首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fouling green algae Enteromorpha intestinalis is a cosmopolitan benthic species, which causes green tides in many coastal areas and is used as an indicator species for eutrophication in the Baltic Sea area. The life cycle of E. intestinalis alternates between two morphologically identical reproductive stages, a haploid gametophyte phase and a diploid sporophyte phase. However, it also reproduces through asexual propagation. The reproductive cycles of E. intestinalis in the Baltic Sea and elsewhere are largely unknown. Here we report five polymorphic microsatellite markers developed from enriched genomic libraries. The number of alleles per locus ranged from 7 to 25.  相似文献   

2.
 During visits to several localities on the South Shetland Islands and the Antarctic Peninsula in summer 1994 we made collections of marine benthic algae. Among the algae we collected were three new records for Antarctica [Petalonia fascia (OF Müller) Kuntze; Enteromorpha intestinalis (L.) Nees; Rhodymenia subantarctica Ricker] and seven other species [Scytosiphon simplicissimus (Clemente) Cremades; Chordaria linearis (Hooker et Harvey) Cotton; Halopteris obovata (Hooker et Harvey) Sauvageau; Acrosiphonia arcta (Dillwyn) J. Agardh; Enteromorpha compressa (L.) Nees; Bangia atropurpurea (Roth) C. Agardh; Porphyra plocamiestris Ricker] that had been reported on only one or two previous occasions (or, in one case, three). The ten species detailed in this paper fall into two groups: four species previously known from sub-Antarctic islands and/or locations in southern South America, and six species having a wider distribution in temperate regions. We discuss the possibility that the less accessible subtidal habitats of some species may have prevented earlier discovery. Other species may be comparatively recent adventives, most likely introduced with shipping. In view of possible global climate changes, species of this latter group are regarded as suitable organisms for monitoring changes of water temperature. Received: 12 December 1995/Accepted: 14 April 1996  相似文献   

3.
4.
SDS PAGE was tested as an analytical tool for the identification of fourgreen algae (Ulva rigida, U. rotundata, Enteromorphaintestinalis, E. compressa) used as food ingredients. A referencepattern composed of the bands present all year long was performed foreach species. The pattern for Ulva rotundata consists of 7 bandslocated between 69.9 and 15.5 kDa with the presence of triplicate bandsat 29.5, 26.3 and 22.9 kDa. The pattern for Ulva rigida is consistsof three bands with apparent molecular weights of 68.5, 56.4 and 44.7kDa. The Enteromorpha compressa pattern is characterised by sixbands located between 65.8 and 19.8 kDa. A double band withmolecular weights of 23.1 and 23.9 distinguished this pattern from theothers. Six bands situated between 66.4 and 19.4 kDa with a specifictriplicate band of 25.9, 23.9 and 22.5 kDa constituted the specific patternof Enteromorpha intestinalis. SDS PAGE appears to be suitable forthe identification of green seaweed foods.  相似文献   

5.
Macroalgal bloom‐forming species occur in coastal systems worldwide. However, due to overlapping morphologies in some taxa, accurate taxonomic assessment and classification of these species can be quite challenging. We investigated the molecular and morphological characteristics of 153 specimens of bloom‐forming Ulva located in and around Narragansett Bay, RI, USA. We analyzed sequences of the nuclear internal transcribed spacer 1 region (ITS1) and the chloroplast‐encoded rbcL; based on the ITS1 data, we grouped the specimens into nine operational taxonomic units (OTUs). Eight of these OTUs have been previously reported to exist, while one is novel. Of the eight OTUs, all shared sequence identity with previously published sequences or differed by less than 1.5% sequence divergence for two molecular markers. Previously, 10 species names were reported for Ulva in Rhode Island (one blade and nine tube‐forming species) based upon morphological classification alone. Of our nine OTUs, three contained blade‐forming specimens (U. lactuca, U. compressa, U. rigida), one OTU had a blade with a tubular stipe, and six contained unbranched and/or branched tubular morphologies (one of these six, U. compressa, had both a blade and a tube morphology). While the three blade‐forming OTUs in Narragansett Bay can frequently be distinguished by careful observations of morphological characteristics, and spatial/temporal distribution, it is much more difficult to distinguish among the tube‐forming specimens based upon morphology or distribution alone. Our data support the molecular species concept for Ulva, and indicate that molecular‐based classifications of Ulva species are critical for proper species identification, and subsequent ecological assessment or mitigation of Ulva blooms.  相似文献   

6.
Appreciation of the true species diversity of the genus Ulva in Australian waters has been blinkered by the unproved assumption that its representatives there are largely cosmopolitan. As species of Ulva are some of the longest‐standing and most widely reported taxa of macroalgae, the presumption that they are worldwide in distribution has led to most Australian members being equated with species originally described from extra‐Australian type localities. Ulva species can be notoriously difficult to identify due to the few and often variable characters on which classical taxonomic studies focus so that names of specimens in hand, as well as names appearing in historical distribution records, are frequently difficult or impossible to verify. The combination of morphological and molecular analyses, the latter involving both nuclear (internal transcribed spacer [ITS]) and plastid (rbcL) markers, is critically important in taxonomic studies of the genus and has here been applied to selected Ulva populations from mostly cool‐temperate southern Australian localities. It has been determined that habit‐ and anatomy‐based keys of standard taxonomic literature are largely adequate for assigning species names based on classical concepts, but they often obscure a number of cryptic and pseudocryptic species that do not conform to extra‐Australian populations of the same designation, as indicated by the corresponding molecular data. Here, we present six species (Ulva australis Aresch., U. compressa Forssk., U. fasciata Delile, U. intestinalis L., U. laetevirens Aresch., U. tanneri H. S. Hayden et J. R. Waaland) for which anatomical and molecular data were congruent with both classical concepts and GenBank accession data and confirm these as cosmopolitan taxa in Australia. We also present six putative species designations based on anatomy [U. clathrata (Roth) C. Agardh, U. flexuosa Wulfen, U. linza L., U. prolifera O. F. Müll., U. stenophylla Setch. et N. L. Gardner, U. brisbanensis sp. nov.] that are inconsistent with molecular data, suggesting novel or cryptic taxa not represented in GenBank.  相似文献   

7.
Small individuals (<15 cm long) of the clingfish Sicyases sanguineus consume as many as 18 seaweed species in Central Chile. Enteromorpha sp. was the only species able to survive digestion by fish recently collected from the field. Enteromorpha compressa and Gelidium chilense also survived by tissue regeneration when offered as food in the laboratory, but only E. compressa showed stimulation of swarmer production. In general, our results on a vertebrate species reproduce previous findings on diverse invertebrate species. Since fish are highly motile, their capacity to disperse algal species by defecation might be of great ecological importance.  相似文献   

8.
Distromatic foliose blades of the algal genus Ulva are notoriously difficult to identify due to their simple morphologies and few diagnostic characteristics that often exhibit intraspecific variation and interspecific overlap. Hence, species differentiation is difficult and diversity estimates are often inaccurate. Two major goals of this study were to assess the diversity of distromatic Ulva spp. in the Great Bay Estuarine System (GBES) of New Hampshire and Maine, USA, and to compare historical and present day records of these species. Molecular analysis (using ITS sequences) of field-collected specimens revealed four distinct taxa: Ulva lactuca, U. rigida, U. compressa, and U. pertusa. Prior to molecular screening, Ulva lactuca was the only distromatic Ulva species reported for the GBES. Ulva pertusa and the foliose form of U. compressa are newly recorded for the Northwest Atlantic, and the range of U. rigida has been extended. Molecular analysis of historical herbarium voucher specimens indicates that U. rigida, U. pertusa, and the foliose form of U. compressa have been present in the GBES since at least 1966, 1967, and 1972, respectively. The distromatic morphotype of U. compressa is found only in low salinity areas, which suggests that salinity may influence its morphological development. Molecular and morphological evaluations are critical if we are to distinguish between cryptic taxa, accurately assess biodiversity, and effectively monitor the spread of non-indigenous macroalgae.  相似文献   

9.
Enteromorpha muscoides (Clemente y Rubio) Cremades and E. clathrata Roth (Greville) are morphologically variable species that can easily be distinguished from other Enteromorpha species but not from each other. The key morphological character separating the two species is the presence or absence of spine-like branches: E. muscoides has small spine-like branches throughout the thallus, whereas E. clathrata lacks spines. The spiny branches in E. muscoides are not as obvious in summer as in winter, so summer samples may be difficult to distinguish from those of E. clathrata. In this study, molecular data were used to investigate whether these two species, as defined by morphological characters, might be conspecific. The sequences of the internal transcribed spacers ITS1 and ITS2 and the 5.8S gene differed by 0%–0.6% between all samples of both E. muscoides and E. clathrata. Phylogenetic analysis of these sequences in an alignment with 13 other representatives of both Enteromorpha and Ulva showed that this highly supported monophyletic E. muscoides / E. clathrata clade is separated by long branch lengths from other Enteromorpha and Ulva clades. Based on these results, we suggest that Enteromorpha muscoides (Clemente y Rubio) Cremades and Enteromorpha clathrata Roth (Greville) are conspecific, with the older name E. muscoides taking priority.  相似文献   

10.
The tropical Indo-Pacific genus Excoecaria L. (Euphorbiaceae) has several closely related species in Australia whose taxonomic relationships are unclear. The most widely reported species in Australia is the mangrove species Excoecaria agallocha L. (type species), whose taxonomic and geographic limits are difficult to define from its closely related species or sub-species. Two additional taxa have also been described but not clearly differentiated from the type species: Excoecaria dallachyana Baillon and Excoecaria ovalis Endl. This project aimed to determine the taxonomic relationships of the Australian Excoecaria species using both leaf morphological data and DNA sequence data from the internal transcribed spacer (ITS) region of ribosomal genes. The nucleotide differences in the examined ITS1 region show that E. agallocha from eastern Australia and E. ovalis from Western Australia respectively, are genetically uniform within species but differ from each other consistently, thus supporting species status. The leaf morphological data also support this view: single factor analysis of variance consistently separated E. ovalis from E. agallocha on the basis of leaf width, leaf length and length of petiole. In contrast, E. ovalis from the Gulf of Carpentaria differs only slightly from E. ovalis in Western Australia, but no evidence was found to suggest any leaf morphological differentiation within this species. The analysis also suggests that E. dallachyana is not closely related to either mangrove species E. agallocha or E. ovalis, despite superficial morphological similarities.  相似文献   

11.
The green seaweeds Enteromorpha intestinalis and E. compressa are important fouling organisms commonly found in polluted and nutrient-enriched marine and brackish water habitats, where they are used in environmental monitoring. Discrimination of the two species is extremely difficult because of overlapping morphological characters. In this study a quick molecular method for species identification was developed based on the nuclear rDNA ITS2 sequence data of 54 E. intestinalis samples and 20 E. compressa samples from a wide geographical range. Oligonucleotide probes were designed for species-specific hybridization to dot-blots of the PCR-amplified ITS1, 5.8S gene and ITS2 fragment of both E. intestinalis and E. compressa. Specificity of the oligonucleotide probes was confirmed by tests with taxonomically diverse species that could morphologically be confused with E. intestinalis or E. compressa. This is the first use of species-specific probes for macroalgae. The restriction endonuclease NruI digested specifically the amplified PCR product from E. compressa into two fragments detectable on agarose gels, but no suitable restriction sites were identifiable in the PCR product of E. intestinalis.  相似文献   

12.
Genetic Diversity of Ostreopsis ovata (Dinophyceae) from Malaysia   总被引:1,自引:0,他引:1  
The genus Ostreopsis is an important component of benthic and epiphytic dinoflagellate assemblages in coral reefs and seaweed beds of Malaysia. Members of the species may produce toxins that contribute to ciguatera fish poisoning. In this study, two species have been isolated and cultured, Ostreopsis ovata and Ostreopsis lenticularis. Analyses of the 5.8S subunit and internal transcribed spacer regions ITS1 and ITS2 of the ribosomal RNA gene sequences of these two species showed that they are separate species, consistent with morphological designations. The nucleotide sequences of the 5.8S subunit and ITS1 and ITS2 regions of the rRNA gene were also used to evaluate the interpopulation and intrapopulation genetic diversity of O. ovata found in Malaysian waters. Results showed a low level of sequence divergence within populations. At the interpopulation level, the rRNA gene sequence distinguished two groups of genetically distinct strains, representative of a Malacca Straits group (isolates from Port Dickson) and a South China Sea group (isolates from Pulau Redang and Kota Kinabalu). Part of the sequences in the ITS regions may be useful in the design of oligonucleotide probes specific for each group. Results from this study show that the ITS regions can be used as genetic markers for taxonomic, biogeographic, and fine-scale population studies of this species. Received September 15, 2000; accepted December 15, 2000  相似文献   

13.
Enteromorpha compressa is the dominant species in coastal areas of northern Chile receiving copper mine wastes. Copper remains as the main heavy metal in these coastal waters and it is accumulated in E. compressa growing at the impacted sites. Algae from these sites showed higher levels of lipoperoxides than from non‐impacted sites, which suggests the occurrence of cellular damage resulting from oxidative stress. The strong activation of ascorbate peroxidase detected in this study probably occurs in order to buffer this oxidative stress. Unexpectedly, the activity of glutathione reductase, normally coupled to ascorbate peroxidase activity, was not affected by the chronic exposure to the mine wastes. Moreover, catalase, dehydroascorbate reductase and glutathione peroxidase, commonly reported to buffer oxidative stress in plants and algae, were not detected in E. compressa from any of the studied sites. Levels of total glutathione and phenolic compounds decreased in algae from mine‐impacted sites. In contrast, high levels of dehydroascorbate were found in algae from impacted sites, whereas ascorbate remained unchanged. Therefore, it is suggested that E. compressa tolerates a copper‐enriched environment, and the accompanying oxidative stress, through the accumulation of copper, activation of ascorbate peroxidase, synthesis of ascorbate (accumulated as dehydroascorbate) and consumption of glutathione and water‐soluble phenolic compounds.  相似文献   

14.
《Acta Oecologica》1999,20(4):259-265
The excessive growth of opportunistic macroalgae in estuaries and other coastal areas, characterised by enormous values of vegetal biomass in the form of dense mats, is a common and widespread picture nowadays. In such conditions, macroalgae completely dominate the nutrient dynamics in the ecosystem and function as high quality food for the microbial, meio- and macrofaunal communities. Due to their important role in the nutrient pathways of the ecosystems, it becomes essential to obtain new information on variables and processes that regulate the bloom formation of these primary producers. The Mondego estuary (west Portugal) is a eutrophic estuary, where usually macroalgae of the genera Enteromorpha seasonally bloom. Nevertheless, in years with high precipitation characterised by a significant increase of the freshwater runoff to the system, no Enteromorpha blooms are observed. Possible explanations for this are related to the reduction of light in the water column, high water speed, high sediment turbulence and low salinity values. Thus, because the decrease in salinity seemed an important feature during such periods, a set of experiments were conducted, to evaluate to what extent the growth of Enteromorpha intestinalis (the most abundant species in the Mondego estuary) is affected by fluctuations in salinity and, particularly, by low salinity values. In the laboratory, the growth rate of E. intestinalis was tested against a range of salinity, from 0 to 32 psu. E. intestinalis showed the lowest growth rates at extreme low salinity values (≤ 3 psu) and for salinity ≤ 1 psu, the algae died. Growth rates at salinity lower than 5 psu and higher than 25 psu were also low, when compared with growth between salinity of 15 and 20 psu, where E. intestinalis showed the highest growth rates. These results agree with the field observations and suggest that, in the Mondego estuary, salinity is an important external parameter to control the growth of E. intestinalis, which has important ecological implications for the system.  相似文献   

15.
16.
Molecular analysis of green-tide-forming macroalgae in the Yellow Sea   总被引:2,自引:0,他引:2  
In the summer of 2008, free-floating green algae bloomed in the Yellow Sea. Samples were collected in a wide area (119°32′-122°00′E, 32°25′-36°49′N). We calculated the sequence divergences of nuclear ITS, chloroplast rbcL, and psbA data of free-floating samples collected from the Yellow Sea and Ulvaceae from Europe and Japan. In the ITS sequence, 19 out of the 21 Yellow Sea samples of 2008 were identical to those of a sample taken at Qingdao in 2007. A low divergence (0.2%) was found in remaining two samples. Similar evidence was shown by pairwise distances of rbcL and psbA gene sequence data, implying the uniformity of the Yellow Sea blooms in 2007 and 2008. The ITS sequence of the Yellow Sea samples differed 8.1-10.8% from free-floating Enteromorpha or Ulva reported worldwide. ITS-based molecular phylogenetic results and rbcL sequence data grouped the free-floating alga in the Yellow Sea into one clade with Enteromorpha procera, Enteromorpha linza and Enteromorpha prolifera. Furthermore, both morphological characteristics and ribotype network of the ITS sequences imply that the blooming algae in 2007 and 2008 were E. prolifera. The haplotypes of the Yellow Sea free-floating E. prolifera are closely related to those from the Japanese coast but less to European and American algae.  相似文献   

17.
A taxonomic study of two brown algal species, Elachista nigra Takamatsu and Elachista orbicularis (Ohta) Skinner (Elachistaceae), was performed on the basis of morphological observations of field‐collected and laboratory cultured specimens from Japan (including their type localities) and molecular phylogenetic analyses. The two species had been distinguished by developmental patterns of paraphysis‐ and plurizoidangium‐bearing erect filaments, such filaments of E. nigra developing from wide erect filaments and those of E. orbicularis developing directly from basal prostrate filaments. However, many specimens investigated in the present study showed forms intermediate between these two patterns. Molecular phylogenetic analyses (including five additional elachistacean species) based on the internal transcribed spacer (ITS)2 region of the nuclear ribosomal RNA (nrRNA) gene showed a close relationship between all samples of E. nigra and E. orbicularis, and that the developmental patterns of paraphysis‐ and plurizoidangium‐bearing erect filaments were homoplasious. On the basis of these morphological and molecular data, E. orbicularis was reduced to synonymy with E. nigra. The ITS2 sequences of E. nigra were significantly different between samples from the Sea of Japan and those from the Pacific Ocean with several insertion/deletion and substitution mutations.  相似文献   

18.
A method for obtaining uniform settlement of zoospores of Enteromorpha intestinalis is described. Using this method the optimum temperature for settlement on glass lies between 20 and 25° C, and the optimum salinity between 25 and 30‰. Light exerts a considerable influence on the initial rate of settlement but is not essential.  相似文献   

19.
Microsporidia are opportunistic pathogens that infect a wide range of invertebrates and vertebrates. To assess the potential role of dogs in the transmission of these zoonotic pathogens, a total of 282 fecal samples from dogs in the Central Anatolia Region of Turkey were analyzed by utilizing species specific polymerase chain reaction for the four most frequent human microsporidia. Two microsporidia species were recognized in 41 samples (14.5%). Encephalitozoon intestinalis was detected in 35 samples (12.4%) and it was the most common microsporidium. The second microsporidium, E. cuniculi, was identified in six (2.1%) of the samples. Sequence analysis of the intergenic spacer of the ribosomal ribonucleic acid (RNA) internal transcribed spacer (ITS) gene revealed the presence of three E. intestinalis haplotypes closely associated with each other. No polymorphic region was found among the ITS sequences of E. cuniculi isolates and they were characterized as genotype III. This study provides the first data on the zoonotic microsporidia species from dogs in Turkey.  相似文献   

20.
Large blooms of opportunistic green macroalgae such as Enteromorpha intestinalis are of ecological concern in estuaries worldwide. Macroalgae derive their nutrients from the water column but estuarine sediments may also be an important nutrient source. We hypothesized that the importance of these nutrient sources to E. intestinalis varies along a nutrient-resource gradient within an estuary. We tested this in experimental units constructed with water and sediments collected from 3 sites in Upper Newport Bay estuary, California, US, that varied greatly in water column nutrient concentrations. For each site there were three treatments: sediments + water; sediments + water + Enteromorpha intestinalis (algae); inert sand + water + algae. Water in units was exchanged weekly simulating low turnover characteristic of poorly flushed estuaries. The importance of the water column versus sediments as a source of nutrients to E. intestinalis varied with the magnitude of the different sources. When initial water column levels of dissolved inorganic nitrogen (DIN) and soluble reactive phosphorus (SRP) were low, estuarine sediments increased E. intestinalis growth and tissue nutrient content. In experimental units from sites where initial water column DIN was high, there was no effect of estuarine sediments on E. intestinalis growth or tissue N content. Salinity, however, was low in these units and may have inhibited growth. E. intestinalis growth and tissue P content were highest in units from the site with highest initial sediment nutrient content. Water column DIN was depleted each week of the experiment. Thus, the water column was a primary source of nutrients to the algae when water column nutrient supply was high, and the sediments supplemented nutrient supply to the algae when water column nutrient sources were low. Depletion of water column DIN in sediment + water units indicated that the sediments may have acted as a nutrient sink in the absence of macroalgae. Our data provide direct experimental evidence that macroalgae utilize and ecologically benefit from nutrients stored in estuarine sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号