首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
谷子胚性愈伤组织粘液提取物对原生质体培养的影响   总被引:2,自引:0,他引:2  
将谷子胚性愈伤组织粘液提取物以谷子原生质体培养基中,其对原生质体培养的影响表明该提取物有助于原生质体形成的细胞壁;并且该类有粘液的愈伤的原生质体游离所需的酶液的愈伤组织的原生质体游离所需的酶液浓度低,处理时间短。由原生质休形成这完整细胞的数量在一定范围内与谷子原生质体培养的植板率相对应。通过增加形成完整细胞的数量较大幅度地提高原生持体培养的植板率。  相似文献   

2.
研究了谷子原生质体看护培养中的一些问题。结果表明:不同种植物愈伤组织做看护细胞对谷子原生质体培养植板率有不同的影响。用光头种草愈伤组织对谷子胚性、非胚性或中间型意伤组织的原生质体进行看护培养,以对胚性意伤组织原生质体的效果最好。看护培养主要是作用于原生质体形成完整细胞后的生长发育。试验没有观察到明显的看护细胞数量效应。  相似文献   

3.
研究了谷子原生质体看护培养中一些问题。结果表明:不同种植物愈伤组织做看护细胞对谷子原生质体培养植板率有不同的影响。用光头稗草愈伤组织对谷子胚性、非胚性或中间型愈伤组织的原生质体进行看护培养,以对胚性愈伤组织原生质体的效果最好。看护培养主要是作用于原生质体形成完整细胞后的生长发育,试验没有观察到明显的看护细胞数量效应。  相似文献   

4.
芹菜原生质体培养条件与再生植株的研究   总被引:2,自引:0,他引:2  
芹菜愈伤组织原生质体,在Du和MS培养基上均能正常生长和分化;通过以形成胚状体为主要的途径,最后获得再生完整植株。在NT,MS,Du三种培养基中,Du的效果优于MS,NT培养基最差,不能形成细胞团。在双层培养中,愈伤组织生长较快,植板率较高。  相似文献   

5.
甘蓝下胚轴原生质体再生植株   总被引:1,自引:0,他引:1  
经纯化后,甘蓝下胚轴原生质体的产量为1.5×106g-1(Fw),采用液体浅层培养的方法进行培养。2~3d后,发生第一次分裂,第10天,统计分裂频率为6l%,5周内形成大量的细胞团和小愈伤组织,统计植板率为1.1%,把小愈伤组织转到与原生质体培养基相同激素的MS固体培养基上增殖。当愈伤组织长到3~5mm大小时,接到分化培养基上,芽分化率为46.7%.分化出来的芽长到3~4cm长时,从基部切下,插入生根培养基,两星期左右即可长成完整植株。  相似文献   

6.
佘建明  吴敬音 《遗传学报》1993,20(6):536-540
取陆地棉品种(系)3118、9554和晋棉4号种子无菌苗的下胚轴诱导的愈伤组织,从中挑选具有分化能力的黄色颗粒状愈伤组织,建立胚性细胞悬浮培养系。以纤维素酶和离析软化酶组成的酶液,由细胞悬浮培养物游离原生质体。采用含低融点脂糖的K3基本培基包埋原生质体的培养方式,获得愈伤组织。以液体-固体-液体轮回培养法改良晋棉4号的细胞悬浮系,原生质体的植板率从2%左右提高到9%以上。在原生质体再生愈伤组织的继  相似文献   

7.
水稻原生质体培养及植株再生的研究   总被引:18,自引:0,他引:18  
由粳稻77-170品系及籼稻品种IR-50的细胞悬浮培养物游离的原生质体,用琼脂糖包埋于RY-2培养基中,发生了持续分裂。前者植板率达2.5%以上,二者最后都再生出植株。对游离和培养方法做了如下改进:1)采用两步法,即先用果胶酶,再用果胶酶和纤维素酶的混合酶进行游离,可避免原生质体发生融合并获得高质量的原生质体;2)悬浮细胞培养基中加入ABA有利于原生质体的存活和分裂;3)琼脂糖包埋培养可大大提高植板率;4)用较高渗透压的培养基培养原生质体再生的细胞团及愈伤组织,可提高植株再生频率。由于这两个品种(系)的培养物都已继代一年半之久,再生植株均为白化苗。这是迄今第一个由籼稻原生质体再生植株的报道。  相似文献   

8.
大叶紫花苜蓿愈伤组织原生质体再生植株   总被引:15,自引:0,他引:15  
大叶紫花苜蓿下胚轴诱导的愈伤组织在继代培养基上生长快速,易于分散。继代第12d的愈伤组织原生质体的得率为6.5×107/g鲜重。原生质体培养基为SH基本培养基,含有1.0mg/L2,4-0、0.5mg/LBA、2.0g/LCH、2%蔗糖、6%葡萄糖、5mmol/LMES,培养密度为1.0×105/mL。培养至第12d时的原生质体再生细胞植板率为3.7%。由原生质体形成的小愈伤组织在含2.0mg/L2,4-D的MS固体培养基上大量增殖。增殖的愈伤组织转移至2.0mg/L2-ip+0.1mg/LNAA的B5培养基上,形成体细胞胚并发育成完整植株。  相似文献   

9.
用霞草胚性悬浮细胞分离原生质体,以含0.2%琼脂糖的KM 8p培养基薄层漂浮培养,原生质体培养密度6×10~3-1×10~4/ml。培养3天再生细胞开始分裂,7天统计分裂频率最高达25.4%,10天形成小细胞团,并加降低渗透压的稀释培养基,每周一次。20—25天形成肉眼可见的小愈伤组织,植板率达3.5%。原生质体衍生的愈伤组织在增殖培养时加入0.3%-0.4%活性炭有利于生长及分化。在含6-BA 3.5 mg/L,IBA 0.8 mg/L的培养基上,再生芽的分化频率可达85%。再生芽在添加NAA 0.5 mg/L,6-BA 0.05 mg/L的1/2 MS生根培养基中2周内形成具根的再生小植株。  相似文献   

10.
本文采用萌发六天的甘蓝(Brassica oleracea)下胚轴材料游离原生质体,经纯化后的原生质体产量为1.45×10~6g~(-1)FW,于含有1.5mg/L BA,0.5mg/L NAA和0.5mg/L 2,4-D的KM 8p的培养基中进行液体浅层培养。原生质体培养3—4天后出现一次分裂,七天时统计分裂频率为50.3%,培养15天左右可形成细胞团,3—4周后即可形成肉眼可见的小愈伤组织,统计形成愈伤组织的植板率为1.25%。将愈伤组织转至含有1.5mg/L BA和0.2mg/L 2,4-D的MS固体扩增培养基上进行扩增,其后可在含有2mg/L BA和0.5mg/L ZT的MS分化培养基上分化出芽,其分化率为54.17%,分化芽可于生根培养基中生根形成完整植株,移栽后,在人工气候室中生长良好。在试验过程中,对取材的不同时间,酶解液的不同配比对原生质体产量的影响,以及不同培养基、不同培养密度、不同的激素配比和不同培养方法等方面对原生质体的再生和持续分裂的影响进行了讨论。  相似文献   

11.
Plant regeneration from protoplasts isolated from haploid cell suspensions of commercial supersweet maize (SS 7700) was achieved and the plants were survival after transfer into soil in pots. Protoplast plating efficiency obtained from feeder layer system was 130 folds higher as compared with conventional liquid culture method, the composition of protoplast culture medium, the pore size of supportive membrane filter and the relationship between protoplasts and feeder cells were critical for callus formation. An enriched medium containing vitamins, organic acids, amino-acids and other organic substances such as coconut water could extremely improve callus formation. Filters with pore size within the range of 0.22–8.0 μm in diameter was useful. Filters with smaller pore size of 0.04 μm or larger 11 μm appeared to decrease the frequency of protocolony formation. The feeder cells which belong to the same species (Zea mays) as protoplasts greatly increased protoplast plating efficiencies as compared to those of feeder cells belonging to other species such as Avena nuda and Nicotiana tabacum. Among 11 protoplast-regenerated plants examined, 10 plants were haploid and one plant was diploid.  相似文献   

12.
本工作研究了豆科植物紫云英的叶片及叶肉原生质体的培养。叶片培养实验表明,诱导愈伤组织的最适培养基为MS加1.0-2.0毫克/升2,4-D和0.25毫克/升KT;诱导根分化需加1.0—5.0毫克/升NAA和0.5毫克/升BA;而苗分化则以0—0.5毫克/升IAA和0.5毫克/升BA为好。高浓度的NAA有利于根分化而抑制茎芽形成;高浓度的IAA对根和芽分化都有抑制作用。叶肉原生质体分离和培养试验表明,紫云英叶肉原生质体的释放及其培养活力受叶龄、植株生理状态和酶浓度的影响。叶肉原生质体在改良的KM8P培养基中能分裂。用改良KM8细胞培养基定期稀释,可使分裂持续进行而得到细胞团。BA和2,4-D为诱导紫云英叶肉原生质体分裂所必需。其最佳组合激素为BA 0.21毫克/升和2,4-D 1.13毫克/升。葡萄糖作为渗透压稳定剂时,其浓度明显影响原生质体的存活率。弱光条件下培养比黑暗培养有利于叶肉原生质体分裂。由叶肉原生质体形成的愈伤组织能形成瘤状结构和根。  相似文献   

13.
研究发现,分离原生质体的酶解脱壁处理可以诱导苜蓿细胞产生活性氧。培养基中添加抗氧化剂,有助于提高培养原生质体的分裂频率,缓解褐化现象的出现。经紫外照射处理的培养基不利于苜蓿原生质体的生长和分裂,添加抗氧化剂后,紫外辐射所引起的不良效应则被抵消。因而,通过抗氧化剂对活性氧的清除,有助于早期原生质体的培养。  相似文献   

14.
Protoplasts were isolated and cultured from hypocotyl embryogenic callus tissue of Gossypium hirsutum L. cv. "Lumian 6". The highest yields of viable protoplasts were obtained from a vigorous embryogenic callus 7 to 9 d old subcultured on MS medium supplemented with 2 mg/L IAA and 1 mg/L KT using a solution of 1% cellulase Onozuka R-10, 1% pectinase, 0.7 mmol/L KH2PO4, 2.5 mmol/L Ca2+ , and 0.5 mol/L osmoticum (mannitol), at pH 5.8 and at a temperature of 30 ℃. After separation and purification (in 21% sucrose floatation medium), the protoplasts were laid up in a quiet liquid protoplast culture medium containing K3 salts, NT vitamins with 0.1 mg/L 2,4-D, 0.2 mg/L KT and 0.45 mol/L glucose for 10 to 15 min. The protoplasts were fractioned into an upper and a lower layer in the centrifugal tube. Most of the protoplasts in the lower layer were smaller, round and rich in cytoplasts in which contain many granular substances. When this kind of protoplasts were cultured in the thin liquid protoplast culture medium with a density of 1 x l0s to 5 x los protoplasts/mL, the division and the callus formation of the regenerated cells were easily observed. The first divisions occurred in 3 days and small cell clusters could be seen after 2 to 3 weeks in the culture. At this moment, the addition of the protoplast culture medium with decreased osmoticum once or twice is needed for the continuous protoplasts division to form calli. Regenerated calli, 3 to 5 mm in diameter, were transferred in succession on MS medium with 2 mg/L IAA and 1 mg/L KT for the initiation of embryogenesis. The embryoids germinated on the hormonefree MS medium and a number of plantlets were obtained. It seems that using vigorous embryogenic callus and decreasing osmoticum are the two critical factors for plant regeneration of cotton protoplasts.  相似文献   

15.
Calli initiated from mature embryos of Leymus racemosus (Lam. Tzvel. =L. giganteus were transferred onto the AA and DM media to produce friable embryogenic callus,from which embryogenic suspension cultures were established. Protoplasts were isolated from the embryogenic suspension cultures and were cultured either in thin-layer liquid medium or in double-layer (agar/liquid) medium. When visible calli were formed they were transferred onto the NBI agar medium or into the MBL liquid medium for further proliferation. These calli were transferred onto differentiation media of NBII and NR, where green spots were developed. Plants with both shoots and roots can be recovered from these green spots on MS Ⅱ medium containing 0.5 mg/L NAA. The results showed that the Km8p basal medium was favourable to the culture of L. racemosus protoplasts during the early stages of culture. In addition, the composition of the media added to the cultures had a marked influence on the growth of protoplasts, indicating that the nutritional requirements in this plant were different at various stages of protoplast growth and differentiation.  相似文献   

16.
Viable protoplasts of Taxus yunnanensis were isolated from friable, light yellow callus. Protoplast yield was dependent on callus age, with a maximum from 20-day-old callus. Protoplasts were induced to undergo sustained divisions and to form cell colonies when cultured in medium consisting of B5 salts, KM vitamin and organic components, 0.45 M fructose, 3.0 mg l-1 2,4-dichlorophenoxyacetic acid and 0.1 mg l-1 kinetin. The planting density was 2.5–3.0×105 protoplasts per ml of culture medium. Cell-free extract from callus enhanced protoplast division and the highest plating efficiency was about 7%. Protoplast-derived colonies showed significant variations in both growth and paclitaxel content. A negative correlation existed between paclitaxel accumulation in colonies and their growth to some extent (r = −0.4485). Among 70 colonies isolated from the heterogeneous protoplast cultures, colony TY-7 accumulated the highest paclitaxel content. Paclitaxel accumulation in colony TY-7 was not great enough to produce paclitaxel for commercial purposes, however, success in inducing colony formation from T. yunnanensis protoplasts provides an opportunity to obtain cell lines with high paclitaxel productivity from mutagenized protoplast cultures. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
Effects of virus inhibitors on the infection of tobacco protoplasts with tobacco mosaic virus Yeast extract inhibits the infection of Nicotiana glutinosa plants with tobacco mosaic virus (TMV), whereas in N. sandérae yeast extract is not effective. This phenomena was compared with the effect of yeast extract on protoplasts, and on the infection of protoplasts of both tobacco species with TMV. Additionally, skim milk and ribonuclease were included in the experiments as further inhibitors of early stages of virus infection. It was examined whether these inhibitors damage non-inoculated protoplasts (a), and whether they affect virus infections in protoplasts as they do in cells of intact plants (b). To investigate protoplast damage by the inhibitors, conductivity measurements of protoplast suspensions containing inhibitors, and the ability of protoplasts for cell wall regeneration after treatment with the inhibitors, were used. Inhibitor concentrations which prevent virus infections in plants did not damage the protoplasts. The inhibitor effect on the course of infection was investigated by protoplast treatments before, during and after inoculation with TMV, and by addition of the substances to the culture medium. Measurements of virus content in protoplasts after cultivation revealed different results for the three inhibitors, however, there was no difference in the response of protoplasts from the two tobacco species to yeast extract. It is concluded that there are principal differences between the inhibition of plant and protoplast infections. Therefore, it is unlikely that protoplasts are a useful system for the mode of action studies on inhibitors of early stages of virus infection in plants.  相似文献   

18.
Optimum conditions for the isolation and culture of protoplasts from high anthocyanin-producing callus of sweet potato (Ipomoea batatas) were investigated. Growth phase of callus and the ratio of callus-enzyme solution affected the yield of protoplasts. Composition of the medium and protoplast density were examined for protoplast culture.Small colonies were regenerated from the protoplasts. Upon transfer to light a high amount of anthocyanin was accumulated in these colonies.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - MES 2-(N-morpholino)-ethanesulfonic acid  相似文献   

19.
Summary Methods of plant regeneration from callus and protoplasts of Helianthus giganteus L. are described. Embryogenic callus was obtained from leaf explants and plants were regenerated from these calli on MS media with different combinations of benzyladenine and naphtaleneacetic acid. Leaf protoplasts isolated from in vitro grown plants formed somatic embryos when cultured in agarose solidified droplets of V-KM medium containing benzyladenine and naphtaleneacetic acid. Embryos developed into plantlets on media with reduced auxin contents. Regenerated plants were successfully planted in soil.Abbreviations BA benzyladenine - IAA indoleacetic acid - MS Murashige and Skoog medium - NAA naphtaleneacetic acid - V-KM protoplast culture medium of Binding and Nehls  相似文献   

20.
We report regeneration of fertile, green plants from wheat (Triticum aestivum L. cv. Aura) protoplasts isolated from an embryogenic suspension initiated from somatic early-embryogenic callus. The present approach combines the optimization of protoplast culture conditions with screening for responsive genotypes. In addition to the dominant effect of the culture media, the increase in fresh mass and the embryogenic potential of somatic callus cultures varied considerably between the various genotypes tested. Establishment of suspension cultures with the required characters for protoplast isolation was improved by reduction of the ratio between cells and medium and by less frequent (monthly) transfer into fresh medium. A new washing solution was introduced to avoid the aggregation of protoplasts. However, the influence of the culture medium on cell division was variable in the different genotypes. We could identify cultures from cultivar Aura that showed approximately a 9% cell division frequency and morphogenic response. The protoplast-derived microcolonies formed both early and late-embryogenic callus on regeneration medium and green fertile plants were obtained through somatic embryogenesis. The reproducibility of plant regeneration from protoplast culture based on the cultivar Aura was demonstrated by several independent experiments. The maintenance of regeneration potential in Aura suspension cultures required establishment of new cultures within a 9-month period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号