首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Resonant frequencies of arms and legs identify different walking patterns   总被引:1,自引:0,他引:1  
The present study is aimed at investigating changes in the coordination of arm and leg movements in young healthy subjects. It was hypothesized that with changes in walking velocity there is a change in frequency and phase coupling between the arms and the legs. In addition, it was hypothesized that the preferred frequencies of the different coordination patterns can be predicted on the basis of the resonant frequencies of arms and legs with a simple pendulum model. The kinematics of arms and legs during treadmill walking in seven healthy subjects were recorded with accelerometers in the sagittal plane at a wide range of different velocities (i.e., 0.3-1. 3m/s). Power spectral analyses revealed a statistically significant change in the frequency relation between arms and legs, i.e., within the velocity range 0.3-0.7m/s arm movement frequencies were dominantly synchronized with the step frequency, whereas from 0.8m/s onwards arm frequencies were locked onto stride frequency. Significant effects of walking speed on mean relative phase between leg and arm movements were found. All limb pairs showed a significantly more stable coordination pattern from 0.8 to 1.0m/s onwards. Results from the pendulum modelling demonstrated that for most subjects at low-velocity preferred movement frequencies of the arms are predicted by the resonant frequencies of individual arms (about 0.98Hz), whereas at higher velocities these are predicted on the basis of the resonant frequencies of the individual legs (about 0.85Hz). The results support the above-mentioned hypotheses, and suggest that different patterns of coordination, as shown by changes in frequency coupling and phase relations, can exist within the human walking mode.  相似文献   

2.
3.
Humans and other animals can temporarily store mechanical energy in elastic oscillations, f(el), of body parts and in pendulum oscillations, f(p) = const sq.rt (g/L), of legs, length L, or other appendages, and thereby reduce the energy consumption of locomotion. However, energy saving only occurs if these oscillations are tuned to the leg propagation frequency f. It has long been known that f is tuned to the pendulum frequency of the free-swinging leg of walkers. During running the leg frequency increases to some new value f = f(r). We propose that in order to maintain resonance the animal, mass M, actively increases its leg pendulum frequency to the new value f(p,r) =const sq.rt (a(y)/L)=f(r), by giving its hips a vertical acceleration a(y)= F(y)/M. The pendulum frequency is increased if the impact force F(y) of the stance foot is larger than Mg, explaining the observation by Alexander and Bennet-Clark (1976) that F(v) becomes larger than Mg when animals start to run. Our model predictions of the running velocity U(r) as function of L, F(v), are in agreement with measurements of these quantities (Farley et al. 1993). The leg's longitudinal elastic oscillation frequency scales as f(el) = const sq.rt (k/M). Experiments by Ferris et al., (1998) show that runners adjust their leg's stiffness, k, when running on surfaces of different elasticity so that the total stiffness k remains constant. Our analysis of their data suggests that the longitudinal oscillations of the stance leg are indeed kept in tune with the running frequency. Therefore we conclude that humans, and by extension all animals, maintain resonance during running. Our model also predicts the Froude number of walking-running transitions, Fr = U(2)/gL approximately 0.5 in good agreement with measurements.  相似文献   

4.
We present a novel composite nanostructure consisting of bowtie nanoantennas and asymmetric nanoapertures, which provides a new way of indirectly tuning the resonant wavelengths and manipulating the localized fields. The proposed composite nanostructure cannot only produce a symmetric localized field distribution but also create two asymmetric localized field distributions in optical frequency. The resonant peaks of the composite nanostructure can easily be bidirectionally tuned by indirectly adjusting the geometrical parameters of the asymmetric nanoapertures. The mechanisms for manipulating and tuning the localized fields are also discussed.  相似文献   

5.
Recent experiments show that the conformation of filament proteins play a role in the motility and morphology of many different types of bacteria. Conformational changes in the protein subunits may produce forces to drive propulsion and cell division. Here we present a molecular mechanism by which these forces can drive cell motion. Coupling of a biochemical cycle, such as ATP hydrolysis, to the dynamics of elastic filaments enable elastic filaments to propagate deformations that generate propulsive forces. We demonstrate this possibility for two classes of wall-less bacteria called mollicutes: the swimming of helical-shaped Spiroplasma, and the gliding motility of Mycoplasma.  相似文献   

6.
For animals to carry out a wide range of detection, recognition and navigation tasks, visual motion signals are crucial. The encoding of motion information has therefore, attracted much attention in the experimental and computational study of brain function. Two main alternative mechanisms have been proposed on the basis of behavioural and physiological experiments. On one hand, correlation-type and motion energy detectors are simple and efficient in the design of their basic mechanism but are tuned to temporal frequency rather than to speed. On other hand, gradient-type motion detectors directly represent an estimate of speed, but may require more demanding processing mechanisms. We demonstrate here how the temporal frequency dependence observed for sine-wave gratings can disappear for less constrained stimuli, to be replaced by responses reflecting speed for stimuli like square waves when a phase-sensitive detection mechanism is employed. We conclude from these observations that temporal frequency tuning is not necessarily a limitation for motion vision based on correlation detectors, and more generally demonstrate in view of the typical Fourier composition of natural scenes, that correlation detectors operating in such environments can encode image speed. In the context of our results, we discuss the implications of the loss of phase sensitivity inherent in using a linear system approach to describe neural processing.  相似文献   

7.
Eight male subjects were asked to swim 25 m at maximal velocity while the use of the arm(s) and legs was alternately restricted. Four situations were examined using one arm (1A), two arms (2A), one arm and two legs (1A2L) and both arms and legs (2A2L, normal swim) for propulsion. A significant mean increase of 10% on maximal velocity was obtained in 1A2L and 2A2L compared to 1A and 2A. A non-significant 4% effect was obtained in 1A. This study focused on the actual contribution of leg kick in the 10% gain in maximal velocity. It was clear that the underwater trajectory of the wrist was modified by the action of the legs (most comparisons P < 0.001). Therefore it was thought that the legs enhanced the generated propulsive force by improving the propulsive action of the arm. The arm action was quantified by selecting typical phases from the filmed trajectory of the wrist, namely forward (F), downwards (D) and backwards (B). Although there was a tendency for individual changes in kinematic parameters (F, D and B) to occur with individual changes in velocity when 2A was compared to 2A2L, no relationship was found between the relative changes in F, D and B and relative changes in velocity. This was illustrated by describing the responses of three individuals who could represent three patterns of contribution by legs and arms to propulsion in high speed swimming.  相似文献   

8.
Vortex interactions with flapping wings and fins can be unpredictable   总被引:1,自引:0,他引:1  
As they fly or swim, many animals generate a wake of vortices with their flapping fins and wings that reveals the dynamics of their locomotion. Previous studies have shown that the dynamic interaction of vortices in the wake with fins and wings can increase propulsive force. Here, we explore whether the dynamics of the vortex interactions could affect the predictability of propulsive forces. We studied the dynamics of the interactions between a symmetrically and periodically pitching and heaving foil and the vortices in its wake, in a soap-film tunnel. The phase-locked movie sequences reveal that abundant chaotic vortex-wake interactions occur at high Strouhal numbers. These high numbers are representative for the fins and wings of near-hovering animals. The chaotic wake limits the forecast horizon of the corresponding force and moment integrals. By contrast, we find periodic vortex wakes with an unlimited forecast horizon for the lower Strouhal numbers (0.2–0.4) at which many animals cruise. These findings suggest that swimming and flying animals could control the predictability of vortex-wake interactions, and the corresponding propulsive forces with their fins and wings.  相似文献   

9.
BACKGROUND: Although the importance of lymphatic function is well recognized, the lack of real-time imaging modalities limits our understanding of its role in many diseases. In a phase 0 exploratory study, we used dynamic, near-infrared (NIR) fluorescence imaging to assess the extremes of lymphatic architecture and transport in healthy human subjects and in subjects clinically diagnosed with unilateral lymphedema (LE), a disease that can be prevalent in cancer survivors. METHODS AND RESULTS: Active lymphatic propulsion was imaged after intradermal injections of 25 µg of indocyanine green (total maximum dose ≤400 µg) bilaterally in the arms or legs of control and subjects. Images show well-defined lymphatic structures with propulsive dye transport in limbs of healthy subjects. In LE subjects, we observed extravascular dye accumulation, networks of fluorescent lymphatic capillaries, and/or tortuous lymphatic vessels in all symptomatic and some asymptomatic limbs. Statistical models indicate that disease status and/or limb significantly affect parameters of apparent lymph propagation velocity and contractile frequency. CONCLUSIONS: These clinical research studies demonstrate the potential of NIR fluorescence imaging as a diagnostic measure of functional lymphatics and as a new tool in translational research studies to decipher the role of the lymphatic system in cancer and other diseases.  相似文献   

10.
Limb design is well conserved among quadrupeds, notably, the knees point forward (i.e. cranial inclination of femora) and the elbows point back (i.e. caudal inclination of humeri). This study was undertaken to examine the effects of joint orientation on individual leg forces and centre of mass dynamics. Steady-speed trotting was simulated in two quadrupedal models. Model I had the knee and elbow orientation of a quadruped and model II had a reversed leg configuration in which knees point back and elbows point forward. The model's legs showed directional compliance determined by the orientation of the knee/elbow. In both models, forward pointing knees/elbows produced a propulsive force bias, while rearward pointing knees/elbows produced a braking force bias. Hence, model I showed the same pattern of hind-leg propulsion and fore-leg braking observed in trotting animals. Simulations revealed minimal pitch oscillations during steady-speed trotting of model I, but substantially greater and more irregular pitch oscillations of model II. The reduced pitch oscillation of model I was a result of fore-leg and hind-leg forces that reduced pitching moments during early and late stance, respectively. This passive mechanism for reducing pitch oscillations was an emergent property of directionally compliant legs with the fore-hind configuration of model I. Such intrinsic stability resulting from mechanical design can simplify control tasks and lead to more robust running machines.  相似文献   

11.
Unsteady Aspects of Aquatic Locomotion   总被引:8,自引:3,他引:5  
Virtually all animals swim unsteadily. They oscillate appendages,undulate, and produce periodic propulsive forces so that thevelocity of some part of their bodies changes in time. Becauseof their unsteady motion, animals experience a fluid force inaddition to drag—the acceleration reaction. The accelerationreaction dominates the forces resisting rapid accelerationsof animals and may be responsible for generating thrust in oscillatingappendages and undulating bodies. The ever-present unsteadynature of animal swimming implies diverse applications of theacceleration reaction.  相似文献   

12.
Summary Acoustic stimuli near 60 kHz elicit pronounced resonance in the cochlea of the mustached bat (Pteronotus parnellii parnellii). The cochlear resonance frequency (CRF) is near the second harmonic, constant frequency (CF2) component of the bat's biosonar signals. Within narrow bands where CF2 and third harmonic (CF3) echoes are maintained, the cochlea has sharp tuning characteristics that are conserved throughout the central auditory system. The purpose of this study was to examine the effects of temperature-related shifts in the CRF on the tuning properties of neurons in the cochlear nucleus and inferior colliculus.Eighty-two single and multi-unit recordings were characterizedin 6 awake bats with chronically implanted cochlear microphonic electrodes. As the CRF changed with body temperature, the tuning curves of neurons sharply tuned to frequencies near the CF2 and CF3 shifted with the CRF in every case, yielding a change in the unit's best frequency. The results show that cochlear tuning is labile in the mustached bat, and that this lability produces tonotopic shifts in the frequency response of central auditory neurons. Furthermore, results provide evidence of shifts in the frequency-to-place code within the sharply tuned CF2 and CF3 regions of the cochlea. In conjunction with the finding that biosonar emission frequency and the CRF shift concomitantly with temperature and flight, it is concluded that the adjustment of biosonar signals accommodates the shifts in cochlear and neural tuning that occur with active echolocation.Abbreviations BF best frequency - CF characteristic frequency - CF2, CF3 second and third harmonic, constant frequency components of the biosonar signal - CM cochlear microphonic - CN cochlear nucleus - CRF cochlear resonance frequency - IC inferior colliculus - MT minimum threshold - OAE otoacoustic emission - Q10dB BF (or CF) divided by the response bandwidth at 10 dB above MT  相似文献   

13.
Sense organs in the legs that detect body weight are an important component in the regulation of posture and locomotion. We tested the abilities of tibial campaniform sensilla, receptors that can monitor forces in the cockroach leg, to encode variations in body load in freely standing animals. Small magnets were attached to the thorax and currents were applied to a coil below the substrate. Sensory and motor activities were monitored neurographically. The tibial sensilla could show vigorous discharges to changing forces when animals stood upon their legs and actively supported the body weight. Firing of individual afferents depended upon the orientation of the receptors cuticular cap: proximal sensilla (oriented perpendicular to the leg axis) discharged to force increases while distal receptors (parallel to the leg) fired to decreasing forces. Proximal sensillum discharges were prolonged and could encode the level of load when increases were sustained. Firing of the trochanteral extensor motoneuron was also strongly modulated by changing load. In some postures, sensillum discharges paralleled changes in motor frequency consistent with a known interjoint reflex. These findings demonstrate that tibial campaniform sensilla can monitor the effects of body weight upon the legs and may aid in generating support of body load.  相似文献   

14.
Cortical neurons are frequently tuned to several stimulus dimensions, and many cortical areas contain intercalated maps of multiple variables. Relatively little is known about how information is “read out” of these multidimensional maps. For example, how does an organism extract information relevant to the task at hand from neurons that are also tuned to other, irrelevant stimulus dimensions? We addressed this question by employing microstimulation techniques to examine the contribution of disparity-tuned neurons in the middle temporal (MT) visual area to performance on a direction discrimination task. Most MT neurons are tuned to both binocular disparity and the direction of stimulus motion, and MT contains topographic maps of both parameters. We assessed the effect of microstimulation on direction judgments after first characterizing the disparity tuning of each stimulation site. Although the disparity of the stimulus was irrelevant to the required task, we found that microstimulation effects were strongly modulated by the disparity tuning of the stimulated neurons. For two of three monkeys, microstimulation of nondisparity-selective sites produced large biases in direction judgments, whereas stimulation of disparity-selective sites had little or no effect. The binocular disparity was optimized for each stimulation site, and our result could not be explained by variations in direction tuning, response strength, or any other tuning property that we examined. When microstimulation of a disparity-tuned site did affect direction judgments, the effects tended to be stronger at the preferred disparity of a stimulation site than at the nonpreferred disparity, indicating that monkeys can selectively monitor direction columns that are best tuned to an appropriate conjunction of parameters. We conclude that the contribution of neurons to behavior can depend strongly upon tuning to stimulus dimensions that appear to be irrelevant to the current task, and we suggest that these findings are best explained in terms of the strategy used by animals to perform the task.  相似文献   

15.
Cortical neurons are frequently tuned to several stimulus dimensions, and many cortical areas contain intercalated maps of multiple variables. Relatively little is known about how information is “read out” of these multidimensional maps. For example, how does an organism extract information relevant to the task at hand from neurons that are also tuned to other, irrelevant stimulus dimensions? We addressed this question by employing microstimulation techniques to examine the contribution of disparity-tuned neurons in the middle temporal (MT) visual area to performance on a direction discrimination task. Most MT neurons are tuned to both binocular disparity and the direction of stimulus motion, and MT contains topographic maps of both parameters. We assessed the effect of microstimulation on direction judgments after first characterizing the disparity tuning of each stimulation site. Although the disparity of the stimulus was irrelevant to the required task, we found that microstimulation effects were strongly modulated by the disparity tuning of the stimulated neurons. For two of three monkeys, microstimulation of nondisparity-selective sites produced large biases in direction judgments, whereas stimulation of disparity-selective sites had little or no effect. The binocular disparity was optimized for each stimulation site, and our result could not be explained by variations in direction tuning, response strength, or any other tuning property that we examined. When microstimulation of a disparity-tuned site did affect direction judgments, the effects tended to be stronger at the preferred disparity of a stimulation site than at the nonpreferred disparity, indicating that monkeys can selectively monitor direction columns that are best tuned to an appropriate conjunction of parameters. We conclude that the contribution of neurons to behavior can depend strongly upon tuning to stimulus dimensions that appear to be irrelevant to the current task, and we suggest that these findings are best explained in terms of the strategy used by animals to perform the task.  相似文献   

16.
Hybrid functional electrical stimulation (FES) rowing has positive effects on cardiovascular fitness, producing significantly greater aerobic power than either upper body or FES exercise alone. However, there is minimal information on the kinematics, kinetics, and mechanical efficiency of FES-rowing in the spinal cord injured (SCI) population. This study examined the biomechanics of FES-rowing to determine how motions, forces, and aerobic demand change with increasing intensity. Six individuals with SCI and six able-bodied subjects performed a progressive aerobic capacity rowing test. Differences in kinematics (motion profiles), kinetics (forces produced by the feet and arms), external mechanical work, and mechanical efficiency (work produced/volume of oxygen consumed) were compared in able-bodied rowing vs. SCI FES-rowing at three comparable subpeak workloads. With increasing exercise intensity (measured as wattage), able-bodied rowing increased stroke rate by decreasing recovery time, while FES-rowing maintained a constant stroke rate, with no change in drive or recovery times. While able-bodied rowers increased leg and arm forces with increasing intensity, FES-rowers used only their arms to achieve a higher intensity with a constant and relatively low contribution of the legs. Oxygen consumption increased in both groups, but more so in able-bodied rowers, resulting in able-bodied rowers having twice the mechanical efficiency of FES-rowers. Our results suggest that despite its ability to allow for whole body exercise, the total force output achievable with FES-rowing results in only modest loading of the legs that affects overall rowing performance and that may limit forces applied to bone.  相似文献   

17.
We studied the respiratory output in five subjects exposed to parabolic flights [gravity vector 1, 1.8 and 0 gravity vector in the craniocaudal direction (Gz)] and when switching from sitting to supine (legs bent at the knees). Despite differences in total respiratory compliance (highest at 0 Gz and in supine and minimum at 1.8 Gz), no significant changes in elastic inspiratory work were observed in the various conditions, except when comparing 1.8 Gz with 1 Gz (subjects were in the seated position in all circumstances), although the elastic work had an inverse relationship with total respiratory compliance that was highest at 0 Gz and in supine posture and minimum at 1.8 Gz. Relative to 1 Gz, lung resistance (airways plus lung tissue) increased significantly by 52% in the supine but slightly decreased at 0 Gz. We calculated, for each condition, the tidal volume changes based on the energy available in the preceding phase and concluded that an increase in inspiratory muscle output occurs when respiratory load increases (e.g., going from 0 to 1.8 Gz), whereas a decrease occurs in the opposite case (e.g., from 1.8 to 0 Gz). Despite these immediate changes, ventilation increased, going to 1.8 and 0 Gz (up to approximately 23%), reflecting an increase in mean inspiratory flow rate, tidal volume, and respiratory frequency, while ventilation decreased (approximately -14%), shifting to supine posture (transition time approximately 15 s). These data suggest a remarkable feature in the mechanical arrangement of the respiratory system such that it can maintain the ventilatory output with small changes in inspiratory muscle work in face of considerable changes in configuration and mechanical properties.  相似文献   

18.
The propulsion system of animals that fly or swim are quite different from each other in their morphology and function, yet the propulsive efficiency could be maximized by a surprising similarity in the fine tuning of flapping frequency, amplitude and forward speed, according to a new study by Taylor et al. This conclusion was based on an analysis of the Strouhal number, which is a dynamic similarity index relevant to propulsion that relies on vortex shedding for thrust generation. Such fine-tuning of the propulsive system suggests possible consequences for physiological and ecological adaptations related to, for example muscle operating frequency and optimal speed of muscle contraction.  相似文献   

19.
Systematic variation of solution conditions reveals that the elastic modulus (E) of individual collagen fibrils can be varied over a range of 2-200 MPa. Nanoindentation of reconstituted bovine Achilles tendon fibrils by atomic force microscopy (AFM) under different aqueous and ethanol environments was carried out. Titration of monovalent salts up to a concentration of 1 M at pH 7 causes E to increase from 2 to 5 MPa. This stiffening effect is more pronounced at lower pH where, at pH 5, e.g., there is an ∼7-fold increase in modulus on addition of 1 M KCl. An even larger increase in modulus, up to ∼200 MPa, can be achieved by using increasing concentrations of ethanol. Taken together, these results indicate that there are a number of intermolecular forces between tropocollagen monomers that govern the elastic response. These include hydration forces and hydrogen bonding, ion pairs, and possibly the hydrophobic effect. Tuning of the relative strengths of these forces allows rational tuning of the elastic modulus of the fibrils.  相似文献   

20.
锐化蝙蝠听皮层神经元频率调谐的柱特征   总被引:4,自引:0,他引:4  
用双声刺激和多管电极方法在 6只大棕蝠 (bigbrownbat,Eptesicusfuscus)的 98个神经元上研究了锐化 (sharpening)蝙蝠听皮层 (primaryauditorycortex ,AC)神经元频率调谐的柱特征。结果发现 ,电极直插在 1个电极通道内连续记录到多个神经元时 ,它们锐化频率调谐的抑制性调谐曲线或抑制区基本相似。电极与AC表面呈 45°斜向推入使其跨越多个功能柱时 ,可观察到锐化频率调谐的抑制区构成也随电极进入不同的功能柱而发生相应的改变。两种不同的电极插入方式均证明锐化AC神经元频率调谐的神经抑制呈柱状组构。这些神经元组合起来排列在同一听觉功能柱内 ,构成AC频率分析的基本功能组构单位“微频率处理器”。实验中还观察到多峰频率调谐曲线神经元 ,它们在声通讯和声定位中不同波谱区域的时间匹配中起作用。此外 ,也有理由认为多峰调谐神经元亦被用于作为复杂波谱信息的“高级调谐预处理器” ,从而极大地提高了神经元对频率分析的能力。为研究锐化频率调谐的神经抑制机制 ,用多管电极电泳γ -氨基丁酸 (γ aminobutyricacid ,GA BA)能a受体拮抗剂荷包牡丹碱 (bicuculline ,Bic)至所记录的神经元 ,发现能大部分或几乎全部取消抑制区 ,从而表明在正常情况下GABA能抑制参与构成锐化AC神经元频率调谐的抑制区 ,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号