首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The activity of seven enzymes connected with energy-supplying metabolism was followed from the second day of life till adulthood (87th day). The enzymes selected were: 1. Triosephosphate dehydrogenase (TPDH), 2. Lactate dehydrogenase (LDH), 3. Glycerol-3-phosphate: NAD dehydrogenase (GPDH), 4. Hexokinase (HK), 5. Malate: NAD dehydrogenase (MDH), 6. Citrate syntase (CS) and 7. 3-Hydroxyacyl Co A dehydrogenase. Although some variations occurred, the enzyme profiles were characteristic of those of the nervous tissue from the second day of life onwards until adulthood and displayed relatively high activities of HK, CS and MDH and low activities of TPDH, LDH, GPDH and HOADH. The activities of all enzymes studied here increased during postnatal development and some reached adult values on the 14th day, that of TPDH on the 27th day and HOADH on the 41st day of life. The activities of MDH and GPDH did not attain the adult values still on the 41st day of life. The anaerobic energy supply capacity seems to increase transiently on the 31st day of life, i.e. at a developmental stage where the resistance against hypoxia is known to increase transiently.  相似文献   

2.
1. In rat kidney cortex, outer and inner medulla the development of activities of seven enzymes was investigated during postnatal ontogeny (10, 20, 30, 60 and 90 days of age). The enzymes were selected in such a manner, as to characterize most of the main metabolic pathways of energy supplying metabolism: hexokinase (glucose phosphorylation, HK), glycerol-3-phosphate dehydrogenase (glycerolphosphate metabolism or shunt, GPDH), triose phosphate dehydrogenase (glycolytic carbohydrate breakdown, TPDH), lactate dehydrogenase (lactate metabolism, LDH), citrate synthase (tricarboxylic acid cycle, aerobic metabolism, CS), malate NAD dehydrogenase (tricarboxylic acid cycle, intra-extra mitochondrial hydrogen transport, MDH) and 3-hydroxyacyl-CoA-dehydrogenase (fatty acid catabolism, HOADH). 2. The renal cortex already differs metabolically from the medullar structures on the 10th day of life. It displays a high activity of aerobic breakdown of both fatty acids and carbohydrates. Its metabolic capacity further increases up to the 30th day of life. 3. The outer medullar structure is not grossly different from the inner medulla on the 10th day of life. Further it differentiates into a highly aerobic tissue mainly able to utilize carbohydrates. It can, however, to some extent, also utilize fatty acids aerobically and produce lactate from carbohydrates anaerobically. 4. The inner medullar structure is best equipped to utilize carbohydrates by anaerobic glycolysis, forming lactate. This feature is already pronounced on the 10th day of life, its capacity increases to some extent during postnatal development, being highest between the 10th and the 60th day of life.  相似文献   

3.
Etiroxate (Skleronorm Grünenthal R) was administered 42 days to male Wistar rats and their serum and liver cholesterol and triglyceride levels, the rate of esterification of free cholesterol in their plasma by lecithin cholesterol acyltransferase (LCAT) (EC 2.3.1.43) and thriosephosphate dehydrogenase (TPDH) (EC 1.2.1.12), lactate dehydrogenase (LDH) (EC 1.1.1.27), hexokinase (HK) (EC 2.7.1.1), c-glycerol-3-phosphate dehydrogenase (GPDH) (EC 1.1.1.8), malate dehydrogenase (MDH) (EC 1.1.1.37) citrate synthase (CS) (EC 4.1.3.7) and hydroxyacylcoenzyme A dehydrogenase (HOADH) (EC 1.1.1.35) activity were determined in their liver. After 14 and 28 days, animals given etiroxate (600 micrograms/kg) had smaller weight increments than the controls and a significantly lower plasma free and esterified cholesterol level, but a significantly higher liver cholesterol concentration. Their final plasma and liver cholesterol concentrations did not differ significantly from the control values. Plasma triglyceride levels were significantly raised in treated animals at all the given intervals. LCAT activity was significantly higher throughout the whole time of treatment, with the maximum increase in the last phase. Glycolytic and oxidative enzyme activities were significantly raised, whereas GPDH activity was the same as in the controls. The results show that etiroxate accelerates cholesterol turnover in the endogenous pool by activating LCAT and stimulating energy metabolism.  相似文献   

4.
The loss of muscle weight in the soleus (SOL) and extensor digitorum longus (EDL) muscles was compared after denervation and in the course of reflex muscle atrophy induced by unilateral fracture of metatarsal bones of the paw and local injection of 0.02 ml turpentine oil subcutaneously. This so-called reflex atrophy is significantly greater after 3 days than that after denervation. Seven days after the nociceptive stimulus, reflex and denervation atrophy are grossly similar in both muscles. This also applies in case that the nociceptive stimulus had been repeated on the third day. The EDL:SOL enzyme activities of energy supply metabolism reflect the differences between a glycolytic-aerobic (EDL) and predominantly aerobic type (SOL) of muscle. No consistent changes were found in either type of atrophy after 3 days. In 7 days' denervation, the activity of hydroxyacetyl-CoA-dehydrogenase (HOADH) and citrate synthase (CS) was decreased in the SOL, while glycerolphosphate:NAD dehydrogenase (GPDH) was enhanced. In the EDL, the activity of triosephosphate dehydrogenase (TPDH), GPDH, malate dehydrogenase (MDH), CS and HOADH was decreased. Acid phosphatase (AcP) was greatly increased in both muscles. Seven days after application of the nociceptive stimulus, all enzyme activities were altered in a grossly analogous manner as after denervation.  相似文献   

5.
Selected enzyme activities of energy metabolism were studied in the myocardium of laboratory rats exposed to intermittent altitude hypoxia (IAH, 4-8 h daily, 5 days a week, in a hypobaric chamber, stepwise up to 7,000 m). No significant differences were found between the right and the left ventricle in the control animals. Glucose-utilizing capacity (HK) and capacity for the synthesis and degradation of lactate (LDH) increased significantly in both ventricles during acclimatization. The other enzyme activities associated with anaerobic glycolysis (TPDH, GPDH) and those linked up in aerobic metabolism (MDH, CS) did not change significantly. On the other hand, the ability to break down fatty acids (HOADH) decreased significantly. All the above changes in the enzyme profile were found after only 24 4-h exposures, in both the hypertrophic right ventricle and the unenlarged left ventricle. When the length of daily exposure was raised from 4 to 8 h, the above changes were not intensified and 45 days after the last exposure to IAH, none of the given activity values differed from those estimated in the corresponding control animals.  相似文献   

6.
1. In a group of 23 obese women the relations between some indicators of thyroid function (thyroxine-binding globuline--T4BG, triiodothyronine-binding globuline--T3BG, Achilles tendon reflex--ART) on the one hand and activities of enzymes of the energy metabolism (hexokinase--HK, triose phosphate dehydrogenase--TPDH, lactate dehydrogenase--LDH, glycerol-3-phosphate dehydrogenase--GPDH, citrate synthease--CS, malate dehydrogenase--MDH, hydroxyacyl--COA dehydrogenase) in the quadriceps femoris muscle on the other hand were investigated. 2. Correlations were found between T4BG and TPDH, LDH and GPDH activities, between T3BG and TPDH and GPDH activities and between the value of the Achilles tendon reflex and TPDH activity. Functionally these enzymes activities are associated with glycolysis and hydrogen transport from cytoplasmatic NADH2. No correlations were found between enzymes of the aerobic metabolism incl. enzymes of fatty acid oxidation and indicators of thyroid function. 3. The results indicate a relationship between thyroid function and enzymes involved in glycolysis and hydrogen transport from cytoplasmatic NADH2. They do not suggest, however, the unequivocal conclusion that in obese women with reduced thyroid function there is a generally reduced energy supplying metabolism in skeletal muscle.  相似文献   

7.
In this experimental study, the effect of fish n-3 fatty acids was studied on the some important enzymes of carbohydrate metabolism, hexokinase (HK), glucose-6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6PGD), lactate dehydrogenase (LDH), and malate dehydrogenase (MDH) in rat liver. Wistar albino rats of experimental group (n= 9) were supplemented fish omega-3 fatty acids (n-3 PUFA) as 0.4 g/kg bw. by gavage for 30 days in addition to their normal diet. Isotonic solution was given to the control group (n= 8) by the same way. At 30th day, the rats were killed by decapitation under ether anesthesia, autopsied and liver was removed. Spectrophotometric methods were used to determine the activities of above-mentioned enzymes in the liver. The n-3 PUFA caused increases in the activities of HK, G6PD, LDH, and MDH in comparison with control. These increases were statistically significant (P < 0.01) except 6PGD activity. As a result, n-3 PUFA may regulate the metabolic function of liver effectively by increasing HK, G6PD, 6PGD, LDH, and MDH enzyme activities of rat liver when added in enough amounts to the regular diet.  相似文献   

8.
采用实验生态学方法,在室内水槽条件下研究了金乌贼(Sepia esculenta Hoyle,1885)繁殖过程中社群等级的形成对其行为表型和能量代谢的影响,分析测定了不同优势等级雌雄个体腕部肌肉和性腺组织中己糖激酶(Hexokinase, HK)、丙酮酸激酶(Pyruvate kinase, PK)、乳酸脱氢酶(Lactate dehydrogenase, LDH)、苹果酸脱氢酶(Malate dehydrogenase, MDH)、柠檬酸合酶(Citrate synthetase, CS)活性以及乳酸(Lactic acid, LD)含量。结果显示:(1)金乌贼繁殖期不同优势等级雌雄个体之间行为表型具有显著差异,优势雄性个体游动悬浮、争斗时间显著高于劣势个体,而优势雌性个体静止伏底时间高于劣势个体,游动悬浮时间低于劣势雌性;(2)优势雄性个体在争斗过程中主要通过无氧代谢提供能量,而处于游动悬浮状态时通过有氧代谢提供能量。主要表现在优势雄性个体肌肉中无氧代谢酶(PK、HK、LDH)活性显著高于劣势个体(P<0.05),有氧代谢酶(MDH、CS)活性也显著高于劣势个体,雌性个体之...  相似文献   

9.
Cytochemical quantitative measurements of isocitrate dehydrogenase (ICDH), malate dehydrogenase (MDH), cytochrome oxidase, lactate dehydrogenase (LDH), glucose 6-phosphate dehydrogenase (G6PDH) and glutamate dehydrogenase (GLDH) activities were made on rabbit spermatozoa collected from the testis, the different epididymal sites and the ductus deferens. These measurements were made on individual spermatozoa (at least 100 spermatozoa for each site under consideration) using a Vickers M 85 scanning microdensitometer.The activity patterns of the enzymes involved in the tricarboxylic acid cycle (ICDH, MDH) and in the respiratory chain (cytochrome oxidase) both showed a progressive decrease in the intramitochondrial oxidative metabolism from the testis to the ductus deferens. This was in contrast to LDH activity which represents the anaerobic glycolysis pathway rather than the activity of intramitochondrial LDH. The G6PDH activity could be related to those membrane modifications which the male gamete undergoes during its epididymal maturation. Potential GLDH activity was relatively intense in the spermatozoa from the testis and from the initial and distal segments of the genital tract, suggesting an intramitochondrial synthesis of enzymes such as cytochrome oxidase or ATPase.The quantitative variations of the enzymatic activities occurring during the transit of spermatozoa along the male genital tract suggested the existence of different specific interactions between the spermatozoon and the epididymal microenvironment.  相似文献   

10.
Developmental changes in lactate dehydrogenase (LDH), enolase, hexokinase (HK), malate dehydrogenase (MDH), and glutamate dehydrogenase (GDH) activities were measured in cultures of pure neurons and glial cells prepared from brains of chick embryos (8 day-old for neurons, 14 day-old for glial cells) as a function of cellular development with time in culture. The modifications observed in culture were compared to those measured in brain extracts during the development of the nervous tissue in the chick embryo and during the post-hatching period. A significant increase of MDH, GDH, LDH, and enolase activities are observed in neurons between 3 and 6 days of culture, whereas simultaneously a decrease of HK values occurs. In the embryonic brain between 11 and 14 days of incubation, which would correspond for the neuronal cultures to day 3 through 6, modifications of MDH, GDH, HK, and enolase levels are similar to those observed in neurons in culture. Only the increase of LDH activity is less pronounced in vivo than in cultivated cells. The evolution of the tested enzymatic activities in the brain of the chick during the period between 7 days before and 10 days after hatching is quite similar to that observed in cultivated glial cells (prepared from 14 day-old embryos) between 6 and 18 days of culture. All tested activities increased in comparable proportions. The modifications of the enzymatic profile indicate that some maturation phenomena affecting energy metabolism of neuronal and glial elements in culture, are quite similar to those occuring in the total nervous tissue. A relationship between the development of the energy metabolism of the brain and differentiation processes affecting neuroblasts and the glial-forming cells is discussed.  相似文献   

11.
1. The maximal activities of hexokinase (HK), 6-phosphofructokinase (PFK), lactate dehydrogenase (LDH), citrate synthase (CS) and glutaminase (GLU) which provide a quantitative indices of flux through several important pathways have been measured in the skin of haired Balb/c and hairless Balb/c (nu/nu) mice under normal and dietary stress. 2. The skin of old haired mice exhibited higher PFK and LDH activities with lower HK, CS and GLU activities. All activities of enzymes associated with energy metabolism in the skin of old hairless mice were higher than those in the skin of haired mice. 3. HK, LDH, CS and GLU activities were maintained at normal levels in the skin of haired mice when these mice were fed diets deficient in energy or protein components (HPLE, LPNE). These enzymes however were severely suppressed when mice were fed a diet deficient in both energy and protein components (LPLE). Recovery of activities of these enzymes to the control level was observed when mice were refed with the normal diet for a week.  相似文献   

12.
In this paper, we demonstrate the ability of liquid-liquid partition chromatography (LLPC) to detect conformational alterations occurring in well-characterized enzymes. The conformational changes induced in dehydrogenases such as alcohol dehydrogenase (ADH), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), lactate dehydrogenases (LDH) and malate dehydrogenase (MDH) upon binding of ligand(s) were detectable by LLPC. The ligand-dependent equilibrium between two forms of citrate synthase (CS), glutamate-oxaloacetate transaminase (GOT), hexokinase (HK) and 3-phosphoglycerate kinase (PGK) could also be demonstrated. Furthermore, different conformational forms of some of the apoenzymes could also be detected and separated by LLPC. The results obtained here are discussed in relation to those obtained by other methods.  相似文献   

13.
Rats were trained by daily running exercises for 7 weeks. In addition, one group of rats was trained under the influence of propranolol, while another group received daily injections of propranolol only. None of the treatments used had influence on the activities of myocardial enzymes: 3-hydroxyacyl-CoA - dehydrogenase (HADH), succinate dehydrogenase (SDH), malate dehydrogenase (MDH), and citrate synthase (CS) which were assayed for estimating oxidative capacity, or lactate dehydrogenase (LDH) which was used as a measure of anaerobic capacity. Training without propranolol resulted in elevated activities of the oxidative enzymes in M. extensor digitorum and in M. soleus. The corresponding changes in the rat group trained with propranolol always were much smaller, despite an equal amount of training. Only the trend for lowered activity of LDH was observable in skeletal muscle of the rat groups trained both with and without propranolol. Long-term beta-blockade alone did not induce enzymatic changes. It is concluded that a functioning sympathetic nervous system is necessary for the adaptive responses of muscular metabolism to training. Blockade of the sympathetic influence during exercise periods also hampers the training-induced responses.  相似文献   

14.
In order to test the possible involvement of surface proteins on some metabolical aspects of chick glial cell differentiation in culture, perturbations were induced on the glial cell surface membrane by limited trypsinization before seeding. The developmental changes of enzymes involved in the energy metabolism of the cell: malate dehydrogenase (MDH), glutamate dehydrogenase (GDH), hexokinase (HK), lactate dehydrogenase (LDH), enolase as well as glutamine synthetase (GS) were determined in trypsin treated cells and controls. The total protein and DNA content per dish was higher in treated cells than in controls, however the protein ratio towards DNA remained unchanged. The levels of GS, GDH, LDH, and enolase activities were significantly enhanced after trypsin treatment of the cells compared to controls. The enhanced value of total LDH activity is essentially the result of the increase of M subunit containing isoenzymes. Considering that a higher level of GS activity characterizes some maturation of the glial cells (as observed during the maturation of the chick brain) it is apparent that modifications of cell surface located factors, by trypsin treatment, induce differentiation phenomena at the functional state of the glial cells in culture. This may indicate that interactions located at the cell surface are involved in the modulation of key enzymes of the energy metabolism pathway.  相似文献   

15.
The development of lactate dehydrogenase (LDH; EC 1.1.1.27) and malate dehydrogenase (MDH; EC 1.1.1.37) was measured in the kidney of male and female C57BL6 mice from ages prenatal 16 days to 80 days. Maximum reactions rates of the enzymes were measured in vitro by following the reduction of the nicotinamide-adenine dinucleotide spectrophotometrically.Analysis of variance showed no significant sex difference for LDH and MDH. There was a significant sex difference for the ratio LDH:MDH and a significant age difference for LDH, MDH, and the ratio LDH:MDH. In the male and female, LDH activity increased from prenatal 16 days to 30 days. Malate dehydrogenase activity reached adult values at 22 days in the male and at 30 days in the female. The ratio LDH:MDH in the male decreased from prenatal 16 days to 3 days, after which the ratio continued to decline to 20 days at a less rapid rate. This general pattern was also found in the female followed by a further decline in the ratio at 50 days.The development of LDH and MDH in the C57BL6 mouse is tissue specific and probably parallels the development of the tissue's function. In the case of the kidney, LDH and MDH development may reflect maturation of mitochondrial function and the kidney's ability to concentrate urine.  相似文献   

16.
The potential importance of carbohydrates and amino acids as fuels during periods of fasting and aestivation in the African lungfish, Protopterus dolloi, were examined. No significant decreases in tissue glycogen levels were observed following 60 days of fasting or aestivation, suggesting lungfish may undergo 'glycogen sparing'. Yet glycogenolysis may be important during aestivation based on the differing responses of two flux-generating enzymes of the glycolytic pathway, hexokinase (HK) and pyruvate kinase (PK). PK is required for glycogen breakdown whereas HK is not. HK activity is significantly down-regulated in the heart and gill tissues during aestivation, while PK activity is sustained. The significant negative correlation between the activity of HK and glucose levels in the heart of aestivating lungfish suggests HK may be regulated by glucose concentrations. There was no indication of anaerobic glycolytic flux during aestivation as lactate did not accumulate in any of the tissues examined, and no significant induction of lactate dehydrogenase (LDH)activity was observed. The increase in glutamate dehydrogenase (GDH) and aspartate aminotransferase (Asp-AT) activities in the liver of aestivating P. dolloi suggests some energy may be obtained via increased aminoacid catabolism, leading to the generation of tricarboxylic acid (TCA) cycle intermediates. These findings indicate the importance of both carbohydrate and amino acid fuel stores during aestivation in aphylogenetically ancient, air-breathing fish.  相似文献   

17.
Equilibrium, thermochemical, and time-resolved fluorescence measurements have been carried out in order to compare pig heart lactate dehydrogenase (LDH) and cytoplasmic malate dehydrogenase (MDH). The differences in the thermodynamic parameters for binding of NADH and NAD+ show the same pattern for both enzymes. The stronger binding of NADH is entropy-based, which can be understood as reflecting electrostatic interactions. The tryptophan fluorescence of MDH and LDH differ for the free enzymes and in quenching by NADH. The differences can be accounted for in terms of a single long-lived tryptophan residue present in LDH and not in MDH.  相似文献   

18.
In Pontonia pinnophylax (Otto), a crustacean decapod inhabiting the mantle cavity of Pinna nobilis L. (Bivalvia: Pteriomorpha), the lactate dehydrogenase (LDH) and malate dehydrogenase (MDH) activity, and their electrophoretic patterns, were compared in relation to heat and urea inactivation. Activity was higher in LDH than in MDH, and the electrophoretic patterns showed a predominance of LDH-A4 and the presence of both mitochondrial and cytosolic MDH. Heat incubation reduced both enzymatic activities, but more MDH. Also all isozymes showed different heat sensitivity, with anodic forms more heat-resistant than cathodic ones, either in LDH as in MDH. Urea treatment caused also a higher inactivation of the most cathodic isozymes, but MDH appeared more resistant than LDH at 2 M urea. The high polymorphism of these enzymes suggests an adaptation of Pontonia metabolism to hypoxic conditions; moreover, the different isozyme stability grade should be functional to contrast environmental variability.  相似文献   

19.
Summary Methods for standardized determination of phosphofructokinase (PFK), glyceraldehydephosphate dehydrogenase (GAPDH), lactate dehydrogenase (LDH) and malate dehydrogenase (MDH) activities in nanogram samples of microdissected single fibres of rabbit psoas and soleus muscle are described. Fast and slow fibres in soleus muscle show lower absolute activities of these enzymes than the respective fibre types in psoas muscle. Slow fibres represent a more uniform population in the two muscles according to absolute and relative activities of the enzymes investigated. Slow fibres are characterized by high activities of MDH and relatively low activities of glycolytic enzymes. Fast fibres in the soleus muscle represent a population with high activities of MDH and glycolytic enzymes. Fast fibres in psoas muscle represent a heterogeneous population with high activities of glycolytic enzymes and extremely variable activity of MDH. More than 10-fold differences exist in the MDH activities of the extreme types of this fibre population. Differences in the activity levels of MDH in single fast type fibres but also in the activities of glycolytic enzymes between fast and slow fibres are greater than those reported between extreme white and red rabbit muscles.  相似文献   

20.
C Spamer  D Pette 《Histochemistry》1977,52(3):201-216
Methods for standardized determination of phosphofructokinase (PFK), glyceraldehydephosphate dehydrogenase (GAPDH), lactate dehydrogenase (LDH) and malate dehydrogenase (MDH) activities in nanogram samples of microdissected single fibres of rabbit psoas and soleus muscle are described. Fast and slow fibres in soleus muscle show lower absolute activities of these enzymes than the respective fibre types in psoas muscle. Slow fibres represent a more uniform population in the two muscles according to absolute and relative activities of the enzymes investigated. Slow fibres are characterized by high activities of MDH and relatively low activities of glycolytic enzymes. Fast fibres in the soleus muscle represent a population with high activities of MDH and glycolytic enzymes. Fast fibres in psoas muscle represent a heterogeneous population with high activities of glycolytic enzymes and extremely variable activity of MDH. More than 10-fold differences exist in the MDH activities of the extreme types of this fibre population. Differences in the activity levels of MDH in single fast type fibres but also in the activities of glycolytic enzymes between fast and slow fibres are greater than those reported between extreme white and red rabbit muscles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号