normally glycosylated virus versus oligomannose-enriched virus in DCs. Changing the heterogeneous N-linked glycan composition of Env to uniform oligomannose N-glycans increased the affinity of HIV-1 for DC-specific ICAM-3-grabbing nonintegrin and enhanced the capture of HIV-1 by immature DCs; however, it decreased the subsequent transmission to target cells. Oligomannose-enriched HIV-1 was directed more efficiently into the endocytic pathway, resulting in enhanced viral degradation and reduced virus transfer to target cells. Furthermore, Env containing exclusively oligomannose N-glycans was presented to Env-specific CD4(+) T cells more efficiently. Taken together, our results showed that the HIV-1 N-glycan composition plays a crucial role in the balance between DC-mediated Ag degradation and presentation and DC-mediated virus transmission to target cells. This finding may have implications for the early events in HIV-1 transmission and the induction of antiviral immune responses.  相似文献   

16.
Procko E  Gaudet R 《Biochemistry》2008,47(21):5699-5708
The transporter associated with antigen processing (TAP), an ABC transporter, pumps cytosolic peptides into the endoplasmic reticulum, where the peptides are loaded onto class I MHC molecules for presentation to the immune system. Transport is fueled by the binding of ATP to two cytosolic nucleotide-binding domains (NBDs) and ATP hydrolysis. We demonstrate biochemically that there are two electrostatic interactions across the interface between the two TAP NBDs and that these interactions are important for peptide transport. Notably, disrupting these interactions by mutagenesis does not greatly alter the ATP hydrolysis rate in an isolated NBD model system, suggesting that the interactions function at alternative stages in the transport cycle. The data support the general model for ABC transporters in which the NBDs form a tight, closed conformation during transport. Our results are discussed in relation to other ABC transporters that do or do not conserve potential interacting residues of opposite charges at the homologous positions.  相似文献   

17.
The first 25 amino acids of the coat protein of cowpea chlorotic mottle virus are essential for binding the encapsidated RNA. Although an alpha-helical conformation has been predicted for this highly positively charged N-terminal region [Argos, P. (1981) Virology 110, 55-62; Vriend, G., Verduin, B. J. M., & Hemminga, M. A. (1986) J. Mol. Biol. 191, 453-460], no experimental evidence for this conformation has been presented so far. In this study, two-dimensional proton NMR experiments were performed on a chemically synthesized pentacosapeptide containing the first 25 amino acids of this coat protein [Ten Kortenaar, P. B. W., Krüse, J., Hemminga, M. A., & Tesser, G. I. (1986) Int. J. Pept. Protein Res. 27, 401-413]. All resonances could be assigned by a combined use of two-dimensional correlated spectroscopy and nuclear Overhauser enhancement spectroscopy carried out at four different temperatures. Various NMR parameters indicate the presence of a conformational ensemble consisting of helical structures rapidly converting into more extended states. Differences in chemical shifts and nuclear Overhauser effects indicate that lowering the temperature induces a shift of the dynamic equilibrium toward more helical structures. At 10 degrees C, a perceptible fraction of the conformational ensemble consists of structures with an alpha-helical conformation between residues 9 and 17, likely starting with a turnlike structure around Thr9 and Arg10. Both the conformation and the position of this helical region agree well with the secondary structure predictions mentioned above.  相似文献   

18.
19.
Citrate synthase (CS) catalyses the entry of carbon into the citric acid cycle and is highly‐conserved structurally across the tree of life. Crystal structures of dimeric CSs are known in both “open” and “closed” forms, which differ by a substantial domain motion that closes the substrate‐binding clefts. We explore both the static rigidity and the dynamic flexibility of CS structures from mesophilic and extremophilic organisms from all three evolutionary domains. The computational expense of this wide‐ranging exploration is kept to a minimum by the use of rigidity analysis and rapid all‐atom simulations of flexible motion, combining geometric simulation and elastic network modeling. CS structures from thermophiles display increased structural rigidity compared with the mesophilic enzyme. A CS structure from a psychrophile, stabilized by strong ionic interactions, appears to display likewise increased rigidity in conventional rigidity analysis; however, a novel modified analysis, taking into account the weakening of the hydrophobic effect at low temperatures, shows a more appropriate decreased rigidity. These rigidity variations do not, however, affect the character of the flexible dynamics, which are well conserved across all the structures studied. Simulation trajectories not only duplicate the crystallographically observed symmetric open‐to‐closed transitions, but also identify motions describing a previously unidentified antisymmetric functional motion. This antisymmetric motion would not be directly observed in crystallography but is revealed as an intrinsic property of the CS structure by modeling of flexible motion. This suggests that the functional motion closing the binding clefts in CS may be independent rather than symmetric and cooperative. Proteins 2014; 82:2657–2670. © 2014 Wiley Periodicals, Inc.  相似文献   

20.
We have used a diethylpyrocarbonate (DEPC) modification [(1976) Prog. Nucl. Acids Res. 16, 189-262] to probe the accessibility of adenines essential for coat protein binding in the MS2 translational operator [(1983) Biochemistry 22, 2601-2610, 2610-2615, 4723-4730; (1987) Biochemistry 26, 1563-1568]. The essential adenines are apparently hyperreactive with this reagent relative to other sites within the same molecule. Variation of ionic strength, pH and divalent cation concentrations reveal the existence of two distinct conformers of the RNA operator as judged by DEPC reactivity. We propose that the hyperreactivity observed is due to the participation of neighbouring bases in the DEPC modification reaction and can be used as a novel structural probe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号