首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gross GG  Feldman RM  Ganguly A  Wang J  Yu H  Guo M 《PloS one》2008,3(6):e2495
The Amyloid Precursor Protein (APP) undergoes sequential proteolytic cleavages through the action of beta- and gamma-secretase, which result in the generation of toxic beta-amyloid (Abeta) peptides and a C-terminal fragment consisting of the intracellular domain of APP (AICD). Mutations leading to increased APP levels or alterations in APP cleavage cause familial Alzheimer's disease (AD). Thus, identification of factors that regulate APP steady state levels and/or APP cleavage by gamma-secretase is likely to provide insight into AD pathogenesis. Here, using transgenic flies that act as reporters for endogenous gamma-secretase activity and/or APP levels (GAMAREP), and for the APP intracellular domain (AICDREP), we identified mutations in X11L and ubiquilin (ubqn) as genetic modifiers of APP. Human homologs of both X11L (X11/Mint) and Ubqn (UBQLN1) have been implicated in AD pathogenesis. In contrast to previous reports, we show that overexpression of X11L or human X11 does not alter gamma-secretase cleavage of APP or Notch, another gamma-secretase substrate. Instead, expression of either X11L or human X11 regulates APP at the level of the AICD, and this activity requires the phosphotyrosine binding (PTB) domain of X11. In contrast, Ubqn regulates the levels of APP: loss of ubqn function leads to a decrease in the steady state levels of APP, while increased ubqn expression results in an increase in APP levels. Ubqn physically binds to APP, an interaction that depends on its ubiquitin-associated (UBA) domain, suggesting that direct physical interactions may underlie Ubqn-dependent regulation of APP. Together, our studies identify X11L and Ubqn as in vivo regulators of APP. Since increased expression of X11 attenuates Abeta production and/or secretion in APP transgenic mice, but does not act on gamma-secretase directly, X11 may represent an attractive therapeutic target for AD.  相似文献   

2.
Presenilin 1 (PS1) is a critical component of the gamma-secretase complex, which is involved in the cleavage of several substrates including the amyloid precursor protein (APP) and the Notch receptor. Recently, the low density receptor-related protein (LRP) has been shown to be cleaved by a gamma-secretase-like activity. We postulated that LRP may interact with PS1 and tested its role as a competitive substrate for gamma-secretase. In this report we show that LRP colocalizes and interacts with endogenous PS1 using coimmunoprecipitation and fluorescence lifetime imaging microscopy. In addition, we found that gamma-secretase active site inhibitors do not disrupt the interaction between LRP and PS1, suggesting that the substrate associates with a gamma-secretase docking site located in close proximity to PS1. This is analogous to APP-gamma-secretase interactions. Finally, we show that LRP competes with APP for gamma-secretase activity. Overexpression of a truncated LRP construct consisting of the C terminus, the transmembrane domain, and a short extracellular portion leads to a reduction in the levels of the Abeta40, Abeta42, and p3 peptides without changing the total level of APP expression. In addition, transfection with the beta-chain of LRP causes an increase in uncleaved APP C-terminal fragments and a concomitant decrease in the signaling effects of the APP intracellular domain. In conclusion, LRP is a PS1 interactor and can compete with APP for gamma-secretase enzymatic activity.  相似文献   

3.
gamma-Secretase is a membrane protein complex with an unusual aspartyl protease activity that catalyses the regulated intramembranous cleavage of the beta-amyloid precursor protein (APP) to release the Alzheimer's disease (AD)-associated amyloid beta-peptide (Abeta) and the APP intracellular domain (AICD). Here we show the reconstitution of gamma-secretase activity in the yeast Saccharomyces cerevisiae, which lacks endogenous gamma-secretase activity. Reconstituted gamma-secretase activity depends on the presence of four complex components including presenilin (PS), nicastrin (Nct), APH-1 (refs 3-6) and PEN-2 (refs 4, 7), is associated with endoproteolysis of PS, and produces Abeta and AICD in vitro. Thus, the biological activity of gamma-secretase is reconstituted by the co-expression of human PS, Nct, APH-1 and PEN-2 in yeast.  相似文献   

4.
The 37-43 amino acid Abeta peptide is the principal component of beta-amyloid deposits in Alzheimer's disease (AD) brain, and is derived by serial proteolysis of the amyloid precursor protein (APP) by beta- and gamma-secretase. gamma-Secretase also cleaves APP at Val50 in the Abeta numbering (epsilon cleavage), resulting in the release of a fragment called APP intracellular domain (AICD). The aim of this study was to determine whether amino acid substitutions in the APP transmembrane domain differentially affect Abeta and AICD generation. We found that the APPV715F substitution, which has been previously shown to dramatically decrease Abeta40 and Abeta42 while increasing Abeta38 levels, does not affect in vitro generation of AICD. Furthermore, we found that the APPL720P substitution, which has been previously shown to prevent in vitro generation of AICD, completely prevents Abeta generation. Using a fluorescence resonance energy transfer (FRET) method, we next found that both the APPV715F and APPL720P substitutions significantly increase the distance between the N- and C-terminus of presenilin 1 (PS1), which has been proposed to contain the catalytic site of gamma-secretase. In conclusion, both APPV715F and APPL720P change PS1 conformation with differential effects on Abeta and AICD production.  相似文献   

5.
gamma-Secretase-dependent regulated intramembrane proteolysis of amyloid precursor protein (APP) releases the APP intracellular domain (AICD). The question of whether this domain, like the Notch intracellular domain, is involved in nuclear signalling is highly controversial. Although some reports suggest that AICD regulates the expression of KAI1, glycogen synthase kinase-3beta, Neprilysin and APP, we found no consistent effects of gamma-secretase inhibitors or of genetic deficiencies in the gamma-secretase complex or the APP family on the expression levels of these genes in cells and tissues. Finally, we demonstrate that Fe65, an important AICD-binding protein, transactivates a wide variety of different promoters, including the viral simian virus 40 promoter, independent of AICD coexpression. Overall, the four currently proposed target genes are at best indirectly and weakly influenced by APP processing. Therefore, inhibition of APP processing to decrease Abeta generation in Alzheimer's disease will not interfere significantly with the function of these genes.  相似文献   

6.
One of the cardinal neuropathological findings in brains from Alzheimer's disease (AD) patients is the occurrence of amyloid beta-peptide (Abeta) deposits. The gamma-secretase-mediated intramembrane proteolysis event generating Abeta also results in the release of the APP intracellular domain (AICD), which may mediate nuclear signaling. It was recently shown that AICD starts at a position distal to the site predicted from gamma-secretase cleavage within the membrane. This novel site, the epsilon site, is located close to the inner leaflet of the membrane bilayer. The relationship between proteolysis at the gamma and epsilon sites has not been fully characterized. Here we studied AICD signaling in intact cells using a chimeric C99 molecule and a luciferase reporter system. We show that the release of AICD from the membrane takes place in a compartment downstream of the endoplasmic reticulum, is dependent on presenilin proteins, and can be inhibited by treatment with established gamma-secretase inhibitors. Moreover, we find that AICD signaling remains unaltered from C99 derivatives containing mutations associated with increased Abeta42 production and familial AD. These findings indicate that there are very similar routes for Abeta and AICD formation but that FAD-linked mutations in APP primarily affect gamma-secretase-mediated Abeta42 formation, and not AICD signaling.  相似文献   

7.
8.
Aggregates of beta-amyloid peptide (Abeta) are the major component of the amyloid core of the senile plaques observed in Alzheimer's disease (AD). Abeta results from the amyloidogenic processing of its precursor, the amyloid precursor protein (APP), by beta- and gamma-secretase activities. If beta-secretase has recently been identified and termed BACE, the identity of gamma-secretase is still obscure. Studies with knock-out mice showed that presenilin 1 (PS1), of which mutations are known to be the first cause of inherited AD, is mandatory for the gamma-secretase activity. However, the proteolytic activity of PS1 remains a matter of debate. Here we used transfected Sf9 insect cells, a cellular model lacking endogenous beta- and/or gamma-secretase activities, to characterize the role of BACE and PS1 in the amyloidogenic processing of human APP. We show that, in Sf9 cells, BACE performs the expected beta-secretase cleavage of APP, generating C99. We also show that C99, which is a substrate of gamma-secretase, tightly binds to the human PS1. Despite this interaction, Sf9 cells still do not produce Abeta. This strongly argues against a direct proteolytic activity of PS1 in APP processing, and points toward an implication of PS1 in trafficking/presenting its substrate to the gamma-secretase.  相似文献   

9.
Pericytes play a critical role in the cerebrovasculature within the CNS. These small contractile cells produce large quantities of apolipoprotein E (apoE) whose isoforms influence cerebrovascular functions and determine the genetic risk for Alzheimer disease. Despite extensive studies on astrocyte-secreted apoE, which supports synapses by transporting cholesterol to neurons, the biochemical properties and function of apoE secreted by pericytes are not clear. Because pericytes mediate important functions in the CNS, including the initiation of glial scar formation, angiogenesis, and maintenance of the blood-brain barrier, we investigated the potential role of apoE in pericyte mobility. We found that knockdown of apoE expression significantly accelerates pericyte migration, an effect that can be rescued by exogenous apoE3, but not apoE4, a risk factor for Alzheimer disease. ApoE-regulated migration of pericytes also requires the function of the low-density lipoprotein receptor-related protein 1 (LRP1), a major apoE receptor in the brain that is abundantly expressed in pericytes. Because apoE-knockdown also leads to enhanced cell adhesion, we investigated the role of apoE in the regulation of the actin cytoskeleton. Interestingly, we found that the levels of active RhoA are increased significantly in apoE knockdown pericytes and that RhoA inhibitors blocked pericyte migration. Taken together, our results suggest that apoE has an intrinsic role in pericyte mobility, which is vital in maintaining cerebrovascular function. These findings provide novel insights into the role of apoE in the cerebrovascular system.  相似文献   

10.
11.
12.
We showed previously that cells expressing wild-type (WT) beta-amyloid precursor protein (APP) or coexpressing WTAPP and WT presenilin (PS) 1/2 produced APP intracellular domains (AICD) 49-99 and 50-99, with the latter predominating. On the other hand, the cells expressing mutant (MT) APP or coexpressing WTAPP and MTPS1/2 produced a greater proportion of AICD-(49-99) than AICD-(50-99). In addition, the expression of amyloid beta-protein (Abeta) 49 in cells resulted in predominant production of Abeta40 and that of Abeta48 leads to preferential production of Abeta42. These observations suggest that epsilon-cleavage and gamma-cleavage are interrelated. To determine the stoichiometry between Abeta and AICD, we have established a 3-[(3-cholamidopropyl)dimethylammonio]-2-hydroxy-1-propanesulfonic acid-solubilized gamma-secretase assay system that exhibits high specific activity. By using this assay system, we have shown that equal amounts of Abeta and AICD are produced from beta-carboxyl-terminal fragment (C99) by gamma-secretase, irrespective of WT or MTAPP and PS1/2. Although various Abeta species, including Abeta40, Abeta42, Abeta43, Abeta45, Abeta48, and Abeta49, are generated, only two species of AICD, AICD-(49-99) and AICD-(50-99), are detected. We also have found that M233T MTPS1 produced only one species of AICD, AICD-(49-99), and only one for its counterpart, Abeta48, in contrast to WT and other MTPS1s. These strongly suggest that epsilon-cleavage is the primary event, and the produced Abeta48 and Abeta49 rapidly undergo gamma-cleavage, resulting in generation of various Abeta species.  相似文献   

13.
Several lines of evidence suggest that dysregulated lipid metabolism may participate in the pathogenesis of Alzheimer’s disease (AD). Epidemiologic studies suggest that elevated mid-life plasma cholesterol levels may be associated with an increased risk of AD and that statin use may reduce the prevalence of AD. Cellular studies have shown that the levels and distribution of intracellular cholesterol markedly affect the processing of amyloid precursor protein into Aβ peptides, which are the toxic species that accumulate as amyloid plaques in the AD brain. Most importantly, genetic evidence identifies apolipoprotein E, the major cholesterol carrier in the central nervous system, as the primary genetic risk factor for sporadic AD. In humans, apoE exists as three major alleles (apoE2, apoE3, and apoE4), and inheritance of the apoE4 allele increases the risk of developing AD at an earlier age. However, exactly how apoE functions in the pathogenesis of AD remains to be fully determined. Our studies have identified that the cholesterol transporter ABCA1 is a crucial regulator of apoE levels and lipidation in the brain. Deficiency of ABCA1 leads to the loss of approximately 80% of apoE in the brain, and the residual 20% that remains is poorly lipidated. Several independent studies have shown this poorly lipidated apoE increases amyloid burden in mouse models of AD, demonstrating that apoE lipidation by ABCA1 affects key steps in amyloid deposition or clearance. Conversely, robust overexpression of ABCA1 in the brain promotes apoE lipidation and nearly eliminates the formation of mature amyloid plaques. These studies show that the lipid binding capacity of apoE is a major mechanism of its function in the pathogenesis of AD, and suggest that increasing apoE lipidation may be of therapeutic importance for this devastating disease.  相似文献   

14.
Amyloid-β (Aβ) peptide accumulation in the brain is central to the pathogenesis of Alzheimer's disease (AD). Aβ is produced through proteolytic processing of a transmembrane protein, β-amyloid precursor protein (APP), by β- and γ-secretases. Mounting evidence has demonstrated that alterations in APP cellular trafficking and localization directly impact its processing to Aβ. Members of the low-density lipoprotein receptor family, including LRP, LRP1B, SorLA/LR11, and apoER2, interact with APP and regulate its endocytic trafficking. Additionally, APP trafficking and processing are greatly affected by cellular cholesterol content. In this review, we summarize the current understanding of the roles of lipoprotein receptors and cholesterol in APP trafficking and processing and their implication for AD pathogenesis and therapy.  相似文献   

15.

Background

The A?? peptide that accumulates in Alzheimer??s disease (AD) is derived from amyloid precursor protein (APP) following proteolysis by ??- and ??-secretases. Substantial evidence indicates that alterations in APP trafficking within the secretory and endocytic pathways directly impact the interaction of APP with these secretases and subsequent A?? production. Various members of the low-density lipoprotein receptor (LDLR) family have been reported to play a role in APP trafficking and processing and are important risk factors in AD. We recently characterized a distinct member of the LDLR family called LDLR-related protein 10 (LRP10) that shuttles between the trans-Golgi Network (TGN), plasma membrane (PM), and endosomes. Here we investigated whether LRP10 participates in APP intracellular trafficking and A?? production.

Results

In this report, we provide evidence that LRP10 is a functional APP receptor involved in APP trafficking and processing. LRP10 interacts directly with the ectodomain of APP and colocalizes with APP at the TGN. Increased expression of LRP10 in human neuroblastoma SH-SY5Y cells induces the accumulation of mature APP in the Golgi and reduces its presence at the cell surface and its processing into A??, while knockdown of LRP10 expression increases A?? production. Mutations of key motifs responsible for the recycling of LRP10 to the TGN results in the aberrant redistribution of APP with LRP10 to early endosomes and a concomitant increase in APP ??-cleavage into A??. Furthermore, expression of LRP10 is significantly lower in the post-mortem brain tissues of AD patients, supporting a possible role for LRP10 in AD.

Conclusions

The present study identified LRP10 as a novel APP sorting receptor that protects APP from amyloidogenic processing, suggesting that a decrease in LRP10 function may contribute to the pathogenesis of Alzheimer??s disease.  相似文献   

16.
 淀粉样前体蛋白 (APP)是阿尔茨海默氏病 (AD)发病过程中有重要作用的蛋白 .利用酵母双杂交的方法发现低密度脂蛋白受体相关蛋白 6(LRP6)羧基端可和 APP羧基端片段相互作用 .分别构建了 APP和 LRP6的原核表达载体 ,并利用大肠杆菌获得 GST- APP1 0 6、MBP- LRP6融合蛋白 .体外相互作用研究证实了 APP羧基端和 LRP6羧基端之间的结合 .这使与 AD相关的两个重要蛋白 apo E和 APP联系起来 ,并提示 LRP6可能在 APP代谢和 Aβ产生中起重要作用 .  相似文献   

17.
Apolipoprotein E (apoE)-containing lipoproteins (LpE) are produced by glial cells in the central nervous system (CNS). When LpE are supplied to distal axons, but not cell bodies, of CNS neurons (retinal ganglion cells) the rate of axonal extension is increased. In this study we have investigated the molecular requirements underlying the stimulatory effect of LpE on axonal extension. We show that enhancement of axonal growth by LpE requires the presence of the low-density lipoprotein receptor-related protein-1 (LRP1) in neurons since RNA silencing of LRP1 in neurons, or antibodies directed against LRP, suppressed the LpE-induced axonal extension. In contrast, an alternative LRP1 ligand, α2-macroglobulin, failed to stimulate axonal extension, suggesting that LpE do not exert their growth-stimulatory effect solely by activation of a LRP1-mediated signaling pathway. In addition, although apoE3-containing LpE enhanced axonal extension, apoE4-containing LpE did not. Over-expression of ABCG1 in rat cortical glial cells resulted in production of LpE that increased the rate of axonal extension to a greater extent than did expression of an inactive, mutant form of ABGC1. Furthermore, reconstituted lipoprotein particles containing apoE3, phosphatidylcholine and sphingomyelin, but not cholesterol, stimulated axonal extension, suggesting that sphingomyelin, but not cholesterol, is involved in the stimulatory effect of LpE. These observations demonstrate that LpE and LRP1 promote axonal extension, and suggest that lipids exported to LpE by ABCG1 are important for the enhancement of axonal extension mediated by LpE.  相似文献   

18.
The gamma-secretase complex, consisting of presenilins (PS), nicastrin (NCT), APH-1, and PEN-2, catalyzes the intramembranous proteolysis of truncated beta-amyloid precursor protein (APP) and Notch derivatives to generate the APP intracellular domain (AICD) and Notch intracellular domain (NICD), respectively. To examine the intracellular sites in which active gamma-secretase resides, we expressed NCT variants harboring either an endoplasmic reticulum (ER) retention signal (NCT-ER) or a trans-Golgi network (TGN) targeting motif (NCT-TGN) along with PS1, APH-1, and PEN-2 and examined gamma-secretase activity in these settings. In cells expressing NCT-ER and the other components, PS1 fragments hyperaccumulated, but AICD levels were not elevated. On the other hand, upon coexpression of an ER-retained APP variant or a constitutionally active Notch mutant, NDeltaE, we observed enhanced production of AICD or NICD, respectively, in cells expressing NCT-ER. Moreover, we show that membranes from cells expressing NCT-ER, NCT-TGN, or NCT-WT contain identical levels of PS1 derivatives that can be photoaffinity cross-linked to a biotinylated, benzophenone-derivatized gamma-secretase inhibitor. Finally, our cell-free gamma-secretase assays revealed nearly equivalent gamma-secretase activities in cells expressing PS1, APH-1, PEN-2, and either NCT-WT or NCT-ER. Taken together, we interpret these findings as suggesting that active gamma-secretase complex is generated in the early compartments of the secretory pathway but that these complexes are transported to late compartments in which substrates are encountered and subsequently processed within respective transmembrane segments.  相似文献   

19.
Alzheimer’s disease (AD) is clinically characterized with progressive memory loss and cognitive decline. Synaptic dysfunction is an early pathological feature that occurs prior to neurodegeneration and memory dysfunction. Mounting evidence suggests that aggregation of amyloid-β (Aβ) and hyperphosphorylated tau leads to synaptic deficits and neurodegeneration, thereby to memory loss. Among the established genetic risk factors for AD, the ɛ4 allele of apolipoprotein E (APOE) is the strongest genetic risk factor. We and others previously demonstrated that apoE regulates Aβ aggregation and clearance in an isoform-dependent manner. While the effect of apoE on Aβ may explain how apoE isoforms differentially affect AD pathogenesis, there are also other underexplored pathogenic mechanisms. They include differential effects of apoE on cerebral energy metabolism, neuroinflammation, neurovascular function, neurogenesis, and synaptic plasticity. ApoE is a major carrier of cholesterols that are required for neuronal activity and injury repair in the brain. Although there are a few conflicting findings and the underlying mechanism is still unclear, several lines of studies demonstrated that apoE4 leads to synaptic deficits and impairment in long-term potentiation, memory and cognition. In this review, we summarize current understanding of apoE function in the brain, with a particular emphasis on its role in synaptic plasticity and the underlying cellular and molecular mechanisms, involving low-density lipoprotein receptor-related protein 1 (LRP1), syndecan, and LRP8/ApoER2.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号