首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 865 毫秒
1.
The N-linked sugar chains, GlcNAcbeta1-2Manalpha1-6(GlcNAcbeta1-4)(Manalpha1++ +-3)Manbeta1-4GlcNAcb eta1-4(Fucalpha1-6)GlcNAc (BA-1) and GlcNAcbeta1-2Manalpha1-6(GlcNAcbeta1-4)(GlcNAcbeta1 -2Manalpha1-3)Manb eta1-4GlcNAcbeta1-4(Fucalpha1-6)GlcNAc (BA-2), were recently found to be linked to membrane proteins of mouse brain in a development-dependent manner [S. Nakakita, S. Natsuka, K. Ikenaka, and S. Hase, J. Biochem. 123, 1164-1168 (1998)]. The GlcNAc residue linked to the Manalpha1-3 branch of BA-2 is lacking in BA-1 and the removal of this GlcNAc residue is not part of the usual biosynthetic pathway for N-linked sugar chains, suggesting the existence of an N-acetyl-beta-D-hexosaminidase. Using pyridylaminated BA-2 (BA-2-PA) as a substrate the activity of this enzyme was found in all four subcellular fractions obtained. The activity was much greater in the cerebrum than in the cerebellum. To further identify the N-acetyl-beta-D-hexosaminidase, BA-1 and BA-2 in brain tissues of Hex gene-disrupted mutant mice were detected and quantified. PA-sugar chains were liberated from the cerebrum and cerebellum of the mutant mice by hydrazinolysis-N-acetylation followed by pyridylamination. PA-sugar chains were separated by anion-exchange HPLC, size-fractionation, and reversed-phase HPLC. Each peak was quantified by measuring the peaks at the elution positions of authentic BA-1-PA and BA-2-PA. BA-2-PA was detected in all the PA-sugar chain fractions prepared from Hexa, Hexb, and both Hexa and Hexb (double knockout) gene-disrupted mice, but BA-1 was not found in the fractions from Hexb gene-disrupted and double knockout mice. These results indicate that N-acetyl-beta-D-hexosaminidase B encoded by the Hexb gene hydrolyzed BA-2 to BA-1.  相似文献   

2.
The structure of a sugar chain of the proteinase inhibitor from the latex of Carica papaya was studied. Sugar chains liberated on hydrazinolysis were N-acetylated, and their reducing-end residues were tagged with 2-aminopyridine. One major sugar chain was detected on size-fractionation and reversed-phase HPLC analyses. The structure of the PA-sugar chain was determined by two-dimensional sugar mapping combined with sequential exoglycosidase digestion and partial acid hydrolysis, and by 750 MHz 1H-NMR spectroscopy. The structure found was Manalpha1-6(Manalpha1-3)Manalpha1-6(Manalpha1-3) (Xylbeta1-2)Manbeta1- 4GlcNAcbeta1-4(Fucalpha1-3)GlcNAc. This sugar chain represents a new plant-type sugar chain with five mannose residues.  相似文献   

3.
A processing The processing pathway of N-glycans in Carica papaya was deduced from the structures of N-glycans. The N-glycans were liberated by hydrazinolysis followed by N-acetylation. Their reducing-end sugar residues were tagged with 2-aminopyridine and the pyridylamino (PA-) sugar chains thus obtained were purified by HPLC. Eleven PA-sugar chains were found, and their structures were analyzed by two-dimensional sugar mapping combined with partial acid hydrolysis and exoglycosidase digestion. The structures of the N-glycans were of the highmannose types with xylose and fucose; however, among them two new N-glycans, Manalpha1-6(Manalpha1-3)Manalpha1-6(Xylbeta1-2)+ ++Manbeta1-4GlcNAcbeta1- 4(Fucalpha1-3)GlcNAc and Manalpha1-3Manalpha1-6(Xylbeta1-2)Manbeta1-4G lcNAcbeta1-4(Fucalpha1-3 )GlcNAc, were found. Judging from these structures together with Manalpha1-6(Manalpha1-3)Manalpha1-6(Manalpha1-3) (Xylbeta1-2)Manbeta1- 4GlcNAcbeta1-4(Fucalpha1-3)GlcNAc reported previously [Shimazaki, A., Makino, Y., Omichi, K., Odani, S., and Hase, S. (1999) J. Biochem. 125, 560- 565], a processing pathway for N-glycans in C. papaya is inferred in which the activity of Golgi alpha-mannosidase II is incomplete.  相似文献   

4.
Substrates susceptible to endo-beta-N-acetylglucosaminidase H were reduced in size through alpha-mannosidase treatment and periodate oxidation to yield the following compounds: (Man)4(GlcNAc)2Asn, [Manalpha 1 leads to 6Manalpha 1 leads to 6(Manalpha 1 leads to 3)Manbeta 1 leads to 4GlcNAcbeta 1 leads to 4GlcNACAsn]; (Man)3(GlcNAc)2Asn, [Manalpha 1 leads to 3Man-alpha 1 leads to 6Manbeta 1 leads to 4GlcNAcbeta 1 leads to 4GlcNAcAsn]; (Man)2(GlcNAc)2Asn, [Manalpha 1 leads to 6Manbeta1 leads to 4GlcNAcbeta 1 leads to 4BlcNAcAsm]. Comparison of the relative rates of hydrolysis of these compounds with (Man)5(GlcNAc)2-Asn, the most active substrate to date for the endoglycosidase, revealed (Man)4(GlcNAc)2Asn to be hydrolyzed faster than (Man)5(GlcNAc)2Asn and (Man)3-(GlcNAc)2Asn to be equal to or slightly better than (Man)5(GlcNAc)2Asn as a substrate. (Man)2(GlcNAc)2-Asn was completely hydrolyzed but at a rate that was about 10(4) slower than (Man)5(GlcNAc)2Asn, which is comparable to that for (Man)3(GlcNAc)2Asn(aa)x [Manalpha 1 leads to 6(Manalpha 1 leads to 3)Manbeta 1 leads to 4GlcNAcbeta 1 leads to 4GlcNAcAsn(aa)x], obtained from immunoglobulin M. (Man)1(GlcNAc)2Asn, [Manbeta 1 leads to 4GlcNAcbeta 1 leads to 4GlcNAcAsn] was hydrolyzed at a 100-fold slower rate than the latter glycopeptide. The effective range of endo-beta-N-acetylglucosaminidase H has thus been extended to compounds containing as few as 2 mannosyl residues.  相似文献   

5.
We previously reported two brain-specific agalactobiantennary N-linked sugar chains with bisecting GlcNAc and alpha1-6Fuc residues, (GlcNAcbeta1-2)(0)(or)(1)Manalpha1-3(GlcNAcbeta1-2M analpha1-6)(GlcNA cbeta1-4)Manbeta1-4GlcNAcbeta1-4(Fucalpha1-6)Glc NAc [Shimizu, H., Ochiai, K., Ikenaka, K., Mikoshiba, K., and Hase, S. (1993) J. Biochem. 114, 334-338]. Here, the reason for the absence of Gal on the sugar chains was analyzed through the detection of other complex type sugar chains. Analysis of N-linked sugar chains revealed the absence of Sia-Gal and Gal on the GlcNAc residues of brain-specific agalactobiantennary N-linked sugar chains. We therefore investigated the substrate specificity of galactosyltransferase activities in brain using pyridylamino derivatives of agalactobiantennary sugar chains with structural variations in the bisecting GlcNAc and alpha1-6Fuc residues as acceptor substrates. While the beta1-4galactosyltransferases in liver and kidney could utilize all four oligosaccharides as substrates, the beta1-4galactosyltransferase(s) in brain could not utilize the agalactobiantennary sugar chain with both bisecting GlcNAc and Fuc residues, but could utilize the other three acceptors. Similar results were obtained using glycopeptides with agalactobiantennary sugar chains and bisecting GlcNAc and alpha1-6Fuc residues as substrates. The beta1-4galactosyltransferase activity of adult mouse brain thus appears to be responsible for producing the brain-specific sugar chains and to be different from beta1-4galactosyltransferase-I. The agalactobiantennary sugar chain with bisecting GlcNAc and alpha1-6Fuc residues acts as an inhibitor against "brain type" beta1-4galactosyltransferase with a K(i) value of 0.29 mM.  相似文献   

6.
On a way of structural analysis of total N-glycans linked to glycoproteins in royal jelly (Kimura, Y. et al., Biosci. Biotechnol. Biochem., 64, 2109-2120 (2000), Kimura, M. et al., Biosci. Biotechnol. Biochem., 66, 1985-1989 (2002)), we found that some complex type N-glycans containing a beta1-3galactose residue occur on the insect glycoproteins. Up to date, it has been considered that naturally occurring insect glycoproteins do not bear the galactose-containing N-glycans, therefore, in this report we describe the structural analysis of the complex type N-glycans of royal jelly glycoproteins.By a combination of endo- and exo-glycosidase digestions, IS-MS analysis, and 1H-NMR spectroscopy, the structures of the beta1-3 galactose-containing N-glycan were identified as the following; GlcNAcbeta1-2Manalpha1-6[GlcNAcbeta1-2(Galbeta1-3GlcNAcbeta1-4)Manalpha1-3]Manbeta1-4GlcNAcbeta1-4GlcNAc, Manalpha1-3Manalpha1-6[GlcNAcbeta1-2(Galbeta1-3GlcNAcbeta1-4)Manalpha1-3]Manbeta1-4GlcNAcbeta1-4GlcNAc, and Manalpha1-6(Manalpha1-3)Manalpha1-6[GlcNAcbeta1-2(Galbeta1-3GlcNAcbeta1-4)Manalpha1-3]Manbeta1-4GlcNAcbeta1-4GlcNAc. To our knowledge, this is the first report showing that the Galbeta1-3GlcNAcbeta1-4Man unit occurs in N-glycans of insect glycoproteins, indicating a beta1-3 galactosyl transferase and beta1-4GlcNAc transferase (GNT-IV) are expressed in the honeybee cells.  相似文献   

7.
The trypanosomatids are generally aberrant in their protein N-glycosylation pathways. However, protein N-glycosylation in the African trypanosome Trypanosoma brucei, etiological agent of human African sleeping sickness, is not well understood. Here, we describe the creation of a bloodstream-form T. brucei mutant that is deficient in the endoplasmic reticulum enzyme glucosidase II. Characterization of the variant surface glycoprotein, the main glycoprotein synthesized by the parasite with two N-glycosylation sites, revealed unexpected changes in the N-glycosylation of this molecule. Structural characterization by mass spectrometry, nuclear magnetic resonance spectroscopy, and chemical and enzymatic treatments revealed that one of the two glycosylation sites was occupied by conventional oligomannose structures, whereas the other accumulated unusual structures in the form of Glcalpha1-3Manalpha1-2Manalpha1-2Manalpha1-3(Manalpha1-6)Manbeta1-4GlcNAcbeta1-4GlcNAc, Glcalpha1-3Manalpha1-2Manalpha1-2Manalpha1-3(GlcNAcbeta1-2Manalpha1-6)Manbeta1-4GlcNAcbeta1-4GlcNAc, and Glcalpha1-3Manalpha1-2Manalpha1-2Manalpha1-3(Galbeta1-4GlcNAcbeta1-2Manalpha1-6)Manbeta1-4GlcNAcbeta1-4GlcNAc. The possibility that these structures might arise from Glc1Man9GlcNAc2 by unusually rapid alpha-mannosidase processing was ruled out using a mixture of alpha-mannosidase inhibitors. The results suggest that bloodstream-form T. brucei can transfer both Man9GlcNAc2 and Man5GlcNAc2 to the variant surface glycoprotein in a site-specific manner and that, unlike organisms that transfer exclusively Glc3Man9GlcNAc2, the T. brucei UDP-Glc: glycoprotein glucosyltransferase and glucosidase II enzymes can use Man5GlcNAc2 and Glc1Man5GlcNAc2, respectively, as their substrates. The ability to transfer Man5GlcNAc2 structures to N-glycosylation sites destined to become Man(4-3)GlcNAc2 or complex structures may have evolved as a mechanism to conserve dolichol-phosphate-mannose donors for glycosylphosphatidylinositol anchor biosynthesis and points to fundamental differences in the specificities of host and parasite glycosyltransferases that initiate the synthesis of complex N-glycans.  相似文献   

8.
Heterogeneities of the two ovalbumin glycopeptides, (Man)5(GlcNAc)2Asn and (Man)6(GlcNAc)2Asn, were revealed by borate paper electrophoresis of oligosaccharide alcohols obtained from the glycopeptides by endo-beta-N-acetylglucosaminidase H digestion and NaB3H4 reduction. The structures of the major components of the oligosaccharides were determined by the combination of methylation analysis, acetolysis, and alpha-mannosidase digestion. Based on the results, the whole structures of the major components of (Man)5(GlcNAc)2Asn and (Man)6(GlcNAc)2Asn were elucidated as Manalpha1 leads to 6[Manalpha1 leads to 3]-Manalpha1 leads to 6[Manalpha1 leads to 3[Manbeta1 leads to 4GlcNAcbeta1 leads to 4GlcNAc leads to Asn and Manalpha1 leads to 6[Manalpha1 leads to 3]Manalpha1 leads to 6[Manalpha1 leads to 2Manalpha1 leads to 3]Manbeta1 leads to 4GlcNAcbeta1 leads to GlcNAc leads to Asn, respectively. Since endo-beta-N-acetylglucosamini dase D hydrolyzes (Man)5(GlcNAc)2Asn but not (Man)6(GlcNAc)2Asn, the presence of the unsubstituted alpha-mannosyl residue linked at the C-3 position of the terminal mannose of Manbeta1 leads to 4GlcNAcbeta1 leads to 4 GlcNAcAsn core must be essential for the action of the enzyme.  相似文献   

9.
10.
Urine of a fucosidosis patient contained a large amount of fucosyl oligosaccharides and fucose-rich glycopeptides. Six major oligosaccharides were purified by a combination of Bio-Gel P-2 and P-4 column chromatographies and paper chromatography. Structural studies by sequential exoglycosidase digestion and by methylation analysis revealed that their structures were as follows: Fucalpha1 leads to 6GlcNAc, Fucalpha1 leads to 2Galbeta1 leads to 4(Fucalpha1 leads to 3)GlcNAcbeta1 leads to 2Manalpha1 leads to 3Manbeta1 leads to 4GlcNAc, Galbeta1 leads to 4(Fucalpha1 leads to 3)GlcNAcbeta1 leads to 4Manalpha1 leads to 4GlcNAc, Galbeta1 leads to 4(Fucalpha1 leads to3)GlcNAcbeta1 leads to 2Manalpha1 leads to 6Manbeta1 leads to 4GlcNAc, and Galbeta1 leads to 4(Fucalpha1 leads to 3)GlcNAcbeta1 leads to 4Manalpha1 leads to 6Manalpha1 leads to 6Manbeta1 leads to 4GlcNAc. In additon, the structure of a minor decasaccharide was found to be Galbeta1 leads to (Fucalpha1 leads to)GlcNAcbeta1 leads to Manalpha1 leads to [Galbeta1 leads to (Fucalpha1 leads to)GlcNAcbeta1 leads to Manalpha1 leads to]Manbeta1 leads to 4GlcNAc.  相似文献   

11.
A new beta1,4-N-acetylglucosaminyltransferase (GnT) responsible for the formation of branched N-linked complex-type sugar chains has been purified 64,000-fold in 16% yield from a homogenate of hen oviduct by column chromatography procedures using Q-Sepharose FF, Ni(2+)-chelating Sepharose FF, and UDP-hexanolamine-agarose. This enzyme catalyzes the transfer of GlcNAc from UDP-GlcNAc to tetraantennary oligosaccharide and produces pentaantennary oligosaccharide with the beta1-4-linked GlcNAc residue on the Manalpha1-6 arm. It requires a divalent cation such as Mn(2+) and has an apparent molecular weight of 72,000 under nonreducing conditions. The enzyme does not act on biantennary oligosaccharide (GnT I and II product), and beta1,6-N-acetylglucosaminylation of the Manalpha1-6 arm (GnT V product) is essential for its activity. This clearly distinguishes it from GnT IV, which is known to generate a beta1-4-linked GlcNAc residue only on the Manalpha1-3 arm. Based on these findings, we conclude that this enzyme is UDP-GlcNAc:GlcNAcbeta1-6(GlcNAcbeta1-2)Manalpha1-R [GlcNAc to Man]-beta1,4-N-acetylglucosaminyltransferase VI. This is the only known enzyme that has not been previously purified among GnTs responsible for antenna formation on the cores of N-linked complex-type sugar chains.  相似文献   

12.
While doing a structural analysis of minor component N-glycans linked to 350-kDa royal jelly glycoprotein (RJGP), which stimulates the proliferation of human monocytes, we found that a Galbeta1-3GlcNAcbeta1-4Man unit occurs on the insect glycoprotein. The structure of the fluorescence-labeled N-glycan was analyzed by sugar component analysis, IS-MS, and (1)H-NMR. The structural analysis showed that the 350-kDa RJGP bears Galbeta1-3GlcNAcbeta1-4(GlcNAcbeta1-2)Manalpha1-3 (Manalpha1-3Manalpha1-6)Manbeta1-4GlcNAcbeta1-4GlcNAc, suggesting this insect glycoprotein is one of the substrates for both beta1-3 galactosyl and beta1-4 N-acetylglucosamininyl transferases. To our knowledge, this is the first report that succeeded in identifying an insect glycoprotein bearing the beta1-3 galactosylated N-glycan.  相似文献   

13.
Cathepsins B and H from rat liver contain one asparagine-linked sugar chain in each molecule. The sugar chains were liberated from the polypeptide portions by hydrazinolysis followed by N-acetylation and NaB3H4 reduction. Paper electrophoresis of the radioactive oligosaccharide fractions revealed that they were mixtures of neutral oligosaccharides only. After fractionation by gel filtration the structure of each oligosaccharide was studied by sequential exoglycosidase digestion in combination with methylation analysis. The sugar chain of cathepsin H was a high mannose type oligosaccharide which varied in size from 5 to 9 mannose residues; on the other hand the major oligosaccharide of cathepsin B was a tetrasaccharide whose structure was Manalpha 1----6Manbeta 1----4GlcNAcbeta 1----4GlcNAc.  相似文献   

14.
15.
The amounts and isomeric structures of free oligosaccharides derived from N-linked sugar chains present in the cytosol fraction of perfused mouse liver were analyzed by tagging the reducing end with 2-aminopyridine followed by 2-dimensional HPLC mapping with standard sugar chains. Sixteen pyridylaminated (PA-) oligomannosides terminating with a PA-GlcNAc residue (GN1-type), three glucose-containing oligomannosides, and four oligomannosides terminating with a PA-di-N-acetylchitobiose (GN2-type) were detected. The total contents of the GN1- and GN2-type oligomannosides were 3. 4 and 0.5 nmol, respectively, per gram of wet tissue. Maltooligosaccharides (dimer to pentamer) were also detected, the total content of which was 13 nmol per gram of wet tissue. Besides these oligosaccharides, a PA-disialobiantennary sugar chain-the sole complex-type sugar chain-was also detected. All the oligomannosides identified had partial structures of Glc(3)Man(9)GlNAc(2)-p-p-dolichol, revealing that they were metabolic degradation products. Manalpha1-2Manalpha1-2Manalpha1-3(Manalpha1-6)++ +Manbeta1-4GlcNAc (M5B') was the major oligomannoside, suggesting that cytosolic endo-beta-N-acetylglucosaminidase and neutral alpha-mannosidase participate in the degradation, because these enzymes have suitable substrate specificities for the production of M5B'. Degradation by these enzymes seems to be the main pathway by which oligomannosides are degraded in mouse cytosol; however, small amounts of Manalpha1-6(Manalpha1-3)Manalpha1-6(Manalpha1-3) Manbeta1-4(GlcNAc)1-2 and related oligomannosides together with parts of their structures were also detected, suggesting that there is another minor route by which cytosolic free oligomannosides are produced.  相似文献   

16.
Iron and copper toxicity has been presumed to involve the formation of hydroxyl radical (*OH) from H2O2 in the Fenton reaction. The aim of this study was to verify that Fe2+-O2 and Cu+-O2 chemistry is capable of generating *OH in the quasi physiological environment of Krebs-Henseleit buffer (KH), and to compare the ability of the Fe2+-O2 system and of the Fenton system (Fe2+ + H2O2) to produce *OH. The addition of Fe2+ and Cu+ (0-20 microM) to KH resulted in a concentration-dependent increase in *OH formation, as measured by the salicylate method. While Fe3+ and Cu2+ (0-20 microM) did not result in *OH formation, these ions mediated significant *OH production in the presence of a number of reducing agents. The *OH yield from the reaction mediated by Fe2+ was increased by exogenous Fe3+ and Cu2+ and was prevented by the deoxygenation of the buffer and reduced by superoxide dismutase, catalase, and desferrioxamine. Addition of 1 microM, 5 microM or 10 microM Fe2+ to a range of H2O2 concentrations (the Fenton system) resulted in a H2O2-concentration-dependent rise in *OH formation. For each Fe2+ concentration tested, the *OH yield doubled when the ratio [H2O2]:[Fe2+] was raised from zero to one. In conclusion: (i) Fe2+-O2 and Cu+-O2 chemistry is capable of promoting *OH generation in the environment of oxygenated KH, in the absence of pre-existing superoxide and/or H2O2, and possibly through a mechanism initiated by the metal autoxidation; (ii) The process is enhanced by contaminating Fe3+ and Cu2+; (iii) In the presence of reducing agents also Fe3+ and Cu2+ promote the *OH formation; (iv) Depending on the actual [H2O2]:[Fe2+] ratio, the efficiency of the Fe2+-O2 chemistry to generate *OH is greater than or, at best, equal to that of the Fe2+-driven Fenton reaction.  相似文献   

17.
We have previously detected two brain-specific and development-dependent N-glycans [H. Shimizu, K. Ochiai, K. Ikenaka, K. Mikoshiba, and S. Hase (1993) J. Biochem. 114, 334-338]. In the present study we attempted to analyze specific N-glycans detected in neurological mutant mice. N-glycans in cerebrum and cerebellum obtained from 3-week-old neurological mutant mice (jimpy, staggerer, and shiverer) were compared with those obtained from normal mice. N-glycans liberated from the cerebrum and cerebellum by hydrazinolysis-N-acetylation were pyridylaminated, and pyridylamino derivatives of N-glycans thus obtained were separated into neutral and five acidic fractions by anion exchange chromatography. PA-N-glycans in each fraction were compared with those obtained from normal mice by reversed-phase HPLC, and the following results were obtained. The ratio of the two brain-type N-glycans, Manalpha1-3(GlcNAcbeta1-2Manalpha1-6)(GlcNAcbeta1-4)Manbeta1-4GlcNAcbeta1-4(Fucalpha1-6)GlcNAc (BA-1) to GlcNAcbetaManalpha1-3(GlcNAcbeta1-2Manalpha1-6)(GlcNAcbeta1-4)Manbeta1-4GlcNAcbeta1-4(Fuca1-6)GlcNAc (BA-2), was higher in staggerer mice than other mutant mice and normal mice. Sia-Gal-BA-2, triantennary N-glycans, and bisected biantennary N-glycans were found in the cerebellum of shiverer and staggerer mice but not in normal or jimpy mice. High-mannose type N-glycans were not altered in mutant mice brains. The amounts of disialylbiantennary N-glycans and disialylfucosylbiantennary N-glycans were lower in jimpy mouse cerebellum than in normal mouse cerebellum, but were higher in shiverer mouse. Some alterations of N-glycans specific to mutations were successfully identified, suggesting that expression of component(s) of the N-glycan biosynthetic pathway was specifically affected in neurological mutations.  相似文献   

18.
Mammals contain O-linked mannose residues with 2-mono- and 2,6-di-substitutions by GlcNAc in brain glycoproteins. It has been demonstrated that the transfer of GlcNAc to the 2-OH position of the mannose residue is catalyzed by the enzyme, protein O-mannose beta1,2-N-acetylglucosaminyltransferase (POMGnT1), but the enzymatic basis of the transfer to the 6-OH position is unknown. We recently reported on a brain-specific beta1,6-N-acetylglucosaminyltransferase, GnT-IX, that catalyzes the transfer of GlcNAc to the 6-OH position of the mannose residue of GlcNAcbeta1,2-Manalpha on both the alpha1,3- and alpha1,6-linked mannose arms in the core structure of N-glycan (Inamori, K., Endo, T., Ide, Y., Fujii, S., Gu, J., Honke, K., and Taniguchi, N. (2003) J. Biol. Chem. 278, 43102-43109). Here we examined the issue of whether GnT-IX is able to act on the same sequence of the GlcNAcbeta1,2-Manalpha in O-mannosyl glycan. Using three synthetic Ser-linked mannose-containing saccharides, Manalpha1-Ser, GlcNAcbeta1,2-Manalpha1-Ser, and Galbeta1,4-GlcNAcbeta1,2-Manalpha1-Ser as acceptor substrates, the findings show that (14)C-labeled GlcNAc was incorporated only into GlcNAcbeta1,2-Manalpha1-Ser after separation by thin layer chromatography. To simplify the assay, high performance liquid chromatography was employed, using a fluorescence-labeled acceptor substrate GlcNAcbeta1,2-Manalpha1-Ser-pyridylaminoethylsuccinamyl (PAES). Consistent with the above data, GnT-IX generated a new product which was identified as GlcNAcbeta1,2-(GlcNAcbeta1,6-)Manalpha1-Ser-PAES by mass spectrometry and (1)H NMR. Furthermore, incorporation of an additional GlcNAc residue into a synthetic mannosyl peptide Ac-Ala-Ala-Pro-Thr(Man)-Pro-Val-Ala-Ala-Pro-NH(2) by GnT-IX was only observed in the presence of POMGnT1. Collectively, these results strongly suggest that GnT-IX may be a novel beta1,6-N-acetylglucosaminyltransferase that is responsible for the formation of the 2,6-branched structure in the brain O-mannosyl glycan.  相似文献   

19.
Cauxin is a carboxylesterase-like glycoprotein excreted as a major component of cat urine. Cauxin contains four putative N-glycosylation sites. We characterized the structure of an N-linked oligosaccharide of cauxin using nano liquid chromatography (LC)-electrospray ionization (ESI) and matrix-assisted laser desorption/ionization quadrupole ion trap time-of-flight mass spectrometry (MALDI-QIT-TOF MS) and MS/MS, and high-performance liquid chromatography (HPLC) with an octadecylsilica (ODS) column. The structure of the N-linked oligosaccharide of cauxin attached to (83)Asn was a bisecting complex type, Galbeta1-4GlcNAcbeta1-2Manalpha1-3(Galbeta1-4GlcNAcbeta1-2Manalpha1-6)(GlcNAcbeta1-4)Manbeta1-4GlcNAcbeta1-4(Fucalpha1-6)GlcNAc.  相似文献   

20.
Glycosylphosphatidylinositol (GPI)-anchored proteins are ubiquitous in eukaryotes. The minimum conserved GPI core structure of all GPI-anchored glycans has been determined as EtN-PO4-6Manalpha1-2Manalpha1-6Manalpha1-4GlcN-myo-inositol-PO3H. Human placental alkaline phosphatase (AP) has been reported to be a GPI-anchored membrane protein. AP carries one N-glycan, (NeuAcalpha2-->3)2Gal2GlcNAc2Man3GlcNAc(+/-Fuc)GlcNAc, and a GPI anchor, which contains an ethanolamine phosphate diester group, as a side chain. However, we found that both sialidase-treated soluble AP (sAP) and its GPI-anchored glycan bound to a Psathyrella velutina lectin (PVL)-Sepharose column, which binds beta-GlcNAc residues. PVL binding of asialo-sAP and its GPI-anchored glycan was diminished by digestion with diplococcal beta-N-acetylhexosaminidase or by mild acid treatment. After sequential digestion of asialo-sAP with beta-N-acetylhexosaminidase and acid phosphatase, the elution patterns on chromatofocusing gels were changed in accordance with the negative charges of phosphate residues. Trypsin-digested sAP was analyzed by liquid chromatography/electrospray ionization mass spectrometry, and the structures of two glycopeptides with GPI-anchored glycans were confirmed as peptide-EtN-PO4-6Manalpha1-->2(GlcNAcbeta1-PO4-->6)Manalpha1-6(+/-EtN-PO4-->)Manalpha1-->4GlcN, which may be produced by endo-alpha-glucosaminidase. In addition to AP, GPI-anchored carcinoembryonic antigen, cholinesterase, and Tamm-Horsfall glycoprotein also bound to a PVL-Sepharose column, suggesting that the beta-N-acetylglucosaminyl phosphate diester residue is widely distributed in human GPI-anchored glycans. Furthermore, we found that the beta-N-acetylglucosaminyl phosphate diester residue is important for GPI anchor recognition of aerolysin, a channel-forming toxin derived from Aeromonas hydrophila.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号