首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The superfamily of cyclic nucleotide phosphodiesterases is comprised of 11 gene families. By hydrolyzing cAMP and cGMP, PDEs are major determinants in the regulation of intracellular concentrations of cyclic nucleotides and cyclic nucleotide-dependent signaling pathways. Two PDE3 subfamilies, PDE3A and PDE3B, have been described. PDE3A and PDE3B hydrolyze cAMP and cGMP with high affinity in a mutually competitive manner and are regulators of a number of important cAMP- and cGMP-mediated processes. PDE3B is relatively more highly expressed in cells of importance for the regulation of energy homeostasis, including adipocytes, hepatocytes, and pancreatic β-cells, whereas PDE3A is more highly expressed in heart, platelets, vascular smooth muscle cells, and oocytes. Major advances have been made in understanding the different physiological impacts and biochemical basis for recruitment and subcellular localizations of different PDEs and PDE-containing macromolecular signaling complexes or signalosomes. In these discrete compartments, PDEs control cyclic nucleotide levels and regulate specific physiological processes as components of individual signalosomes which are tethered at specific locations and which contain PDEs together with cyclic nucleotide-dependent protein kinases (PKA and PKG), adenylyl cyclases, Epacs (guanine nucleotide exchange proteins activated by cAMP), phosphoprotein phosphatases, A-Kinase anchoring proteins (AKAPs), and pathway-specific regulators and effectors. This article highlights the identification of different PDE3A- and PDE3B-containing signalosomes in specialized subcellular compartments, which can increase the specificity and efficiency of intracellular signaling and be involved in the regulation of different cAMP-mediated metabolic processes.  相似文献   

2.
The regulation of the secondary messengers, cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), is crucial in the hormonal regulation of bone metabolism. Both cAMP and cGMP are inactivated by cyclic nucleotide phosphodiesterases (PDEs), a superfamily of enzymes divided into 11 families (PDE1-11). We compared the PDEs of cultured human osteoblasts (NHOst) and SaOS-2 osteosarcoma cells. The PDE activity of NHOst cells consisted of PDE1, PDE3 and PDE7, whereas PDE1, PDE7 and PDE4, but no PDE3 activity was detected in SaOS-2 cells. In line with the difference in the PDE profiles, rolipram, a PDE4 inhibitor, increased the accumulation of cAMP in SaOS-2, but not in NHOst cells. Expression of PDE subtypes PDE1C, PDE3A, PDE4A, PDE4B, PDE7A and PDE7B was detected in both cell types. NHOst cells additionally expressed PDE1A.  相似文献   

3.
4.
Cyclic nucleotide phosphodiesterase PDE1C1 in human cardiac myocytes   总被引:1,自引:0,他引:1  
Isoforms in the PDE1 family of cyclic nucleotide phosphodiesterases were recently found to comprise a significant portion of the cGMP-inhibited cAMP hydrolytic activity in human hearts. We examined the expression of PDE1 isoforms in human myocardium, characterized their catalytic activity, and quantified their contribution to cAMP hydrolytic and cGMP hydrolytic activity in subcellular fractions of this tissue. Western blotting with isoform-selective anti-PDE1 monoclonal antibodies showed PDE1C1 to be the principal isoform expressed in human myocardium. Immunohistochemical analysis showed that PDE1C1 is distributed along the Z-lines and M-lines of cardiac myocytes in a striated pattern that differs from that of the other major dual-specificity cyclic nucleotide phosphodiesterase in human myocardium, PDE3A. Most of the PDE1C1 activity was recovered in soluble fractions of human myocardium. It binds both cAMP and cGMP with K(m) values of approximately 1 microm and hydrolyzes both substrates with similar catalytic rates. PDE1C1 activity in subcellular fractions was quantified using a new PDE1-selective inhibitor, IC295. At substrate concentrations of 0.1 microm, PDE1C1 constitutes the great majority of cAMP hydrolytic and cGMP hydrolytic activity in soluble fractions and the majority of cGMP hydrolytic activity in microsomal fractions, whereas PDE3 constitutes the majority of cAMP hydrolytic activity in microsomal fractions. These results indicate that PDE1C1 is expressed at high levels in human cardiac myocytes with an intracellular distribution distinct from that of PDE3A and that it may have a role in the integration of cGMP-, cAMP- and Ca(2+)-mediated signaling in these cells.  相似文献   

5.
Two cyclic nucleotide phosphodiesterase (PDE) activities were identified in pig aortic endothelial cells, a cyclic GMP-stimulated PDE and a cyclic AMP PDE. Cyclic GMP-stimulated PDE had Km values of 367 microM for cyclic AMP and 24 microM for cyclic GMP, and low concentrations (1 microM) of cyclic GMP increased the affinity of the enzyme for cyclic AMP (Km = 13 microM) without changing the Vmax. This isoenzyme was inhibited by trequinsin [IC50 (concn. giving 50% inhibition of substrate hydrolysis) = 0.6 microM for cyclic AMP hydrolysis in the presence of cyclic GMP; IC50 = 0.6 microM for cyclic GMP hydrolysis] and dipyridamole (IC50 = 5 microM for cyclic AMP hydrolysis in the presence of cyclic GMP; IC50 = 3 microM for cyclic GMP hydrolysis). Cyclic AMP PDE exhibited a Km of 2 microM for cyclic AMP and did not hydrolyse cyclic GMP. This activity was inhibited by trequinsin (IC50 = 0.2 microM), dipyridamole (IC50 = 6 microM) and, selectively, by rolipram (IC50 = 3 microM). Inhibitors of cyclic GMP PDE (M&B 22948) and of low Km (Type III) cyclic AMP PDE (SK&F 94120) only weakly inhibited the two endothelial PDEs. Incubation of intact cells with trequinsin and dipyridamole induced large increases in cyclic GMP, which were completely blocked by LY-83583. Rolipram, SK&F 94120 and M&B 22948 did not significantly influence cyclic GMP accumulation. Dipyridamole enhanced the increase in cyclic GMP induced by sodium nitroprusside. Cyclic AMP accumulation was stimulated by dipyridamole and trequinsin with and without forskolin. Rolipram, although without effect alone, increased cyclic AMP in the presence of forskolin, whereas M&B 22948 and SK&F 94120 had no effects on resting or forskolin-stimulated levels. These results suggest that cyclic GMP-stimulated PDE regulates cyclic GMP levels and that both endothelial PDE isoenzymes contribute to the control of cyclic AMP.  相似文献   

6.
In extracts of human platelets, three isoenzymes of cyclic nucleotide phosphodiesterase (PDE), namely, PDE2, PDE3, and PDE5, were identified; activities of PDE1 and PDE4 were not detected. In human platelets, the cGMP-hydrolytic activity was about six times higher than the cAMP-hydrolytic activity, and PDE5 and PDE3 are the major phosphodiesterase isoenzymes that hydrolyze cGMP and CAMP, respectively. PDE5 exhibited organ-specific expression in humans, and platelets were among the tissues richest in PDE5. A novel inhibitor of PDE5, sodium 1-[6-chloro-4-(3,4-methylenedioxybenzyl)aminoquinazolin-2-yl] piperidine-4-carboxylate sesquihydrate (E4021), was a potent and highly selective inhibitor of human platelet PDE5. However, E4021 (up to 10 μM) did not inhibit 9,11-epithio-11,12-methano-thromboxane A2-induced platelet aggregation, in vitro. E4021 plus SIN-1 (3-morpholino-sydnonimine), at concentrations that had little effect individually, inhibited aggregation. These results suggest the unique distribution of phosphodiesterase isoenzymes in human platelets and the PDE5 inhibitors might be useful as a new class of antiplatelet drugs.  相似文献   

7.
8.
Cyclic nucleotide phosphodiesterase (PDE) is an important regulator of the cellular concentrations of the second messengers cyclic AMP (cAMP) and cGMP. Insulin activates the 3B isoform of PDE in adipocytes in a phosphoinositide 3-kinase-dependent manner; however, downstream effectors that mediate signaling to PDE3B remain unknown. Insulin-induced phosphorylation and activation of endogenous or recombinant PDE3B in 3T3-L1 adipocytes have now been shown to be inhibited by a dominant-negative mutant of the serine-threonine kinase Akt, suggesting that Akt is necessary for insulin-induced phosphorylation and activation of PDE3B. Serine-273 of mouse PDE3B is located within a motif (RXRXXS) that is preferentially phosphorylated by Akt. A mutant PDE3B in which serine-273 was replaced by alanine was not phosphorylated either in response to insulin in intact cells or by purified Akt in vitro. In contrast, PDE3B mutants in which alanine was substituted for either serine-296 or serine-421, each of which lies within a sequence (RRXS) preferentially phosphorylated by cAMP-dependent protein kinase, were phosphorylated by Akt in vitro or in response to insulin in intact cells. Moreover, the serine-273 mutant of PDE3B was not activated by insulin when expressed in adipocytes. These results suggest that PDE3B is a physiological substrate of Akt and that Akt-mediated phosphorylation of PDE3B on serine-273 is important for insulin-induced activation of PDE3B.  相似文献   

9.
Inhibition mechanism of rat cerebral cortex cyclic nucleotide phosphodiesterases (PDE) by reticulol was investigated. The inhibition of PDE by reticulol was not reduced in the presence of excess PDE activating factor (PAF) or/and Ca2+ ion. Reticulol showed lower Ki values for Ca2+-PAF dependent PDE than for Ca2+ independent PDE.  相似文献   

10.
11.
Full-length cDNAs of human cyclic nucleotide phosphodiesterase 8B (PDE8B) were isolated. Enzymatic characteristics of a dominant variant encoding a protein of 885 residues (PDE8B1) were compared with those of PDE8A1. The recombinant PDE8A1 and PDE8B1 proteins of an entire form were produced in both cytosolic and membrane fractions of the transfected COS cells. The human PDE8B1 was a high-affinity cAMP-PDE with K(m) value of 101+/-12 nM for cAMP, which is greater than that of PDE8A1 (40+/-1 nM). Relative V(max) value of PDE8A1 was 57+/-8% compared with that of PDE8B1 (100+/-12%). Although PDE8A1 was moderately inhibited by dipyridamole with IC(50) value of 8+/-2 microM, the compound antagonized the PDE8B1 activity at three-fold higher concentration (IC(50)=23+/-2 microM). The human PDE8B gene was composed of 22 exons, spanning over 217 kb. Although overall sequence identity between PDE8A1 and PDE8B1 was 68%, positions of junctions of each exon between the PDE8A1 and PDE8B1 sequences were well matched, indicating evolutionary relatedness of both genes.  相似文献   

12.
cDNAs encoding two PDE-3 or cyclic GMP-inhibited (cGI) cyclic nucleotide phosphodiesterase (PDE) isoforms, RPDE-3B (RcGIP1) and HPDE-3A (HcGIP2), were cloned from rat (R) adipose tissue and human (H) heart cDNA libraries. Deletion and N- and C-terminal truncation mutants were expressed inEscherichia coli in order to define their catalytic core. Active mutants of both RPDE-3B and HPDE-3A included the domain conserved among all PDEs plus additional upstream and downstream sequences. An RPDE-3B mutant consisting of the conserved domain alone and one from which the RPDE-3B 44-amino acid insertion was deleted exhibited little or no activity. All active recombinants exhibited a high affinity (<1 μM) for cyclic AMP (cAMP) and cyclic GMP (cGMP), were inhibited by cAMP, cGMP, and cilostamide, but not by rolipram, and were photolabeled with [32P]-cGMP. The IC50 values for cGMP inhibition of cAMP hydrolysis were lower for HPDE-3A than for RPDE-3B recombinants. The deduced amino acid sequences of HPDE-3A and RPDE-3B catalytic domains are very similar except for the 44-amino acid insertion not found in other PDEs. It is possible that this insertion may not only distinguish PDE-3 catalytic domains from other PDEs and identify catalytic domains of PDE-3 subfamilies or conserved members of the PDE-3 gene family, but may also be involved in the regulation of sensitivity of PDE-3s to cGMP. These authors contributed equally to this work.  相似文献   

13.
14.
Deficits in brain function that are associated with aging and age-related diseases benefit very little from currently available therapies, suggesting a better understanding of the underlying molecular mechanisms is needed to develop improved drugs. Here, we review the literature to test the hypothesis that a break down in cyclic nucleotide signaling at the level of synthesis, execution, and/or degradation may contribute to these deficits. A number of findings have been reported in both the human and animal model literature that point to brain region-specific changes in Galphas (a.k.a. Gαs or Gsα), adenylyl cyclase, 3′,5′-adenosine monophosphate (cAMP) levels, protein kinase A (PKA), cAMP response element binding protein (CREB), exchange protein activated by cAMP (Epac), hyperpolarization-activated cyclic nucleotide-gated ion channels (HCNs), atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), soluble and particulate guanylyl cyclase, 3′,5′-guanosine monophosphate (cGMP), protein kinase G (PKG) and phosphodiesterases (PDEs). Among the most reproducible findings are 1) elevated circulating ANP and BNP levels being associated with cognitive dysfunction or dementia independent of cardiovascular effects, 2) reduced basal and/or NMDA-stimulated cGMP levels in brain with aging or Alzheimer's disease (AD), 3) reduced adenylyl cyclase activity in hippocampus and specific cortical regions with aging or AD, 4) reduced expression/activity of PKA in temporal cortex and hippocampus with AD, 5) reduced phosphorylation of CREB in hippocampus with aging or AD, 6) reduced expression/activity of the PDE4 family in brain with aging, 7) reduced expression of PDE10A in the striatum with Huntington's disease (HD) or Parkinson's disease, and 8) beneficial effects of select PDE inhibitors, particularly PDE10 inhibitors in HD models and PDE4 and PDE5 inhibitors in aging and AD models. Although these findings generally point to a reduction in cyclic nucleotide signaling being associated with aging and age-related diseases, there are exceptions. In particular, there is evidence for increased cAMP signaling specifically in aged prefrontal cortex, AD cerebral vessels, and PD hippocampus. Thus, if cyclic nucleotide signaling is going to be targeted effectively for therapeutic gain, it will have to be manipulated in a brain region-specific manner.  相似文献   

15.
Wild-type (F/B), constitutively active (F/B*), and three kinase-inactive (F/Ba-, F/Bb-, F/Bc-) forms of Akt/protein kinase B (PKB) were permanently overexpressed in FDCP2 cells. In the absence of insulin-like growth factor-1 (IGF-1), activities of PKB, cyclic nucleotide phosphodiesterase 3B (PDE3B), and PDE4 were similar in nontransfected FDCP2 cells, mock-transfected (F/V) cells, and F/B and F/B- cells. In F/V cells, IGF-1 increased PKB, PDE3B, and PDE4 activities approximately 2-fold. In F/B cells, IGF-1, in a wortmannin-sensitive manner, increased PKB activity approximately 10-fold and PDE3B phosphorylation and activity ( approximately 4-fold), but increased PDE4 to the same extent as in F/V cells. In F/B* cells, in the absence of IGF-1, PKB activity was markedly increased ( approximately 10-fold) and PDE3B was phosphorylated and activated (3- to 4-fold); wortmannin inhibited these effects. In F/B* cells, IGF-1 had little further effect on PKB and activation/phosphorylation of PDE3B. In F/B- cells, IGF-1 activated PDE4, not PDE3B, suggesting that kinase-inactive PKB behaved as a dominant negative with respect to PDE3B activation. Thymidine incorporation was greater in F/B* cells than in F/V cells and was inhibited to a greater extent by PDE3 inhibitors than by rolipram, a PDE4 inhibitor. In F/B cells, IGF-1-induced phosphorylation of the apoptotic protein BAD was inhibited by the PDE3 inhibitor cilostamide. Activated PKB phosphorylated and activated rPDE3B in vitro. These results suggest that PDE3B, not PDE4, is a target of PKB and that activated PDE3B may regulate cAMP pools that modulate effects of PKB on thymidine incorporation and BAD phosphorylation in FDCP2 cells.  相似文献   

16.
17.
The recent cloning of a growth hormone secretagogue receptor (GHS-R) from human pituitary gland and brain identified a third G protein-coupled receptor (GPC-R) involved in the control of growth hormone release. The nucleotide sequence of the GHS-R is most closely related to the neurotensin receptor-1 (NT-R1) (35% overall protein identity). Two human GPC-Rs related to both the type 1a GHS-R and NT-Rs were cloned and characterized. Hybridization at low posthybridizational stringency with restriction enzyme-digested human genomic DNA resulted in the identification of a genomic clone encoding a first GHS-R/NT-R family member (GPR38). A cDNA clone was identified encoding a second GHS-R-related gene (GPR39). GPR38 and GPR39 share significant amino acid sequence identity with the GHS-R and NT-Rs 1 and 2. An acidic residue (E124) in TM-3, essential for the binding and activation of the GHS-R by structurally dissimilar GHSs, was conserved in GPR38 and GPR39. GPR38 is encoded by a single gene expressed in thyroid gland, stomach, and bone marrow. GPR39 is encoded by a highly conserved single-copy gene, expressed in brain and other peripheral tissues. Fluorescencein situhybridization localized the genes for GPR38 and GPR39 to separate chromosomes, distinct from the gene encoding the GHS-R and NT-R type 1. The ligand-binding and functional properties of GPR38 and GPR39 remain to be determined.  相似文献   

18.
Das SB  Dinh C  Shah S  Olson D  Ross A  Selvakumar P  Sharma RK 《Gene》2007,396(2):283-292
Calmodulin-dependent cyclic nucleotide phopshodiesterase (PDE1) has been extensively characterized and is a key enzyme involved in the complex interaction between cyclic nucleotide and Ca(2+) second-messenger systems. It is well established that PDE1 exists in different isozymes. For example, bovine brain tissue has two PDE1 isozymes (PDE1A2 and PDE1B1) whereas only one form (PDE1A1) is reported in bovine cardiac tissue. In this study, we report the cloning of two cDNA splice variants of PDE1: PDE1-small and PDE1-large, from bovine cardiac tissue. Their amino acid sequence similarity to PDE1 sequences from other mammalian species showed that all are very conserved, suggesting their importance in cellular functions. Interestingly, compared to other mammalian species, bovine PDE1A, PDE-small and PDE-large show a deletion at the C-terminal end of the catalytic domain of the gene. Although the significance of this deletion at this crucial location of the gene is not known, we have successfully over-expressed both PDE1-small and PDE1-large splice variants in E. coli and these splice variants are characterized in terms of Western blot, biotinylated calmodulin overlay and peptide mass fingerprinting. Results from these studies suggested that these two splice variants belong to the PDE1 superfamily. To our knowledge, this is the first report on cloning and characterization of these cDNA variants from bovine cardiac tissue. Since there are at least two isoforms of PDE1 in bovine heart tissue, this merits further in-depth study.  相似文献   

19.
A full-length cDNA clone of the human pregnancy zone protein (PZP) was cloned from the hepatocellular carcinoma cell line Hep3B. Based on the exon sequences of the PZP gene (Devriendt et al. (1989) Gene 81, 325-334; Marynen et al., unpublished data), primer pairs were designed to amplify six overlapping fragments of the PZP cDNA. The obtained cDNA is 4609 bp long and contains an open reading frame coding for 1482 amino acids, including a signal peptide of 25 amino acid residues. Comparison with the published partial PZP amino acid sequence (Sottrup-Jensen et al. (1984) Proc. Natl. Acad. Sci. USA 81, 7353-7357) and the PZP genomic sequences confirmed the identity as a PZP cDNA. 71% of the corresponding amino acid residues in PZP and human alpha 2-macroglobulin (alpha 2M) are identical and all cysteine residues are conserved. A typical internal thiol ester site and a bait domain were identified. A Pro/Thr polymorphism was identified at amino acid position 1180, and an A/G nucleotide polymorphism at bp 4097.  相似文献   

20.
Cyclic AMP is hydrolyzed by members of at least eight classes of cyclic nucleotide phosphodiesterases (PDEs). Although it has been reported that cyclic AMP PDE activity in mammalian tissues can be inhibited by benzodiazepines, it has not been conclusively demonstrated that members of the class of cyclic AMP-specific, rolipram-inhibitable PDEs (PDE4s) are targets for these drugs. Moreover, no PDE4s expressed in mice have been characterized. To address these issues, we isolated two cDNAs representing homologues of PDE4A1 and PDE4B3 from a mouse brain library. After transient transfection in human embryonic kidney (HEK) 293 cells, the mouse PDEs hydrolyzed cyclic AMP with a low K(m) and were inhibited by rolipram; both are properties typical of other mammalian PDE4 enzymes. In addition, we found that diazepam inhibited cyclic AMP hydrolysis by the mouse PDE4 subtypes. Interestingly, PDE4B was significantly more sensitive to inhibition by both rolipram and diazepam than the PDE4A subtype. This is the first demonstration that recombinantly expressed PDE4s are inhibited by diazepam, and should facilitate future studies with mouse models of depression and anxiety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号