首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The formation of adenosine 5′-phosphate, guanosine 5′-phosphate and inosine 5′-phosphate from [8-14C]adenine, [8-14C]guanine and [8-14C]hypoxanthine respectively in the presence of 5-phosphoribosyl pyrophosphate and an extract from Ehrlich ascites-tumour cells was assayed by a method involving liquid-scintillation counting of the radioactive nucleotides on diethylaminoethylcellulose paper. The results obtained with guanine were confirmed by a spectrophotometric assay which was also used to assay the conversion of 6-mercaptopurine and 5-phosphoribosyl pyrophosphate into 6-thioinosine 5′-phosphate in the presence of 6-mercaptopurine phosphoribosyltransferase from these cells. 2. At pH 7·8 and 25° the Michaelis constants for adenine, guanine and hypoxanthine were 0·9 μm, 2·9 μm and 11·0 μm in the assay with radioactive purines; the Michaelis constant for guanine in the spectrophotometric assay was 2·6 μm. At pH 7·9 the Michaelis constant for 6-mercaptopurine was 10·9 μm. 3. 25 μm-6-Mercaptopurine did not inhibit adenine phosphoribosyltransferase. 6-Mercaptopurine is a competitive inhibitor of guanine phosphoribosyltransferase (Ki 4·7 μm) and hypoxanthine phosphoribosyltransferase (Ki 8·3 μm). Hypoxanthine is a competitive inhibitor of guanine phosphoribosyltransferase (Ki 3·4 μm). 4. Differences in kinetic parameters and in the distribution of phosphoribosyltransferase activities after electrophoresis in starch gel indicate that different enzymes are involved in the conversion of adenine, guanine and hypoxanthine into their nucleotides. 5. From the low values of Ki for 6-mercaptopurine, and from published evidence that ascites-tumour cells require supplies of purines from the host tissues, it is likely that inhibition of hypoxanthine and guanine phosphoribosyltransferases by free 6-mercaptopurine is involved in the biological activity of this drug.  相似文献   

2.
Tannase isolated from Penicillium chrysogenum was purified 24-fold with 18.5% recovery after ammonium sulfate precipitation, DEAE-cellulose column chromatography, and Sephadex G-200 gel filtration. Optimum enzyme activity was recorded at pH 5.0 to 6.0 and at 30 to 40°C. The enzyme was stable up to 30°C and within the pH range of 4.0 to 6.5. The Km value was found to be 0.48 × 10−4 M when tannic acid was used as the substrate. Metal salts at 20 mM inhibited the enzyme to different levels.  相似文献   

3.
1. Purified rabbit-muscle and -liver glucose phosphate isomerase, free of contaminating enzyme activities that could interfere with the assay procedures, were tested for inhibition by fructose, fructose 1-phosphate and fructose 1,6-diphosphate. 2. Fructose 1-phosphate and fructose 1,6-diphosphate are both competitive with fructose 6-phosphate in the enzymic reaction, the apparent Ki values being 1·37×10−3−1·67×10−3m for fructose 1-phosphate and 7·2×10−3−7·9×10−3m for fructose 1,6-diphosphate; fructose and inorganic phosphate were without effect. 3. The apparent Km values for both liver and muscle enzymes at pH7·4 and 30° were 1·11×10−4−1·29×10−4m for fructose 6-phosphate, determined under the conditions in this paper. 4. In the reverse reaction, fructose, fructose 1-phosphate and fructose 1,6-diphosphate did not significantly inhibit the conversion of glucose 6-phosphate into fructose 6-phosphate. 5. The apparent Km values for glucose 6-phosphate were in the range 5·6×10−4−8·5×10−4m. 6. The competitive inhibition of hepatic glucose phosphate isomerase by fructose 1-phosphate is discussed in relation to the mechanism of fructose-induced hypoglycaemia in hereditary fructose intolerance.  相似文献   

4.
Ceramide glucoside (1-O-glucosido-2-N-acyl-sphingosine) was hydrolysed to ceramide (N-acyl-sphingosine) and glucose by β-glucosidase from ox brain. The reaction was stimulated by the non-ionic detergent, Triton X-100, or by the anionic detergents, cholate or taurocholate. It was not reversible, had optimum pH5·0 (with acetate buffer) or 5·6 (with pyridine buffer), had Km 1·8×10−4m and was inhibited by δ-gluconolactone and sphingosine, but not by ceramide or palmitic acid.  相似文献   

5.
1. The aerobic transport of d-glucose and d-galactose in rabbit kidney tissue at 25° was studied. 2. In slices forming glucose from added substrates an accumulation of glucose against its concentration gradient was found. The apparent ratio of intracellular ([S]i) and extracellular ([S]o) glucose concentrations was increased by 0·4mm-phlorrhizin and 0·3mm-ouabain. 3. Slices and isolated renal tubules actively accumulated glucose from the saline; the apparent [S]i/[S]o fell below 1·0 only at [S]o higher than 0·5mm. 4. The rate of glucose oxidation by slices was characterized by the following parameters: Km 1·16mm; Vmax. 4·5μmoles/g. wet wt./hr. 5. The active accumulation of glucose from the saline was decreased by 0·1mm-2,4-dinitrophenol, 0·4mm-phlorrhizin and by the absence of external Na+. 6. The kinetic parameters of galactose entry into the cells were: Km 1·5mm; Vmax 10μmoles/g. wet wt./hr. 7. The efflux kinetics from slices indicated two intracellular compartments for d-galactose. The galactose efflux was greatly diminished at 0°, was inhibited by 0·4mm-phlorrhizin, but was insensitive to ouabain. 8. The following mechanism of glucose and galactose transport in renal tubular cells is suggested: (a) at the tubular membrane, these sugars are actively transported into the cells by a metabolically- and Na+-dependent phlorrhizin-sensitive mechanism; (b) at the basal cell membrane, these sugars are transported in accordance with their concentration gradient by a phlorrhizin-sensitive Na+-independent facilitated diffusion. The steady-state intracellular sugar concentration is determined by the kinetic parameters of active entry, passive outflow and intracellular utilization.  相似文献   

6.
Enzymes in cancer: Asparaginase from chicken liver   总被引:2,自引:1,他引:1  
1. A procedure for partial purification of asparaginase from chicken liver is presented. 2. The bulk of the enzyme is located in the soluble fraction of chicken liver. 3. Molecular weights of chicken-liver asparaginase and of the guinea-pig serum enzyme, estimated by gel filtration, were 306000 and 210000 respectively. The Michaelis constants (Km) at 37° and pH8·5 were 6·0×10−5m and 7·2×10−5m respectively. 4. At 50° the chicken-liver enzyme was moderately stable, some activity being lost by aggregation; in dilute electrolyte solutions the activity rapidly diminished. 5. The anti-lymphoma effect of guinea-pig serum in mice carrying the 6C3HED tumour was confirmed. Chicken-liver asparaginase also showed an effect but in this case the enzyme preparation had to be administered repeatedly. 6. Guinea-pig serum asparaginase was stable for several days in mouse blood, after intraperitoneal injection, whereas chicken-liver asparaginase rapidly disappeared. 7. Aspartic acid β-hydrazide was shown to be a competitive inhibitor of chicken-liver asparaginase with Ki approx. 5·6×10−4m. In mice it produced an anti-lymphoma effect, as reported previously.  相似文献   

7.
An alkaliphilic, thermophilic Bacillus sp. (NCIM 59) produced extracellular xylose isomerase at pH 10 and 50°C by using xylose or wheat bran as the carbon source. The distribution of xylose isomerase as a function of growth in comparison with distributions of extra- and intracellular marker enzymes such as xylanase and β-galactosidase revealed that xylose isomerase was truly secreted as an extracellular enzyme and was not released because of sporulation or lysis. The enzyme was purified to homogeneity by ammonium sulfate precipitation followed by gel filtration, preparative polyacrylamide gel electrophoresis, and ion-exchange chromatography. The molecular weight of xylose isomerase was estimated to be 160,000 by gel filtration and 50,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, indicating the presence of three subunits. The enzyme is most active at pH 8.0 and with incubation at 85°C for 20 min. Divalent metal ions Mg2+, Co2+, and Mn2+ were required for maximum activity of the enzyme. The Km values for D-xylose and D-glucose at 80°C and pH 7.5 were 6.66 and 142 mM, respectively, while Kcat values were 2.3 × 102 s-1 and 0.5 × 102 s-1, respectively.  相似文献   

8.
Phosphoenolpyruvate synthetase (PpsA) was purified from the hyperthermophilic archaeon Pyrococcus furiosus. This enzyme catalyzes the conversion of pyruvate and ATP to phosphoenolpyruvate (PEP), AMP, and phosphate and is thought to function in gluconeogenesis. PpsA has a subunit molecular mass of 92 kDa and contains one calcium and one phosphorus atom per subunit. The active form has a molecular mass of 690 ± 20 kDa and is assumed to be octomeric, while approximately 30% of the protein is purified as a large (~1.6 MDa) complex that is not active. The apparent Km values and catalytic efficiencies for the substrates pyruvate and ATP (at 80°C, pH 8.4) were 0.11 mM and 1.43 × 104 mM−1 · s−1 and 0.39 mM and 3.40 × 103 mM−1 · s−1, respectively. Maximal activity was measured at pH 9.0 (at 80°C) and at 90°C (at pH 8.4). The enzyme also catalyzed the reverse reaction, but the catalytic efficiency with PEP was very low [kcat/Km = 32 (mM · s)−1]. In contrast to several other nucleotide-dependent enzymes from P. furiosus, PpsA has an absolute specificity for ATP as the phosphate-donating substrate. This is the first PpsA from a nonmethanogenic archaeon to be biochemically characterized. Its kinetic properties are consistent with a role in gluconeogenesis, although its relatively high cellular concentration (~5% of the cytoplasmic protein) suggests an additional function possibly related to energy spilling. It is not known whether interconversion between the smaller, active and larger, inactive forms of the enzyme has any functional role.  相似文献   

9.
α-Amylase (EC 3.2.1.1) was excreted by Calvatia gigantea in liquid growth media containing different sources of starch. Among the factors affecting enzyme production in shake flasks were the type and the concentration of starch and the nitrogen source supplied. Optimum cultural conditions for maximum enzyme production were: soluble starch concentration, 5%; inoculum size, 3.75 × 105 conidia per ml; 5-day cultivation time at 28 to 30°C. The observed maximum yield of 81.3 U of saccharifying enzyme activity per ml of growth medium was the highest ever reported in the literature for submerged cultures. Partially purified enzyme functioned optimally at pH 4.5 to 5.5 and 53 to 58°C. The activation energy of enzymic hydrolysis of starch in the range of 20 to 40°C was 8,125 cal/mol (ca. 3.41 × 104 J). The apparent Km value of the enzyme at 25°C was 7.68 × 10−4 g/ml. Some of the properties of the enzyme under investigation were similar to those of α-amylases excreted from molds producing large amounts of the enzyme.  相似文献   

10.
1. The polychaete worm Marphysa sanguinea has a circulating erythrocruorin of mol.wt. about 2·4×106 (S020,w 58·2s, D20,w 2·06×10−7 cm.2/sec). This is the predominant form existing at pH 6–8 and (non-protein) I 0·10–0·21, and also at approx. pH 6·7 and I 0·15–3·00. 2. The pigment contains 2·24% of protohaem. 3. The 58s protein has an electrophoretic mobility of 8·08×10−5 cm.2/v/sec. at pH 8·12, I 0·21 and 0°. The isoelectric point of suspended particles is 4·63 at I 0·16 and 21·5°. 4. At very low ionic strength and pH 6·7 (unbuffered) the 58s pigment associates reversibly to 97s and 150s forms, which are probably dimer and tetramer species. 5. At pH 10·0 and I 0·025, it dissociates irreversibly to give a small amount of 2–4s non-haem-containing protein and much 9s haem-enriched protein. These and the 58s pigment may correspond to structures found in Levin's (1963) electron-microscope studies of other erythrocruorins. 6. Absorption spectra of the 58s oxygenated erythrocruorin and the deoxygenated and carbon monoxide derivatives have been obtained.  相似文献   

11.
1. The cytokinase (tissue activator of plasminogen) content of several mammalian tissues was evaluated by a quantitative casein hydrolysis method. 2. An alkaline (pH10·5) extraction of cytokinase from rabbit kidney lysosome–microsome fraction, followed by chromatography on DEAE-cellulose at pH7·6 with stepwise or linear increase in concentration of phosphate buffer, gave an 86-fold purification of the enzyme. The purified material was non-proteolytic against casein and heated fibrin and was freeze-dried without significant loss of activity or solubility. 3. Cytokinase is a protein with E0·1%1cm.=0·87 at 280mμ, and does not possess sufficient hexose or sialic acid to be classified as a glycoprotein. It has S20,w 2·9–3·1s and molecular weight 50000 when measured on a calibrated Sephadex G-100 column. It has an isoelectric point between pH8 and pH9, and is maximally active and stable at pH8·5. It is inactivated by heat at 78°. 4. Cytokinase and human urokinase have the same Km value and are inhibited in a partially competitive manner by -aminohexanoic acid and aminomethylcyclohexanecarboxylic acid. They are also inhibited by cysteine and arginine, but are unaffected by iodoacetamide and p-chloromercuribenzoate. 5. On the basis of this and other evidence it is suggested that rabbit kidney cytokinase and human urokinase are similar, if not identical, enzymes.  相似文献   

12.
1. Diaminopimelate decarboxylase from a soluble extract of Escherichia coli A.T.C.C. 9637 was purified 200-fold by precipitation of nucleic acids, fractionation with acetone and then with ammonium sulphate, adsorption on calcium phosphate gel and chromatography on DEAE-cellulose or DEAE-Sephadex. 2. The purified enzyme showed only one component in the ultracentrifuge, with a sedimentation coefficient of 5·4s. One major peak and three much smaller peaks were observed on electrophoresis of the enzyme at pH8·9. 3. The mol.wt. of the enzyme was approx. 200000. The catalytic constant was 2000mol. of meso-diaminopimelic acid decomposed/min./mol. of enzyme, at 37°. The relative rates of decarboxylation at 25°, 37° and 45° were 0·17:1·0:1·6. At 37° the Michaelis constant was 1·7mm and the optimum pH was 6·7–6·8. 4. There was an excess of acidic amino acids over basic amino acids in the enzyme, which was bound only on basic cellulose derivatives at pH6·8. 5. The enzyme had an absolute requirement for pyridoxal phosphate as a cofactor; no other derivative of pyridoxine had activity. A thiol compound (of which 2,3-dimercaptopropan-1-ol was the most effective) was also needed as an activator. 6. In the presence of 2,3-dimercaptopropan-1-ol (1mm), heavy-metal ions (Cu2+, Hg2+) did not inhibit the enzyme, but there was inhibition by several amino acids with analogous structures to diaminopimelate, generally at high concentrations relative to the substrate. Penicillamine was inhibitory at relatively low concentrations; its action was prevented by pyridoxal phosphate.  相似文献   

13.
We purified a secreted fungal laccase from filtrates of Gaeumannomyces graminis var. tritici cultures induced with copper and xylidine. The active protein had an apparent molecular mass of 190 kDa and yielded subunits with molecular masses of 60 kDa when denatured and deglycosylated. This laccase had a pI of 5.6 and an optimal pH of 4.5 with 2,6-dimethoxyphenol as its substrate. Like other, previously purified laccases, this one contained several copper atoms in each subunit, as determined by inductively coupled plasma spectroscopy. The active enzyme catalyzed the oxidation of 2,6-dimethoxyphenol (Km = 2.6 × 10−5 ± 7 × 10−6 M), catechol (Km = 2.5 × 10−4 ± 1 × 10−5 M), pyrogallol (Km = 3.1 × 10−4 ± 4 × 10−5 M), and guaiacol (Km = 5.1 × 10−4 ± 2 × 10−5 M). In addition, the laccase catalyzed the polymerization of 1,8-dihydroxynaphthalene, a natural fungal melanin precursor, into a high-molecular-weight melanin and catalyzed the oxidation, or decolorization, of the dye poly B-411, a lignin-like polymer. These findings indicate that this laccase may be involved in melanin polymerization in this phytopathogen’s hyphae and/or in lignin depolymerization in its infected plant host.  相似文献   

14.
The deamination of nucleobases in DNA occurs by a variety of mechanisms and results in the formation of hypoxanthine from adenine, uracil from cytosine, and xanthine and oxanine from guanine. 2′-Deoxyxanthosine (dX) has been assumed to be an unstable lesion in cells, yet no study has been performed under biological conditions. We now report that dX is a relatively stable lesion at pH 7, 37°C and 110 mM ionic strength, with a half-life (t1/2) of 2.4 years in double-stranded DNA. The stability of dX as a 2′-deoxynucleoside (t1/2 = 3.7 min at pH 2; 1104 h at pH 6) was increased substantially upon incorporation into a single-stranded oligodeoxynucleotide, in which the half-life of dX at different pH values was found to range from 7.7 h at pH 2 to 17 700 h at pH 7. Incorporation of dX into a double-stranded oligodeoxynucleotide resulted in a statistically insignificant increase in the half-life to 20 900 h at pH 7. Data for the pH dependence of the stability of dX in single-stranded DNA were used to determine the rate constants for the acid-catalyzed (2.6 × 10–5 s–1) and pH-independent (1.4 × 10–8 s–1) depurination reactions for dX as well as the dissociation constant for the N7 position of dX (6.1 × 10–4 M). We conclude that dX is a relatively stable lesion that could play a role in deamination-induced mutagenesis.  相似文献   

15.
Oscillatory behavior of mitochondrial inner membrane potential (ΔΨm) is commonly observed in cells subjected to oxidative or metabolic stress. In cardiac myocytes, the activation of inner membrane pores by reactive oxygen species (ROS) is a major factor mediating intermitochondrial coupling, and ROS-induced ROS release has been shown to underlie propagated waves of ΔΨm depolarization as well as synchronized limit cycle oscillations of ΔΨm in the network. The functional impact of ΔΨm instability on cardiac electrophysiology, Ca2+ handling, and even cell survival, is strongly affected by the extent of such intermitochondrial coupling. Here, we employ a recently developed wavelet-based analytical approach to examine how different substrates affect mitochondrial coupling in cardiac cells, and we also determine the oscillatory coupling properties of mitochondria in ventricular cells in intact perfused hearts. The results show that the frequency of ΔΨm oscillations varies inversely with the size of the oscillating mitochondrial cluster, and depends on the strength of local intermitochondrial coupling. Time-varying coupling constants could be quantitatively determined by applying a stochastic phase model based on extension of the well-known Kuramoto model for networks of coupled oscillators. Cluster size-frequency relationships varied with different substrates, as did mitochondrial coupling constants, which were significantly larger for glucose (7.78 × 10−2 ± 0.98 × 10−2 s−1) and pyruvate (7.49 × 10−2 ± 1.65 × 10−2 s−1) than lactate (4.83 × 10−2 ± 1.25 × 10−2 s−1) or β-hydroxybutyrate (4.11 × 10−2 ± 0.62 × 10−2 s−1). The findings indicate that mitochondrial spatiotemporal coupling and oscillatory behavior is influenced by substrate selection, perhaps through differing effects on ROS/redox balance. In particular, glucose-perfusion generates strong intermitochondrial coupling and temporal oscillatory stability. Pathological changes in specific catabolic pathways, which are known to occur during the progression of cardiovascular disease, could therefore contribute to altered sensitivity of the mitochondrial network to oxidative stress and emergent ΔΨm instability, ultimately scaling to produce organ level dysfunction.  相似文献   

16.
Sucrose isomerase (SI) genes from Pantoea dispersa UQ68J, Klebsiella planticola UQ14S, and Erwinia rhapontici WAC2928 were cloned and expressed in Escherichia coli. The predicted products of the UQ14S and WAC2928 genes were similar to known SIs. The UQ68J SI differed substantially, and it showed the highest isomaltulose-producing efficiency in E. coli cells. The purified recombinant WAC2928 SI was unstable, whereas purified UQ68J and UQ14S SIs were very stable. UQ68J SI activity was optimal at pH 5 and 30 to 35°C, and it produced a high ratio of isomaltulose to trehalulose (>22:1) across its pH and temperature ranges for activity (pH 4 to 7 and 20 to 50°C). In contrast, UQ14S SI showed optimal activity at pH 6 and 35°C and produced a lower ratio of isomaltulose to trehalulose (<8:1) across its pH and temperature ranges for activity. UQ68J SI had much higher catalytic efficiency; the Km was 39.9 mM, the Vmax was 638 U mg−1, and the Kcat/Km was 1.79 × 104 M−1 s−1, compared to a Km of 76.0 mM, a Vmax of 423 U mg−1, and a Kcat/Km of 0.62 × 104 M−1 s−1 for UQ14S SI. UQ68J SI also showed no apparent reverse reaction producing glucose, fructose, or trehalulose from isomaltulose. These properties of the P. dispersa UQ68J enzyme are exceptional among purified SIs, and they indicate likely differences in the mechanism at the enzyme active site. They may favor the production of isomaltulose as an inhibitor of competing microbes in high-sucrose environments, and they are likely to be highly beneficial for industrial production of isomaltulose.  相似文献   

17.
Nakamura C  Ono H 《Plant physiology》1988,88(3):685-689
A membrane-bound auxin-binding protein (MABP) was solubilized by Triton X-100 from cell suspension cultures of Nicotiana tabacum L. Solubilization of MABP was dependent on the detergent concentration and more than 80% of naphthalene-1-acetic acid (NAA)-binding activity was recovered by an optimum concentration of 0.2%. The solubilized MABP was highly heat-unstable and sensitive to protease. The properties of MABP (affinity, temperature dependence, pH optimum, and analog specificity for auxin binding) did not significantly change after solubilization, e.g. the solubilized MABP showed no or very low levels of NAA-binding at 0 to 4°C but showed a high-affinity binding (dissociation constant Kd = 2.7 ± 0.3 × 10−7m) at 25°C at an optimum pH of 5.0. NAA-binding of the solubilized MABP proceeded very slowly, i.e. a time of half-maximum binding was at least 15 minutes, although the solubilized MABP showed higher rates of association (k1 = 1.3 versus 0.9 × 105m−1 min−1) and dissociation (k−1 = 2.2 versus 1.6 × 10−2 min−1) with NAA than the bound MABP. These results show that specific, saturable, and reversible auxin binding to MABP from dicotyledonous N. tabacum differs from that from monocotyledonous Zea mays, and confirm that MABP is distinct from a soluble auxin-binding protein which also is present in N. tabacum.  相似文献   

18.
1. The kinetic properties of the soluble and particulate hexokinases from rat heart have been investigated. 2. For both forms of the enzyme, the Km for glucose was 45μm and the Km for ATP 0·5mm. Glucose 6-phosphate was a non-competitive inhibitor with respect to glucose (Ki 0·16mm for the soluble and 0·33mm for the particulate enzyme) and a mixed inhibitor with respect to ATP (Ki 80μm for the soluble and 40μm for the particulate enzyme). ADP and AMP were competitive inhibitors with respect to ATP (Ki for ADP was 0·68mm for the soluble and 0·60mm for the particulate enzyme; Ki for AMP was 0·37mm for the soluble and 0·16mm for the particulate enzyme). Pi reversed glucose 6-phosphate inhibition with both forms at 10mm but not at 2mm, with glucose 6-phosphate concentrations of 0·3mm or less for the soluble and 1mm or less for the particulate enzyme. 3. The total activity of hexokinase in normal hearts and in hearts from alloxan-diabetic rats was 21·5μmoles of glucose phosphorylated/min./g. dry wt. of ventricle at 25°. The temperature coefficient Q10 between 22° and 38·5° was 1·93; the ratio of the soluble to the particulate enzyme was 3:7. 4. The kinetic data have been used to predict rates of glucose phosphorylation in the perfused heart at saturating concentrations of glucose from measured concentrations of ATP, glucose 6-phosphate, ADP and AMP. These have been compared with the rates of glucose phosphorylation measured with precision in a small-volume recirculation perfusion apparatus, which is described. The correlation between predicted and measured rates was highly significant and their ratio was 1·07. 5. These findings are consistent with the control of glucose phosphorylation in the perfused heart by glucose 6-phosphate concentration, subject to certain assumptions that are discussed in detail.  相似文献   

19.
1. Rat tissue homogenates convert dl-1-aminopropan-2-ol into aminoacetone. Liver homogenates have relatively high aminopropanol-dehydrogenase activity compared with kidney, heart, spleen and muscle preparations. 2. Maximum activity of liver homogenates is exhibited at pH9·8. The Km for aminopropanol is approx. 15mm, calculated for a single enantiomorph, and the maximum activity is approx. 9mμmoles of aminoacetone formed/mg. wet wt. of liver/hr.at 37°. Aminoacetone is also formed from l-threonine, but less rapidly. An unidentified amino ketone is formed from dl-4-amino-3-hydroxybutyrate, the Km for which is approx. 200mm at pH9·8. 3. Aminopropanol-dehydrogenase activity in homogenates is inhibited non-competitively by dl-3-hydroxybutyrate, the Ki being approx. 200mm. EDTA and other chelating agents are weakly inhibitory, and whereas potassium chloride activates slightly at low concentrations, inhibition occurs at 50–100mm. 4. It is concluded that aminopropanol-dehydrogenase is located in mitochondria, and in contrast with l-threonine dehydrogenase can be readily solubilized from mitochondrial preparations by ultrasonic treatment. 5. Soluble extracts of disintegrated mitochondria exhibit maximum aminopropanol-dehydrogenase activity at pH9·1 At this pH, Km values for the amino alcohol and NAD+ are approx. 200 and 1·3mm respectively. Under optimum conditions the maximum velocity is approx. 70mμmoles of aminoacetone formed/mg. of protein/hr. at 37°. Chelating agents and thiol reagents appear to have little effect on enzyme activity, but potassium chloride inhibits at all concentrations tested up to 80mm. dl-3-Hydroxybutyrate is only slightly inhibitory. 6. Dehydrogenase activities for l-threonine and dl-4-amino-3-hydroxybutyrate appear to be distinct from that for aminopropanol. 7. Intraperitoneal injection of aminopropanol into rats leads to excretion of aminoacetone in the urine. Aminoacetone excretion proportional to the amount of the amino alcohol administered, is complete within 24hr., but represents less than 0·1% of the dose given. 8. The possible metabolic role of amino alcohol dehydrogenases is discussed.  相似文献   

20.
A manganese-containing superoxide dismutase (EC 1.15.1.1) was fully characterized from leaves of the higher plant Pisum sativum L., var. Lincoln. The amino acid composition determined for the enzyme was compared with that of a wide spectrum of superoxide dismutases and found to have a highest degree of homology with the mitochondrial manganese superoxide dismutases from rat liver and yeast. The enzyme showed an apparent pH optimum of 8.6 and at 25°C had a maximum stability at alkaline pH values. By kinetic competition experiments, the rate constant for the disproportionation of superoxide radicals by pea leaf manganese superoxide dismutase was found to be 1.61 × 109 molar−1·second−1 at pH 7.8 and 25°C. The enzyme was not sensitive to NaCN or to H2O2, but was inhibited by N3. The sulfhydryl reagent p-hydroxymercuribenzoate at 1 mm concentration produced a nearly complete inhibition of the manganese superoxide dismutase activity. The metal chelators o-phenanthroline, EDTA, and diethyldithiocarbamate all inhibited activity slightly in decreasing order of intensity. A comparative study between this higher plant manganese superoxide dismutase and other dismutases from different origins is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号