首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 422 毫秒
1.
H A Huebers  E Csiba  B Josephson  C A Finch 《Blut》1990,60(6):345-351
Iron absorption in the iron-deficient rat was compared with that in the normal rat to better understand the regulation of this dynamic process. It was found that: Iron uptake by the iron-deficient intestinal mucosa was prolonged as a result of slower gastric release, particularly when larger doses of iron were employed. The increased mucosal uptake of ionized iron was not the result of increased adsorption, but instead appeared related to a metabolically active uptake process, whereas the increased mucosal uptake of transferrin iron was associated with increased numbers of mucosal cell membrane transferrin receptors. Mucosal ferritin acted as an iron storage protein, but its iron uptake did not explain the lower iron absorption in the normal rat. Iron loading the mucosal cell (by presenting a large iron dose to the intestinal lumen) decreased absorption for 3 to 4 days. Iron loading of the mucosal cell from circulating plasma transferrin was proportionate to the plasma iron concentration. Mucosal iron content was the composite of iron loading from the lumen and loading from plasma transferrin versus release of iron into the body. These studies imply that an enhanced uptake-throughout mechanism causes the increased iron absorption in the iron-deficient rat. Results were consistent with the existence of a regulating mechanism for iron absorption that responds to change in mucosal cell iron, which is best reflected by mucosal ferritin.  相似文献   

2.
A small to moderate inhibitory effect of iron uptake by isolated rat hepatocytes in short-term studies was seen with oxidative phosphorylation and electron transport inhibitors, and no inhibition by agents affecting pinocytosis. Intracellular transferrin was able to donate iron to the small-molecular weight iron pool, and the latter was able to transfer, by a process not requiring energy or movement of serum transferrin, iron to ferritin. Serum transferrin was not able to lose iron to any cytosol components. Reducing agents were not able to abstract iron from rat serum transferrin to any great extent. It is concluded that iron is taken up by the rat hepatocyte from serum transferrin by a process not requiring energy or movement of serum transferrin into the cell interior; and that intracellular transferrin is involved in acquiring iron from serum transferrin at the cell surface, with iron then being transferred to the small-molecular weight iron pool and hence to ferritin. It is also proposed that intracellular transferrins may have the general function of interacting with serum transferrin at cell surfaces.  相似文献   

3.
Transferrin receptors have been previously found on human macrophages and it has also been shown that transferrin iron is taken up by these cells. It has therefore been inferred that the uptake is receptor mediated and involves an endocytic pathway. The subject was addressed directly in the present study in which the transferrin-iron-receptor interaction was characterized in cultured human blood monocytes. Specific, saturable diferric transferrin binding was demonstrated, with a kDa of 3.6 X 10(-8) M and a calculated receptor density of 1.25-2.5 X 10(5) receptors per cell. Incubation at 4 degrees C markedly reduced transferrin binding and completely inhibited iron uptake. Chase experiments confirmed progressive cellular loading of iron, with concomitant loss of transferrin. Inhibitors of endocytic vesicle acidification (ammonium chloride and 2,4-dinitrophenol) inhibited iron unloading from endocytosed diferric transferrin, while microtubular inhibitors (colchicine and vindesine) and a microfilament inhibitor (cytochalasin B) reduced diferric transferrin uptake but had little effect on the iron unloading pathway. A similar effect was noted with a calcium ion antagonist (verapamil) and with 2 calmodulin antagonists (chlorpromazine and imipramine). These latter findings suggest the importance of cytoskeleton-membrane interactions via a calcium, calmodulin and protein kinase C mediated system. Endocytosed iron accumulated progressively as ferritin within the cultured monocytes.  相似文献   

4.
Mammalian cells regulate iron levels tightly through the activity of iron-regulatory proteins (IRPs) that bind to RNA motifs called iron-responsive elements (IREs). When cells become iron-depleted, IRPs bind to IREs present in the mRNAs of ferritin and the transferrin receptor, resulting in diminished translation of the ferritin mRNA and increased translation of the transferrin receptor mRNA. Likewise, intestinal epithelial cells regulate iron absorption by a process that also depends on the intracellular levels of iron. Although intestinal epithelial cells have an active IRE/IRP system, it has not been proven that this system is involved in the regulation of iron absorption in these cells. In this study, we characterized the effect of overexpression of the ferritin IRE on iron absorption by Caco-2 cells, a model of intestinal epithelial cells. Cells overexpressing ferritin IRE had increased levels of ferritin, whereas the levels of the transferrin receptor were decreased. Iron absorption in IRE-transfected cells was deregulated: iron uptake from the apical medium was increased, but the capacity to retain this newly incorporated iron diminished. Cells overexpressing IRE were not able to control iron absorption as a function of intracellular iron, because both iron-deficient cells as well as iron-loaded cells absorbed similarly high levels of iron. The labile iron pool of IRE-transfected cell was extremely low. Likewise, the reduction of the labile iron pool in control cells resulted in cells having increased iron absorption. These results indicate that cells overexpressing IRE do not regulate iron absorption, an effect associated with decreased levels of the regulatory iron pool.  相似文献   

5.
Cells tightly regulate iron levels through the activity of iron regulatory proteins (IRPs) that bind to RNA motifs called iron responsive elements (IREs). When cells become iron-depleted, IRPs bind to IREs present in the mRNAs of ferritin and the transferrin receptor, resulting in diminished translation of the ferritin mRNA and increased translation of the transferrin receptor mRNA. Similarly, body iron homeostasis is maintained through the control of intestinal iron absorption. Intestinal epithelia cells sense body iron through the basolateral endocytosis of plasma transferrin. Transferrin endocytosis results in enterocytes whose iron content will depend on the iron saturation of plasma transferrin. Cell iron levels, in turn, inversely correlate with intestinal iron absorption. In this study, we examined the relationship between the regulation of intestinal iron absorption and the regulation of intracellular iron levels by Caco-2 cells. We asserted that IRP activity closely correlates with apical iron uptake and transepithelial iron transport. Moreover, overexpression of IRE resulted in a very low labile or reactive iron pool and increased apical to basolateral iron flux. These results show that iron absorption is primarily regulated by the size of the labile iron pool, which in turn is regulated by the IRE/IRP system.  相似文献   

6.
Intracellular ferritin in newt (Triturus cristatus) erythroblasts was accessible to the chelating effects of EDTA and pyridoxal phosphate. EDTA (0.5-1 mM) promoted release of radioactive iron from ferritin of pulse-labelled erythroblasts during chase incubation, but its continuous presence was not necessary for ferritin iron mobilization. Brief exposure to EDTA was sufficient to release 60-70% of ferritin 59Fe content during ensuing chase in EDTA-free medium. EDTA also suppressed cellular iron uptake and utilization for heme synthesis, but these activities were restored upon its removal. Pyridoxal-5'-phosphate (0.5-5 mM) also stimulated loss of radioactive iron from ferritin; however, ferritin iron release by pyridoxal phosphate required its continued presence. Unlike EDTA, pyridoxal phosphate did not interfere with iron uptake or its utilization for heme synthesis. Chelator-mobilized ferritin iron accumulated initially in the hemolysate as a low-molecular-weight component and appeared to be eventually released into the medium. No radioactive ferritin was found in the medium of chelator-treated cells, indicating that secretion or loss of ferritin was not responsible for decreasing cellular ferritin 59Fe content. Moreover, there was no transfer of radioactive iron between the low-molecular-weight component released into the medium and plasma transferrin. These results indicate that chelator-released ferritin iron is not available for cellular utilization in heme synthesis and that ferritin iron released by this process is not an alternative or complementary iron source for heme synthesis. Correlation of these data with effects of succinylacetone inhibition of heme synthesis and with previous studies indicates that the main role of erythroid cell ferritin is absorption and storage of excess iron not used for heme synthesis.  相似文献   

7.
Airway epithelial cells prevent damaging effects of extracellular iron by taking up the metal and sequestering it within intracellular ferritin. Epithelial iron transport is associated with transcellular movement of other cations including changes in the expression or activity of Na, K-ATPase and epithelial Na(+) channel (ENaC). Given this relationship between iron and Na(+), we hypothesized that iron uptake by airway epithelial cells requires concurrent Na(+) transport. In preliminary studies, we found that Na(+)-free buffer blocked iron uptake by human airway epithelial cell. Na(+) channels inhibitors, including furosemide, bumetanide, and ethylisopropyl amiloride (EIPA) significantly decreased epithelial cell concentrations of non-heme iron suggesting that Na(+)-dependent iron accumulation involves generalized Na(+) flux into the cells rather than participation of one or more specific Na(+) channels. In addition, efflux of K(+) was detected during iron uptake, as was the influx of phosphate to balance the inward movement of cations. Together, these data demonstrate that intracellular iron accumulation by airway epithelium requires concurrent Na(+)/K(+)exchange.  相似文献   

8.
Mutations in the HFE gene and a newly identified second transferrin receptor gene, TfR2, cause hemochromatosis. The cognate proteins, HFE and TfR2, are therefore of key importance in human iron homeostasis. HFE is expressed in small intestinal crypt cells where transferrin-iron entry may determine subsequent iron absorption by mature enterocytes, but the physiological function of TfR2 is unknown. Using specific peptide antisera, we examined the duodenal localization of HFE and TfR2 in humans and mice, with and without HFE deficiency, by confocal microscopy. We also investigated potential interactions of these proteins in human intestinal cells in situ. Duodenal expression of HFE and TfR2 (but not TfR1) in wild-type mice and humans was restricted to crypt cells, in which they co-localized. HFE deficiency disrupted this interaction, altering the cellular distribution of TfR2 in human crypts. In human Caco-2 cells, HFE and TfR2 co-localized to a distinct CD63-negative vesicular compartment showing marked signal enhancement on exposure to iron-saturated transferrin ligand, indicating that HFE preferentially interacts with TfR2 in a specialized early endosomal transport pathway for transferrin-iron. This interaction occurs specifically in small intestinal crypt cells that differentiate to become iron-absorbing enterocytes. Our immunohistochemical findings provide evidence for a novel mechanism for the regulation of iron balance in mammals.  相似文献   

9.
Biochemistry of nonheme iron in man. II. Absorption of iron   总被引:2,自引:0,他引:2  
The currently accepted concept of iron absorption proposes first the entry of iron into the intestinal mucosal cell through the brush border membrane. It is a relatively slow process. In the cell, the iron may be transferred to plasma or become sequestered by ferritin. The latter becomes unavailable for transfer to plasma and is exfoliated and excreted. In iron deficiency and idiopathic hemochromatosis, the rate of iron uptake into the intestinal mucosal cell is increased and entry into ferritin is decreased, whereas the rate of transfer to plasma remains constant. The reverse occurs in case of secondary iron overload. It is currently accepted that a transferrin, whose levels increase in iron deficiency, enters the intestinal lumen from the liver via bile, where it may sequester iron and bring it into the cells by the process of endocytosis. Iron presented as inorganic ferric or ferrous salts may also be absorbed, though the more soluble ferrous salts are adsorbed much more rapidly. Heme iron is absorbed very effectively, though it is not subject to regulation by the individual's iron status to the same extent as is inorganic iron absorption. Brush border membranes apparently contain saturable iron receptors for inorganic iron, but whether or not the absorption process requires energy is an open question. Absorption of iron may also be affected by its availability; different food components affect iron absorbability to a different extent.  相似文献   

10.
Ascorbate is a cofactor in numerous metabolic reactions. Humans cannot synthesize ascorbate owing to inactivation of the gene encoding the enzyme l-gulono-γ-lactone oxidase, which is essential for ascorbate synthesis. Accumulating evidence strongly suggests that in addition to the known ability of dietary ascorbate to enhance nonheme iron absorption in the gut, ascorbate within mammalian systems can regulate cellular iron uptake and metabolism. Ascorbate modulates iron metabolism by stimulating ferritin synthesis, inhibiting lysosomal ferritin degradation, and decreasing cellular iron efflux. Furthermore, ascorbate cycling across the plasma membrane is responsible for ascorbate-stimulated iron uptake from low-molecular-weight iron–citrate complexes, which are prominent in the plasma of individuals with iron-overload disorders. Importantly, this iron-uptake pathway is of particular relevance to astrocyte brain iron metabolism and tissue iron loading in disorders such as hereditary hemochromatosis and β-thalassemia. Recent evidence also indicates that ascorbate is a novel modulator of the classical transferrin–iron uptake pathway, which provides almost all iron for cellular demands and erythropoiesis under physiological conditions. Ascorbate acts to stimulate transferrin-dependent iron uptake by an intracellular reductive mechanism, strongly suggesting that it may act to stimulate iron mobilization from the endosome. The ability of ascorbate to regulate transferrin iron uptake could help explain the metabolic defect that contributes to ascorbate-deficiency-induced anemia.  相似文献   

11.
A S Dusso  R C Puche 《Blut》1985,51(2):103-108
Chronic administration of hypercalcemic doses of 1 alpha, 25-dihydroxycholecalciferol to intact, vitamin-D repleted rats for 4 weeks, enhanced net intestinal absorption of iron and liver iron stores. Daily net iron and calcium absorptions were found to be significantly correlated in both control and treated rats. In duodenal loop experiments, pretreatment with 1 alpha, 25-dihydroxycholecalciferol reversed the adverse effect of high Ca/Fe ratio on iron absorption. The increased intestinal absorption of iron did not result in a change of serum iron levels nor of total iron binding capacity due to the enhanced incorporation of absorbed iron into liver ferritin. The curve of uptake of 59Fe into circulating red cells of treated rats suggested retarded release of the isotope from stores. The hypothesis is advanced that the systemic metabolic defect (tissue hypoxia, raised erythropoietin levels) produced by 1 alpha, 25-dihydroxycholecalciferol is responsible for the disruption of the physiological coordination between iron stores and intestinal absorption.  相似文献   

12.
Abstract : Studies on iron uptake into the brain have traditionally focused on transport by transferrin. However, transferrin receptors are not found in all brain regions and are especially low in white matter tracts where high iron concentrations have been reported. Several lines of research suggest that a receptor for ferritin, the intracellular storage protein for iron, may exist. We present, herein, evidence for ferritin binding sites in the brains of adult mice. Autoradiographic studies using 125I-recombinant human ferritin demonstrate that ferritin binding sites in brain are predominantly in white matter. Saturation binding analyses revealed a single class of binding sites with a dissociation constant ( K D) of 4.65 × 10-9 M and a binding site density ( B max) of 17.9 fmol bound/μg of protein. Binding of radiolabeled ferritin can be competitively displaced by an excess of ferritin but not transferrin. Ferritin has previously been shown to affect cellular proliferation, protect cells from oxidative damage, and deliver iron. The significance of a cellular ferritin receptor is that ferritin is capable of delivering 2,000 times more iron per mole of protein than transferrin. The distribution of ferritin binding sites in brain vis-à-vis transferrin receptor distribution suggests distinct methods for iron delivery between gray and whi  相似文献   

13.
The effect of transferrin saturation on internal iron exchange   总被引:1,自引:0,他引:1  
Radioiron was introduced into the intestinal lumen to evaluate absorption, injected as nonviable red cells to evaluate reticuloendothelial (RE) processing of iron, and injected as hemoglobin to evaluate hepatocyte iron processing. Redistribution of iron through the plasma was evaluated in control animals and animals whose transferrin was saturated by iron infusion. Radioiron introduced into the lumen of the gut as ferrous sulfate and as transferrin-bound iron was absorbed about half as well in iron-infused animals, and absorbed iron was localized in the liver. The similar absorption of transferrin-bound iron suggested that absorption of ferrous iron occurred via the mucosal cell and did not enter by diffusion. The decrease in absorption was associated with an increase in mucosal iron and ferritin content produced by the iron infusion. An inverse relationship (r = -0.895) was shown between mucosal ferritin iron and absorption. When iron was injected as nonviable red cells, it was deposited predominantly in reticuloendothelial cells of the spleen. Return of this radioiron to the plasma was only 6% of that in control animals. While there was some movement of iron from spleen to liver, this could be accounted for by intravascular hemolysis. Injected hemoglobin tagged with radioiron was for the most part taken up and held by the liver. Some 13% initially localized in the marrow in iron-infused animals was shown to be storage iron unavailable for hemoglobin synthesis. These studies demonstrate the hepatic trapping of absorbed iron and the inability of either RE cell or hepatocyte to release iron in the transferrin-saturated animal.  相似文献   

14.
Iron regulatory proteins (IRPs), the cytosolic proteins involved in the maintenance of cellular iron homeostasis, bind to stem loop structures found in the mRNA of key proteins involved iron uptake, storage, and metabolism and regulate the expression of these proteins in response to changes in cellular iron needs. We have shown previously that HFE-expressing fWTHFE/tTA HeLa cells have slightly increased transferrin receptor levels and dramatically reduced ferritin levels when compared to the same clonal cell line without HFE (Gross et al., 1998, J Biol Chem 273:22068-22074). While HFE does not alter transferrin receptor trafficking or non-transferrin mediated iron uptake, it does specifically reduce (55)Fe uptake from transferrin (Roy et al., 1999, J Biol Chem 274:9022-9028). In this report, we show that IRP RNA binding activity is increased by up to 5-fold in HFE-expressing cells through the activation of both IRP isoforms. Calcein measurements show a 45% decrease in the intracellular labile iron pool in HFE-expressing cells, which is in keeping with the IRP activation. These results all point to the direct effect of the interaction of HFE with transferrin receptor in lowering the intracellular labile iron pool and establishing a new set point for iron regulation within the cell.  相似文献   

15.
The anatomical and cellular distribution of non-haem iron, ferritin, transferrin, and the transferrin receptor have been studied in postmortem human brain and these studies, together with data on the uptake and transport of labeled iron, by the rat brain, have been used to elucidate the role of iron and other metal ions in certain neurological disorders. High levels of non-haem iron, mainly in the form of ferritin, are found in the extrapyramidal system, associated predominantly with glial cells. In contrast to non-haem iron, the density of transferrin receptors is highest in cortical and brainstem structures and appears to relate to the iron requirement of neurones for mitochondrial respiratory activity. Transferrin is synthesized within the brain by oligodendrocytes and the choroid plexus, and is present in neurones, consistent with receptor mediated uptake. The uptake of iron into the brain appears to be by a two-stage process involving initial deposition of iron in the brain capillary endothelium by serum transferrin, and subsequent transfer of iron to brain-derived transferrin and transport within the brain to sites with a high transferrin receptor density. A second, as yet unidentified mechanism, may be involved in the transfer of iron from neurones possessing transferrin receptors to sites of storage in glial cells in the extrapyramidal system. The distribution of iron and the transferrin receptor may be of relevance to iron-induced free radical formation and selective neuronal vulnerability in neurodegenerative disorders.  相似文献   

16.
Traditionally, transferrin has been considered the primary mechanism for cellular iron delivery, despite suggestive evidence for additional iron delivery mechanisms. In this study we examined ferritin, considered an iron storage protein, as a possible delivery protein. Ferritin consists of H- and L-subunits, and we demonstrated iron uptake by ferritin into multiple organs and that the uptake of iron is greater when the iron is delivered via H-ferritin compared with L-ferritin. The delivery of iron via H-ferritin but not L-ferritin was significantly decreased in mice with compromised iron storage compared with control, indicating that a feedback mechanism exists for H-ferritin iron delivery. To further evaluate the mechanism of ferritin iron delivery into the brain, we used a cell culture model of the blood-brain barrier to demonstrate that ferritin is transported across endothelial cells. There are receptors that prefer H-ferritin on the endothelial cells in culture and on rat brain microvasculature. These studies identify H-ferritin as an iron transport protein and suggest the presence of an H-ferritin receptor for mediating iron delivery. The relative amount of iron that could be delivered via H-ferritin could make this protein a predominant player in cellular iron delivery. blood-brain barrier; iron transport; H-ferritin  相似文献   

17.
Interleukin-1 (IL-1 beta) increases the synthesis of both heavy and light (L)-ferritin subunits when added to human hepatoma cells (HepG2) grown in culture. RNase protection and Northern blot analysis with L-ferritin probes revealed that no changes in L-ferritin mRNA levels occur after cytokine stimulation. However, the induction coincides with an increased association of the L-subunit mRNA with polyribosomes. Since the recruitment of stored ferritin mRNA onto polyribosomes is seen when iron enters the cell, the effect of IL-1 beta on iron uptake was tested and was found to be unaffected by the lymphokine. Neither transferrin receptor mRNA levels nor the number of receptors displayed on the cell surface was affected by IL-1 beta. However, the action of the cytokine on ferritin translation is inhibited by the action of the intracellular iron chelator deferoxamine. These data indicate that IL-1 beta induces ferritin gene expression by translational control of its mRNA. The pathway of induction is different from iron-dependent ferritin gene expression whereas regulation requires the background presence of cellular iron.  相似文献   

18.
Hepatic iron uptake and metabolism were studied by subcellular fractionation of rat liver homogenates after injection of rats with a purified preparation of either native or denatured rat transferrin labelled with 125I and 59Fe. (1) With native transferrin, hepatic 125I content was maximal 5 min after injection and then fell. Hepatic 59Fe content reached maximum by 16 h after injection and remained constant for 14 days. Neither label appeared in the mitochondrial or lysosomal fractions. 59Fe appeared first in the supernatant and, with time, was detectable as ferritin in fractions sedimented with increasingly lower g forces. (2) With denatured transferrin, hepatic content of both 125I and 59Fe reached maximum by 30 min. Both appeared initially in the lysosomal fraction. With time, they passed into the supernatant and 59Fe became incorporated into ferritin. The study suggests that hepatic iron uptake from native transferrin does not involve endocytosis. However, endocytosis of denatured transferrin does occur. After the uptake process, iron is gradually incorporated into ferritin molecules, which subsequently polymerize; there is no incorporation into other structures over 14 days.  相似文献   

19.
Copper deficiency is known to result in a microcytic, hypochromic anemia. Red cells of copper-deficient animals have less hemoglobin than their copper-adequate counterparts. The objective of this work was to determine what role copper plays in maintaining hemoglobin levels. It was hypothesized that the primary defect lies in intracellular iron metabolism. The influence of copper supplementation on iron uptake and storage was examined in a cell line capable of hemoglobin synthesis. The results demonstrated that copper supplementation of human K562 cells was associated with higher cytosolic iron levels and ferritin levels. Copper supplementation of the cell culture altered the initial rate of iron uptake from transferrin and enhanced iron uptake in noninduced cells; however, in hemin-induced K562 cells, which express fewer transferrin receptors on the cell surface, copper appeared to reduce iron uptake. Subsequent studies showed that the cells were able to take up the same amount of iron from transferrin when incubated over a longer period of time (24 hr). In the noninduced (non-hemoglobin synthesizing) cells, proportionally more iron was associated with the ferritin. We concluded from these studies that copper affects both uptake and storage of iron and that copper supplementation reduces cellular iron turnover.  相似文献   

20.
Dynamic studies of iron metabolism in brain are generally unavailable despite the fact that a number of neurologic conditions are associated with excessive accumulation of iron in central nervous tissue. Cortical non-neuronal (glial) cultures were prepared from fetal mouse brain. After 13 days the cultures were exposed to radiolabeled iron. Brisk and linear total iron uptake and ferritin iron uptake occurred over 4 hours. When methylamine or ammonium chloride was added, (both known inhibitors of transferrin iron release because of their lysosomotropic properties), total iron uptake was diminished. Further studies indicated that meth-ylamine inhibits glial cell ferritin iron incorporation. Glial cell iron transport is similar to previously reported neuronal cell iron transport (1) but glial cell iron uptake proceeds at a faster rate and is more susceptible to the inhibition of certain lysosomotropic agents. The data reinforces the likelihood that iron uptake by nervous tissues is transferrin-mediated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号