首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the summer of 1983, immature embryos from 101 selfed inbred lines and germplasm stocks of Zea mays L. were examined for their ability to produce callus cultures capable of plant regeneration (regenerable cultures) using a medium with which some limited success had previously been obtained. Forty-nine of the genotypes (49%) produced callus which visually appeared similar to callus previously cultured and shown to be capable of plant regeneration. After five months, 38 of these genotypes were alive in culture and plants were subsequently regenerated from 35 (92%) of them. No correlation was observed between plant regeneration and callus growth rate, the vivipary mutation (genes vp1, 2, 5, 7, 8 and 9), or published vigor ratings based on K+ uptake by roots. When F1 hybrid embryos were cultured, 97% of the hybrids having at least one regenerable parent also produced callus capable of plant regeneration. No regenerable cultures were obtained from any hybrid lacking a parent capable of producing a regenerable callus culture.In the summer of 1984, immature embryos from 218 additional inbred lines and germplasm stocks were plated and examined for their ability to produce regenerable callus cultures on media containing altered micronutrient concentrations, 3,6-dichloro-o-anisic acid (dicamba), glucose, and elevated levels of vitamin-free casamino acids and thiamine. Of these genotypes 199 (91%) produced callus that was regenerable in appearance. In the 1984 study, plant regeneration was noted in many commercially important inbreds, including B73, Mo17, B84, A632, A634, Ms71, W117, H993H95 and Cm105. Thus tissue-culture techniques are now available to obtain callus cultures capable of plant regeneration from immature embryos of most maize genotypes.Abbreviations trade names 2,4-D 2,4-dichlorophenoxyacetic acid - dicamba 3,6-dichloro-o-anisic acid  相似文献   

2.
Type II maize callus of the HiII genotype can be separated into regenerable and non-regenerable types based on the visible morphology of the callus. When the non-regenerable morphotype of callus initiated 6 mo or a yr earlier was treated with from 2% to 20% polyethylene glycol (PEG; 3,350 molecular weight) for three subculture periods of 21 d each, the morphotype changed to regenerable, and the callus did become highly regenerable. The PEG treatments did not improve the plant regeneration ability of the regenerable morphotype or of an old culture initiated 4 yr earlier.  相似文献   

3.
The factors affecting the callus formation and regeneration capacity of leaf explants of four genotypes of the genus Triticum, viz. T. aestivum, cvs. Taezhnaya and Chinese Spring; T. durum, cv. Kollektivnaya; and T. persicum, were investigated. The process of callus formation did not depend on the explant genotype. Apical leaf segments were characterized by the lowest capacity of callus formation. In contrast, the rate of plant regeneration was correlated with the genotype and the explant developmental stage. The highest number of regenerants was obtained from a basal segment of three-day-old seedlings ofT. aestivum, cv. Taezhnaya. The yield of plants from one explant was doubled due to the use of maltose in the regeneration medium. The prospects of using leaf segments as the explants for the genetic transformation of wheat plants are discussed.  相似文献   

4.
Somatic embroys and subsequent plant regeneration were obtained from isolated leaf epidermis of Gaillardia picta. Abaxial and adaxial epidermal peels (monolayer) from 45 days old aseptic seedlings were isolated and segments measuring 5 mm x 3 mm were cultured on B5 basal medium supplemented with various growth regulators such as naphthaleneacetic acid or indolebutyric acid and benzylaminopurine or kinetin. Within 12 h of culture the epidermal cells showed receding of cytoplasm from the walls. After 48 h of incubation 3 or 4 localized zones, each consisting of 3–8 cells that accumulated cytoplasm and stained densely, were observed. Mitotic divisions occurred in these zones on day 3 of culture and localized masses of callus were observed in 95% of the cultures after 10 days. In another 5 days, the callus differentiated somatic embryos or roots, depending on the growth regulators and their concentration in the medium.Abbreviations Used BAP 6-benzylamiopurine - IBA indolebutyric acid - Kn kinetin - NAA -naphthaleneacetic acid  相似文献   

5.
Callus was induced in standard (1 mm) leaf base explants and in cross sections (microexplants) through the seedling axis from seedlings of Hordeum vulgare L.. Reduced callus formation was observed with increasing distance from the leaf base, and explants from the first and second leaves gave the best response. In serial hand sections of the seedling axis frequency of callus formation decreased from 100% in the apical region to 5% in the basal region. Callus formed from all tissues outside the central vascular elements, except for the coleoptile and the scutellum. Plants were regenerated from callus induced from both types of explants.  相似文献   

6.
Two plant regeneration methods applicable to Leucaenaleucocephala were developed. In the first method, involvingorganogenesis via callus formation, cotyledon, hypocotyl and root segments wereinitiated on MS medium containing different concentrations ofN6-benzyladenine (BA), 2,4-dichlorophenoxyacetic acid (2,4-D), andnaphthaleneacetic acid (NAA). Both compact (type I) and friable (type II) calliwere obtained from the cotyledon and hypocotyl explants treated with differentconcentrations of the growth regulators. Shoots were generated only from thefriable calli formed from the cotyledon explants. The calli formed from thehypocotyl explants did not generate shoots and the root explants died withoutforming callus. Cotyledon explants from 3–4 day old seedlings showedmaximum callus induction compared to those from older seedlings. In a secondmethod involving direct organogenesis, excised cotyledons were cultured on 1/2MS medium containing 10–35 mg l–1N6-benzyladenine (BA) for 7–14 days. Transfer of thecotyledonsto regeneration medium containing low BA resulted in callus formation andsubsequent shoot regeneration from the base of the excised cotyledon explants,with up to 100% frequency. Regenerated shoots rooted best on a basal mediumcontaining no growth regulators.  相似文献   

7.
A short-term regeneration system from leaf-base-derived callus of wheat (Triticum aestivum L.) was developed. Embryogenic callus formation and shoot regeneration were achieved from the first basal segments of 3–4-day-old seedlings. Callus formation frequency as well as plantlet regeneration frequency was dependent on the composition of basal medium and the concentration of 2,4-dichlorophenoxyacetic acid (2,4-D). MS medium with 2,4-D 4.5–9.0 mol l–1 was optimal for the culture of wheat leaf base. Effects of different combinations of plant growth regulators, which were added in either callus induction medium or shoot regeneration medium, were tested. Adding of BAP in callus induction medium shortened the time of shoot emergence but could not improve the producing of embryogenic calli and green plantlets. Optimal ratio of 2,4-D, BAP and NAA gave similar regeneration frequency to control. Existence of cytokinins in regeneration medium had no effect on increasing the regeneration frequency. The regenerants could grow to normal, fertile plants after they were transferred into soil.  相似文献   

8.
Summary Digitaria sanguinalis (crabgrass) has recently been introduced as a high quality forage crop. We report here a tissue culture system showing a high level of regeneration developed to aid in a breeding program. Two morphologically distinct types of callus, compact opaque and friable translucent, were induced from leaf blade explants and mature seeds when cultured on MS medium containing 0.9 μM 2,4-dichlorophenoxyacetic acid. Proline (25 mM) inhibited induction of callus but was required for continued maintenance. Plants were readily regenerated from the compact opaque callus. Selectively subcultured friable translucent callus continued to produce colony sectors of the morphogenically competent compact opaque callus when transferred to regeneration medium. Suspension cell cultures derived from callus or directly from leaf blade explants also produced regenerable callus.  相似文献   

9.
Wright  M. S.  Ward  D. V.  Hinchee  M. A.  Carnes  M. G.  Kaufman  R. J. 《Plant cell reports》1987,6(2):83-89
A reproducible method for regeneration of plants from primary leaf tissue of 27 varieties of soybean (Glycine max), encompassing maturity groups 00 to VIII, has been developed. Progeny from seeds recovered from regenerated plants appear normal. Best regeneration was from leaf explants (2.1–4.0 mm) obtained from 5 day old seedlings. While 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) was demonstrated to be essential for regeneration, addition of benzyladenine (BA) was found to enhance regeneration. Of the 6 other auxins tested, only picloram induced any regenerative response. Using identical volumes of medium and other conditions, regeneration could be obtained in 95 × 25 mm glass culture tubes but not in 60 × 15 mm Petri dishes.The regeneration of soybeans from primary leaf tissue was shown to be greatly enhanced by pyroglutamic acid (5-oxoproline). Stimulatory effects were attained if pyroglutamic acid was added directly to the medium or if it was formed in situ as a result of chemical transformation of glutamine during autoclaving. The active component produced by autoclaving glutamine was not a conjugate of glutamine with inorganic salts or another organic component of the medium. Filter-sterilized glutamine was shown to be inhibitory to regeneration.Murashige and Skoog (MS) and Schenk and Hildebrandt (SH) basal media were compared to Gamborg B5 medium. All contained 0.1 mg/l 2,4,5-T, 40 mg/l adenine sulfate and 10 mM pyroglutamic acid. No regeneration occurred when MS medium was used. Growth and appearance of callus growing on SH and B5 media with the additives were similar. The incidence of regeneration among cultures growing on SH medium was only one third compared to cultures grown on B5 medium.  相似文献   

10.
Embryogenic and non-embryogenic calluses were induced from 3,4,5 and 7d old coleoptile segments of indica rice (Oryza sativa L. cv. CH 1039). Compact, globular, yellow and creamy embryogenic and white friable non-embryogenic callus arose from the cut end and entire length of the coleoptile segments. Murashige and Skoog's (MS) medium supplemented with 2.5mg/1 2,4-D was used as callus induction medium. Plant regeneration from coleoptile segments occurred with the transfer of embryogenic callus to MS basal medium supplemented with 2.0mg/1 BAP and 0.5mg/1 NAA in combination. Average number of regenerated plants from one coleoptile ranged from9.1 to 14.0.Four day old coleoptiles showed the highest frequency of plant regeneration.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - BAP 6-benzylaminopurine - MS Murashige and Skoog (1962) - NAA 1-naphthalene acetic acid  相似文献   

11.
Dovzhenko A  Koop HU 《Planta》2003,217(3):374-381
The successful application of recombinant DNA technology for crop plants requires efficient regeneration systems. A detailed study on the regeneration potential of callus and callus-derived protoplasts of a recalcitrant species, sugarbeet, was performed. A reproducible and highly efficient method for induction of regenerable friable callus was established from etiolated hypocotyl explants. A reduced sucrose concentration proved beneficial. Successful shoot regeneration could be demonstrated in 10 out of 12 tested lines. Seed germination, followed by callus induction and shoot regeneration required only a single culture medium. Additionally, the regeneration capacity of roots and root-derived callus was demonstrated. Highly efficient plant regeneration was also achieved when using protoplasts isolated from regenerable friable callus induced on etiolated hypocotyls explants. To our knowledge this represents the first report on callus protoplast to plant regeneration in sugarbeet.  相似文献   

12.
Different carbon sources, sterilized by autoclaving or filter-sterilization, were tested during induction, maintenance, and plant regeneration of embryogenic Miscanthus x ogiformis Honda `Giganteus' callus, derived from various explant types. Explants from small immature inflorescences, between 2.5 and 8 mm, produced more embryogenic callus than explants from shorter or longer inflorescences, shoot apices or leaf explants. On medium containing mannitol or sorbitol, only small amounts of callus were induced and no embryogenic callus was formed. Callus induction and embryogenic callus formation on shoot apices and immature inflorescences did not differ significantly between media containing sucrose, glucose, fructose, maltose or a mixture of glucose and fructose. However, callus induction and embryogenic callus formation from leaf explants were best on glucose. A higher percentage of leaf explants formed callus on autoclaved sucrose, as opposed to the other carbon sources where filter-sterilization in general resulted in a higher callus percentage. The growth rate of embryogenic callus was influenced both by carbon source and sterilization method when less than 1 g of callus was inoculated. None of the tested carbon sources could considerably improve plant regeneration from M. `Giganteus' callus, but a higher number of plants tended to be regenerated per callus piece from filter-sterilized carbon sources. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
Summary An efficient plant regeneration protocol was successfully developed for basil (Ocimum basilicum L.). Explants from 1 mo. old seedlings yielded the highest frequency of 85% regeneration with an average of 5.1 shoots per explant. The regeneration protocol was performed on three basil varieties (Sweet Dani; methylcinnamate; Green Purple Ruffles). Callus and shoot induction was initiated on Murashige and Skoog basal medium supplemented with thidiazuron (16.8 μM) for approximately 30 d. Shoot induction and development were achieved by refreshing the induction medium after 14 d. The most morphogenetically responsive explants were from the first fully expanded true leaves of greenhouse-grown basil seedlings. All developing bud tissue demonstrated temporary anthocyanin expression; however, anthocyanin expression in Green Purple Ruffles remained stable until maturity. Developing shoots were rooted in the dark on media with thidiazuron removed. Within 20 d, rooted plantlets were transferred and acclimatized under greenhouse conditions where they developed normal morphological characteristics. This is the first report of a successful in vitro regeneration system for basil through primary callus.  相似文献   

14.
Efficient plant regeneration through somatic embryogenesis was established for safflower (Carthamus tinctorius L.) cv. NARI-6. Embryogenic calli were induced from 10 to 17-d-old cotyledon and leaf explants from in vitro seedlings. High frequency (94.3 %) embryogenic callus was obtained from cotyledon explants cultured on Murashige and Skoog’s germination (MSG) basal medium supplemented with thidiazuron, 2-isopentenyladenine and indole-3-butyric acid. Primary, secondary and cyclic somatic embryos were formed from embryogenic calli in a different media free of plant growth regulators, however, 100 % cyclic somatic embryogenesis was obtained from cotyledon derived embryogenic calli cultured on MSG. Somatic embryos matured and germinated in quarter-strength MSG medium supplemented with gibberellic acid. Cotyledons with root poles or non root poles were converted to normal plantlets and produced adventitious roots in rooting medium. Rooted plants were acclimatized and successfully transferred to the field.  相似文献   

15.
The effect of various hormonal combinations on callus formation and regeneration of shoot and root from leaf derived callus of Acanthophyllum sordidum Bunge ex Boiss. has been studied. Proteins and activity of antioxidant enzymes were also evaluated during shoot and root organogenesis from callus. Calli were induced from leaf explants excised from 30-d-old seedlings grown on Murashige and Skoog medium containing 4.52 μM 2,4-dichlorophenoxyacetic acid + 4.65 μM kinetin. Maximum growth of calli and the most efficient regeneration of shoots and roots occurred with 2.69 μM 1-naphthalene acetic acid (NAA), 2.69 μM NAA + 4.54 μM thidiazuron and 2.46 μM indole-3-butyric acid. Protein content decreased in calli and increased significantly during regeneration of shoots from callus. Superoxide dismutase activity decreased in calli comparing to that of seedlings, then increased in regenerated shoots and roots. High catalase activity was detected in seedlings and regenerated shoots, whereas high peroxidase activity was observed in calli and regenerated roots.  相似文献   

16.
A good culture system provides considerable quantities of highly regenerable target tissues. Embryogenic callus cultures are ideal for micro-projectile-mediated transformation, because regenerable cells are not very stable. Effective exploitation of genetic transformation requires good regeneration systems. We selected three sugarcane genotypes for the establishment and optimization of good in vitro regeneration systems, viz., S-2003-us-359, S-2006-sp-30, and S-2003-us-165. Three callus induction media were investigated. These media were composed of Murashige and Skoog (MS) medium salt plus 1, 2, and 3 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D). Medium with 3 mg/L 2,4-D gave the greatest mass of embryogenic calli. The calli produced on the three callus induction media were transferred to 18 types of regeneration media (RM1-RM18). They varied with respect to plant growth regulators and sucrose levels but the basal medium was MS. Two levels of sucrose (30 and 40 g/L), three levels of 2,4-D (0.1, 0.25, 0.5 mg/L) and three levels of 6-benzylaminopurine (0, 0.25 and 0.5 mg/L) were studied in the regeneration media. The effects of callus age on regeneration were evaluated by transferring the calli to regeneration media after 15, 21, 28, and 35 days of culture. The 21-day-old callus of the genotype S-2003-us-359 on RM3 yielded the largest number of plants and was selected as the best for transformation. Six RAPD DNA primers were used to check genetic stability; this medium did not affect the sugarcane genomes.  相似文献   

17.
Summary Establishment of fast-growing, highly regenerable callus cultures was examined in Muscari armeniacum Leichtl. ex Bak. in order to develop an efficient genetic transformation system. High-frequency callus formation was obtained from leaf explants of cv. Blue Pearl on media containing 2,4-dichlorophenoxyacetic acid (2,4-D), α-naphthaleneacetic acid (NAA) or 4-amino-3,5,6-trichloropicolinic acid (picloram, PIC). Fast-growing, yellowish nodular callus lines and white friable callus lines containing a few somatic embryos were established on initiation medium supplemented with 4.5 μM 2,4-D and with 54 μM NAA, respectively. The yellowish nodular calluses vigorously produced shoot buds after transfer to media containing 0.44–44 μM 6-benzyladenine (BA), whereas the white friable calluses produced numerous somatic embryos upon transfer to plant growth regulator-free (PGR-F) medium. Histological observation of shoot buds and somatic embryos indicated that the former consisted of an apparent shoot meristem and several leaf primordia, and the latter had two distinct meristematic regions, corresponding to shoot and root meristems. Both shoot buds and somatic embryos developed into complete plantlets on PGR-F medium. Regenerated plants showed no observable morphological alterations. High proliferation and regeneration ability of these calluses, were maintained for over 2 yr.  相似文献   

18.
The frequency of in vitro callus induction and plant regeneration is influenced by several factors, including composition of culture medium, explant source, and the genotype. Crosses between regenerable and non-regenerable upland cotton cultivars were evaluated for hybrid vigour towards regeneration responses, which is consequential in recalcitrant crop species like cotton where regeneration is limited only to a few cultivars. The results indicated that regenerable and non-regenerable parental cultivars had similar potential of producing callus, but differed in producing callus weight and embryogenic calli. Mean performance of crosses, regarding callus induction, callus weight, callus growth rate, percent embryo induction, and percentage of germinating embryos, deviated considerably from the performance of their parents, signifying the presence of hybrid vigour for the expression of these traits. Magnitude of hybrid vigour varied across hormonal levels. Genetic component was evident for all the traits although of lower magnitude. The results indicated that genetic component in the phenotypic expression of callus growth, percentages of embryo induction and germinating embryos was higher than that of callus induction, callus weight and percentage of embryogenic calli. Hormonal concentration in the media had affect on the degree of gene expression responsible for regeneration in upland cotton. Over, partial- and additive-dominance types of gene effects were apparent in the expression of these traits. Genotype × growth regulator level interaction caused considerable variation in the expression of regeneration responses, suggesting that determination of specific level of growth regulator concentration in the medium was necessary for a particular genotype to obtain optimum response. Genotype × explant source interaction was, however, relatively less important. Differences among genotypes for percent embryo induction were clearly evident.  相似文献   

19.
 Red clover genotypes capable of regenerating plantlets in vitro from non-meristematic tissue-derived callus are rare. Selection for genotypes capable of somatic embryogenesis identified a clone comprised of a group of plantlets regenerated from a hypocotyl-derived callus culture on L2-based media and another group of plantlets originating from crown divisions of the epicotyl-derived plant. The callus-derived plants of this clone were highly regenerative when reintroduced to callus culture, but the epicotyl-derived plants produced nonregenerative callus cultures. F1, F2 and BC1 populations were evaluated to determine the mode of inheritance of the regeneration trait. Reciprocal crosses did not differ, indicating a lack of maternal effects. Results were compatible with genetic control of regeneration by two complementary genes. We propose the genotype Rn1-Rn2- for regenerative plants. Three petiole segment explants were sufficient to evaluate regenerative ability in seedlings. Regenerative ability was often associated with abnormal leaf morphology in a few to several leaves. Received: 17 February 1998 / Accepted: 7 April 1998  相似文献   

20.
Efficient plant regeneration via somatic embryogenesis has been developed in pigeonpea. Cotyledon and leaf explants from 10-day-old seedlings produced embryogenic callus and somatic embryos when cultured on Murashige and Skoog (MS) medium supplemented with 10 μm thidiazuron (TDZ). Subsequent withdrawal of TDZ from the induction medium resulted in the maturation and growth of the embryos into plantlets on MS basal medium. The rooted plantlets were transferred and acclimatized on vermiculite where they showed normal morphological characters. Received: 23 December 1996 / Revision received: 22 July 1997 / Accepted: 2 August 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号