首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Androgens are known to regulate both the structure and function of lacrimal tissue in a variety of species. To explore the endocrine basis for this hormone action, the following study was designed to: (1) determine the cellular distribution of androgen receptors in the lacrimal gland; and (2) examine the influence of gender and the endocrine environment on the glandular content of these binding sites. Lacrimal glands were obtained from intact, castrated, hypophysectomized, diabetic or sham-operated male or female adult rats, mice or hamsters, as well as from orchiectomized rats exposed to placebo compounds or physiological levels of testosterone. The cellular of androgen receptors was evaluated by utilizing an immunoperoxidase protocol, in which a purified rabbit polyclonal antibody to the rat androgen receptor was used as the first antibody. Our findings with lacrimal glands showed that: (1) androgen receptors are located almost exclusively in nuclei of epithelial cells; (2) the cellular distribution or intranuclear density of these binding sites is far more extensive in glands of males, as compared to females; (3) orchiectomy or hypophysectomy, but not sham-surgery or diabetes, lead to a dramatic reduction in the immunocytochemical expression of androgen receptors; and (4) testosterone administration to orchiectomized rats induces a marked increase in androgen receptor content, relative to that in placebo-exposed glands. Our results also reveal that a 10 kb androgen receptor mRNA exists in the rat lacrimal gland. Overall, these findings demonstrate that gender and the endocrine system may significantly influence the distribution of androgen binding sites in rat lacrimal tissue. Moreover, our results show that androgens up-regulate their own lacrimal gland receptors.  相似文献   

2.
3.
Ghrelin has been identified as the endogenous ligand for the GHS-R1α (growth hormone secretagogue receptor 1 alpha). Our previous experiments have indicated that ghrelin (i.c.v.) induces antinociceptive effects in acute pain in mice, and the effects were mediated through the central opioid receptors and GHS-R1α. However, which opioid receptor (OR) mediates the antinociceptive effects and the molecular mechanisms are also needed to be further explored. In the present study, the antinociceptive effects of ghrelin (i.c.v.) could be fully antagonized by δ-opioid receptor antagonist NTI. Furthermore, the mRNA and protein levels of δ-opioid peptide PENK and δ-opioid receptor OPRD were increased after i.c.v injection of ghrelin. Thus, it showed that the antinociception of ghrelin was correlated with the GHS-R1α and δ-opioid receptors. To explore which receptor was firstly activated by ghrelin, GHS-R1α antagonist [D-Lys3]-GHRP-6 was co-injection (i.c.v.) with deltorphin II (selective δ-opioid receptor agonist). Finally, the antinociception induced by deltorphin II wasn’t blocked by the co-injection (i.c.v.) of [D-Lys3]-GHRP-6, indicating that the GHS-R1α isn’t on the backward position of δ-opioid receptor. The results suggested that i.c.v. injection of ghrelin initially activated the GHS-R1α, which in turn increased the release of endogenous PENK to activation of OPRD to produce antinociception.  相似文献   

4.
5.
Two ghrelin receptor (GHS-R) genes were isolated from channel catfish tissue and a bacterial artificial chromosome (BAC) library. The two receptors were characterized by determining tissue distribution, ontogeny of receptor mRNA expression, and effects of exogenous homologous ghrelin administration on target tissue mRNA expression. Analysis of sequence similarities indicated two genes putatively encoding GHS-R1 and GHS-R2, respectively, which have been known to be present in zebrafish. Organization and tissue expression of the GHS-R1 gene was similar to that reported for other species, and likewise yielded two detectable mRNA products as a result of alternative splicing. Expression of both full-length, GHS-R1a, and splice variant, GHS-R1b, mRNA was highest in the pituitary. Gene organization of GHS-R2 was similar to GHS-R1, but no splice variant was identified. Expression of GHS-R2a mRNA was highest in the Brockmann bodies. GHS-R1a mRNA was detected in unfertilized eggs and throughout embryogenesis, whereas GHR-R2a mRNA was not expressed in unfertilized eggs or early developing embryos and was the highest at the time of hatching. Catfish intraperitoneally injected with catfish ghrelin-Gly had greater mRNA expression of GHS-R1a in pituitaries at 2 h and Brockmann bodies at 4 h, and of GHS-R2a in Brockmann bodies at 6 h post injection. Amidated catfish ghrelin (ghrelin-amide) had no observable effect on expression of either pituitary receptor; however, GHS-R1a and GHS-R2a mRNA expression levels were increased 4 h post injection of ghrelin-amide in Brockmann bodies. This is the first characterization of GHS-R2a and suggests regulatory and functional differences between the two catfish receptors.  相似文献   

6.
Leptin, ghrelin and neuropeptide W (NPW) modulate vagal afferent activity, which may underlie their appetite regulatory actions. High fat diet (HFD)-induced obesity induces changes in the plasma levels of these peptides and alters the expression of receptors on vagal afferents. We investigated homologous and heterologous receptor regulation by leptin, ghrelin and NPW. Mice were fed (12 weeks) a standard laboratory diet (SLD) or HFD. Nodose ganglia were cultured overnight in the presence or absence of each peptide. Leptin (LepR), ghrelin (GHS-R), NPW (GPR7) and cholecystokinin type-1 (CCK1R) receptor mRNA, and the plasma leptin, ghrelin and NPW levels were measured. SLD: leptin reduced LepR, GPR7, increased GHS-R and CCK1R mRNA; ghrelin increased LepR, GPR7, CCK1R, and decreased GHS-R. HFD: leptin decreased GHS-R and GPR7, ghrelin increased GHS-R and GPR7. NPW decreased all receptors except GPR7 which increased with HFD. Plasma leptin was higher and NPW lower in HFD. Thus, HFD-induced obesity disrupts inter-regulation of appetite regulatory receptors in vagal afferents.  相似文献   

7.
8.
We previously identified ghrelin and motilin genes in Suncus murinus (suncus), and also revealed that motilin induces phase III-like strong contractions in the suncus stomach in vivo, as observed in humans and dogs. Moreover, repeated migrating motor complexes were found in the gastrointestinal tract of suncus at regular 120-min intervals. We therefore proposed suncus as a small laboratory animal model for the study of gastrointestinal motility. In the present study, we identified growth hormone secretagogue receptor (GHS-R) and motilin receptor (GPR38) genes in the suncus. We also examined their tissue distribution throughout the body. The amino acids of suncus GHS-R and GPR38 showed high homology with those of other mammals and shared 42% amino acid identity. RT-PCR showed that both the receptors were expressed in the hypothalamus, medulla oblongata, pituitary gland and the nodose ganglion in the central nervous system. In addition, GHS-R mRNA expressions were detected throughout the stomach and intestine, whereas GPR38 was expressed in the gastric muscle layer, lower intestine, lungs, heart, and pituitary gland. These results suggest that ghrelin and motilin affect gut motility and energy metabolism via specific receptors expressed in the gastrointestinal tract and/or in the central nervous system of suncus.  相似文献   

9.
Expression of mRNA for the ghrelin receptor, GHS-R1a, was detected in various peripheral and central tissues of fetal rats, including skin, bone, heart, liver, gut, brain and spinal cord, on embryonic day (ED)15 and ED17. However, its expression in skin, bone, heart and liver, but not in gut, brain and spinal cord, became relatively weak on ED19 and disappeared after birth (ND2). Ghrelin and des-acyl ghrelin facilitated the proliferation of cultured fetal (ED17, 19), but not neonatal (ND2), skin cells. On the other hand, with regard to cells from the spinal cord and hypothalamus, the proliferative effect of ghrelin continued after birth, whereas the effect of des-acyl ghrelin on neurogenesis in these tissues was lost at the ED19 fetal and ND2 neonatal stages. Immunohistochemistry revealed that the cells in the hypothalamus induced to proliferate by ghrelin at the ND2 stage were positive for nestin and glial fibrillary acidic protein. These results suggest that in the period immediately prior to, and after birth, rat fetal cells showing proliferation in response to ghrelin and des-acyl ghrelin are at a transitional stage characterized by alteration of the expression of GHS-R1a and an undefined des-acyl ghrelin receptor, their responsiveness varying among different tissues.  相似文献   

10.
Ghrelin and its receptor, the growth hormone secretagogue receptor (GHS-R), are expressed in the heart, and may function to promote cardiomyocyte survival, differentiation and contractility. Previously, we had generated a truncated analog of ghrelin conjugated to fluorescein isothiocyanate for the purposes of determining GHS-R expression in situ. We now report the generation and characterization of a far-red ghrelin analog, [Dpr3(octanoyl), Lys19(Cy5)]ghrelin (1–19), and show that it can be used to image changes in GHS-R in developing cardiomyocytes. We also generated the des-acyl analog, des-acyl [Lys19(Cy5)]ghrelin (1–19) and characterized its binding to mouse heart sections. Receptor binding affinity of Cy5-ghrelin as measured in HEK293 cells overexpressing GHS-R1a was within an order of magnitude of that of fluorescein-ghrelin and native human ghrelin, while the des-acyl Cy5-ghrelin did not bind GHS-R1a. Live cell imaging in HEK293/GHS-R1a cells showed cell surface labeling that was displaced by excess ghrelin. Interestingly, Cy5-ghrelin, but not the des-acyl analog, showed concentration-dependent binding in mouse heart tissue sections. We then used Cy5-ghrelin to track GHS-R expression in P19-derived cardiomyocytes. Live cell imaging at different time points after DMSO-induced differentiation showed that GHS-R expression preceded that of the differentiation marker aMHC and tracked with the contractility marker SERCA 2a. Our far-red analog of ghrelin adds to the tools we are developing to map GHS-R in developing and diseased cardiac tissues.  相似文献   

11.
12.
Ghrelin is an endogenous ligand for the growth hormone (GH) secretagogue (GHS) receptor (GHS-R) and a potent stimulant for GH secretion even in infantile rats before puberty. Although the ventromedial nucleus of the hypothalamus (VMH) might be a site of action for ghrelin to induce GH release, the electrophysiological effect of ghrelin on VMH neurons in infantile rats remains to be elucidated. Thus, the purpose of the present study was to investigate the effect of ghrelin on VMH neurons using hypothalamic slices of infantile rats. Ghrelin excited a majority of VMH neurons in a concentration-dependent manner. VMH neurons that were excited by GH releasing peptide-6 (GHRP-6), a synthetic GHS, were also excited by ghrelin and vice versa. Repeated application of ghrelin to the same VMH neuron decreased progressively the excitatory responses depending on the number of times it was administered. The excitatory effect of ghrelin on VMH neurons in normal artificial cerebrospinal fluid (ACSF) persisted in low Ca2+-high Mg2+ ACSF. The present results indicate that (1) ghrelin excites a majority of VMH neurons dose-dependently and postsynaptically and (2) the excitatory effects of ghrelin are mimicked by GHRP-6 and desensitized by repeated applications of ghrelin.  相似文献   

13.
The aim of our study was to investigate the appearance, density and distribution of ghrelin cells and GHS-R1a and GHS-R1b in the human stomach and duodenum during prenatal and early postnatal development. We examined chromogranin-A and ghrelin cells in duodenum, and GHS-R1a and GHS-R1b expression in stomach and duodenum by immunohistochemistry in embryos, fetuses, and infants. Chromogranin-A and ghrelin cells were identified in the duodenum at weeks 10 and 11 of gestation. Ghrelin cells were detected individually or clustered within the base of duodenal crypts and villi during the first trimester, while they were presented separately within the basal and apical parts of crypts and villi during the second and third trimesters. Ghrelin cells were the most numerous during the first (∼11%) and third (∼10%) trimesters of gestation development. GHS-R1a and GHS-R1b were detected at 11 and 16 weeks of gestation, showed the highest level of expression in Brunner's gland and in lower parts of duodenal crypts and villi during the second trimester in antrum, and during the third trimester in corpus and duodenum. Our findings demonstrated for the first time abundant duodenal expression of ghrelin cells and ghrelin receptors during human prenatal development indicating a role of ghrelin in the regulation of growth and differentiation of human gastrointestinal tract.  相似文献   

14.
Ghrelin, a GH-releasing and appetite-regulating peptide that is released from the stomach is an endogenous ligand for growth hormone secretagogue-receptor (GHS-R). Two types of GHS-R are accepted to be present, a functional GHS-R1a and GHS-R1b with unknown function. In this study, we identified cDNA that encodes protein with close sequence similarity to GHS-R and exon–intron organization of the GHS-R genes in rainbow trout, Oncorhynchus mykiss. Two variants of GHS-R1a proteins with 387-amino acids, namely DQTA/LN-type and ERAT/IS-type, were identified. In 3'-RACE PCR and genomic PCR, we also identified three GHS-R1b orthologs that are consisted of 297- or 300-amino acids with different amino acid sequence at the C-terminus, in addition to the DQTA/LN-type and ERAT/IS-type variations. Genomic PCR revealed that the genes are composed of two exons separated by an intron, and that two GHS-R1a and three GHS-R1b variants are generated by three distinct genes. GHS-R1a and GHSR-1b mRNA were predominantly expressed in the pituitary, followed by the brain. Identified DQTA/LN-type or ERAT/IS-type GHS-R1a cDNA was transfected into mammalian cells, and intracellular calcium ion mobilization assay was carried out. However, we did not find any response to rat ghrelin and a homologous ligand, des-VRQ trout ghrelin, of either receptor in vitro. We found that unexpected mRNA splicing had occurred in the transfected cells, suggesting that the full-length, functional receptor protein might not be generated in the cells. Gene structure and characterization of protein sequence identified in this study were closely similar to other GHS-R, but to conclude that it is a GHS-R for rainbow trout, further study is required to confirm activation of GHS-R1a by ghrelin or GHS. Thus we designated the identified receptor proteins in this study as GHS-R-like receptor (GHSR-LR).  相似文献   

15.
16.
17.
Ghrelin is a gastric peptide, discovered by Kojima et al. (1999) [55] as a result of the search for an endogenous ligand interacting with the “orphan receptor” GHS-R1a (growth hormone secretagogue receptor type 1a). Ghrelin is composed of 28 aminoacids and is produced mostly by specific cells of the stomach, by the hypothalamus and hypophysis, even if its presence, as well as that of its receptors, has been demonstrated in many other tissues, not least in gonads. Ghrelin potently stimulates GH release and participates in the regulation of energy homeostasis, increasing food intake, decreasing energy output and exerting a lipogenetic effect. Furthermore, ghrelin influences the secretion and motility of the gastrointestinal tract, especially of the stomach, and, above all, profoundly affects pancreatic functions. Despite of these previously envisaged activities, it has recently been hypothesized that ghrelin regulates several aspects of reproductive physiology and pathology. In conclusion, ghrelin not only cooperates with other neuroendocrine factors, such as leptin, in the modulation of energy homeostasis, but also has a crucial role in the regulation of the hypothalamic–pituitary gonadal axis. In the current review we summarize the main targets of this gastric peptide, especially focusing on the reproductive system.  相似文献   

18.
Recent studies have implicated the peripheral actions of ghrelin in reproductive tissues. Expression of the functional ghrelin receptor, GHS-R1a, has been shown in Sertoli and Leydig cells as well as seminiferous tubules. Therefore, we investigated the effects of chronic administration of ghrelin on morphometry of testicular cells and its probable intracellular alterations. Thirty 45-day male Wistar rats were scheduled for the study and were divided into control and treatment groups. In the treatment group, 1nmol of ghrelin was administered as sc injection for 10 consecutive days or vehicle (physiological saline) to the control rats. Testes were taken by killing of rats on days 5, 15 and 40 after last injection and underwent for photomicrograph and electronmicrograph evaluations as well as stereological estimations. Testicular histomorphometry revealed a significant decrease in the different cell types except for spermatogonia in the treatment animals (P<0.01). Such a cellular decrease was also found in the stereological estimations in this group. Likewise, seminiferous tubules diameter and their germinal epithelium thickness decreased in the treated rats (P<0.01). In intracellular observations, much vacuolated mitochondria, limited endoplasmic reticulum, lesser intracellular organels and several detachment areas between cell membrane and its basement membrane were detected in the ghrelin-treated group. These findings indicate that ghrelin has anti-proliferative effects on different testicular cell types and is a negative modulator of male reproductive system.  相似文献   

19.
目的:观察顺铂化疗对下丘脑、血浆ghrelin、orexin表达和摄食量的影响。方法:Real-time PCR、ELISA法观察顺铂对大鼠下丘脑、血浆ghrelin、orexin表达及摄食量的影响;19名接受顺铂经导管动脉灌注化疗(TAI)的肝细胞患者(HCC),ELISA法检测化疗前和化疗后血浆ghrelin、orexin的变化,用直观类比标度(VAS)(0-10)评估食欲和摄食量。结果:每日腹腔注射顺铂6 mg/kg,1-5 d大鼠摄食量均显著减少(P0.05),且1-4 d血浆酰化ghrelin显著降低(P0.05),5d时浓度仍低于对照组,但无统计学意义。血浆非酰化ghrelin和总的血浆ghrelin没有明显变化(P0.05),而1-5天血浆orexin水平均明显降低(P0.05);顺铂注射1 d后,大鼠下丘脑ghreilin和orexin的mRNA表达量均显著减少(P0.05),ghrelin mRNA变化持续3 d,orexin mRNA在化疗后5 d仍低于对照组(P0.05);肝细胞癌患者化疗后1至8 d的摄食量明显降低,1 d和2 d时的血浆酰化ghrelin显著低于化疗前水平(P0.05)。3 d时逐渐恢复,化疗后3 d、4 d和7 d时血浆酰化ghrelin浓度与化疗前无统计学差异(P0.05)。血浆非酰化ghrelin和总的血浆ghrelin没有明显变化(P0.05);化疗后1~4 d时血浆orexin浓度均显著降低(P0.05),化疗后7 d时orexin基本恢复到化疗前水平(P0.05)。结论:顺铂可降低大鼠下丘脑和血浆ghrelin、orexin的mRNA表达,HCC的TAI会降低血浆酰化ghrelin、orexin、和摄食量。  相似文献   

20.
This study was performed to observe the effects of ghrelin on the activity of gastric distention (GD) sensitive neurons in the arcuate nucleus of hypothalamus (Arc) and on gastric motility in vivo in streptozocin (STZ) induced diabetes mellitus (DM) rats. Electrophysiological results showed that ghrelin could excite GD-excitatory (GD-E) neurons and inhibit GD-inhibitory (GD-I) neurons in the Arc. However, fewer GD-E neurons were excited by ghrelin and the excitatory effect of ghrelin on GD-E neurons was much weaker in DM rats. Gastric motility research in vivo showed that microinjection of ghrelin into the Arc could significantly promote gastric motility and it showed a dose-dependent manner. The effect of ghrelin promoting gastric motility in DM rats was weaker than that in normal rats. The effects induced by ghrelin could be blocked by growth hormone secretagogue receptor (GHSR) antagonist [d-Lys-3]-GHRP-6 or BIM28163. RIA and real-time PCR data showed that the levels of ghrelin in the plasma, stomach and ghrelin mRNA in the Arc increased at first but decreased later and the expression of GHSR-1a mRNA in the Arc maintained a low level in DM rats. The present findings indicate that ghrelin could regulate the activity of GD sensitive neurons and gastric motility via ghrelin receptors in the Arc. The reduced effects of promoting gastric motility induced by ghrelin could be connected with the decreased expression of ghrelin receptors in the Arc in diabetes. Our data provide new experimental evidence for the role of ghrelin in gastric motility disorder in diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号