首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The distribution and morphology of gut endocrine cells, which are immunoreactive to crustacean hyperglycaemic hormone (CHH) and the corresponding precursor-related peptide (CPRP), have been described in the shore crab Carcinus maenas. The cells are uniquely distributed throughout the fore- and hindgut, but were never observed in the midgut or associated caeca. Expression of CHH and CPRP in the gut endocrine cells is generally restricted to premoult, although small numbers of immunoreactive cells were observed in intermoult and postmoult. A notable feature of the distribution of these slender cells was that, whilst they are distributed evenly over much of the fore- and hindgut, all extrinsic and intrinsic muscles of the gastric and pyloric stomach examined were surrounded by a ring(s) of cells, suggesting a mechanoreceptive function. Ultrastructural studies revealed that these cells contain numerous immunopositive, electron-dense granules. This suggests that they are "paraneurones", which secrete CHH and CPRP into the haemolymph during ecdysis, accounting for the ecdysial surge in CHH, which is implicated in water uptake and swelling prior to ecdysis.  相似文献   

2.
Summary Ammonia excretion in the shrimpCrangon crangon (L.) shows a cyclical pattern during the moult cycle. At the early premoult (stage D0) there is a 7 to 17% increase over that characteristic at intermoult; at late premoult (stage D2) excretion decreases to a minimum; immediately after ecdysis, the excretion rate is 1.5 to 2.6 times higher than at the intermoult stage (Table 1).These variations appear to be correlated with protein breakdown and protein synthesis, and possibly with periods of high metabolic activity (growth resulting from cell multiplication).Ammonia excretion of animals in standing water is higher than of those in running sea-water. Excretion might possibly be influenced by a semi-lunar rhythm.  相似文献   

3.
Changes in calcium and phosphorus concentrations, adenylate (AMP, ADP and ATP) levels, and ratios and ATPase activities of Macrobrachium nipponense were investigated during the moult cycle. Ca level in the exoskeleton was lowest in early postmoult (stage A), increasing at stages B and through intermoult (stage C) and peaking in premoult (stage D1 and D2). The P concentrations in the exoskeleton and muscle in late premoult and early postmoult stages were higher than those at other moult stages, and were lowest in the intermoult. Muscle adenylate energy charge (AEC) changed with moult stages, and was in agreement with the change in inorganic P level in the muscle. AEC may be a direct indicator of energy metabolic activity during the moult cycle. ATP/ADP and ATP/AMP ratios in premoult and postmoult stages were higher than that in intermoult stage. Na(+)-K(+)-ATPase activities of gills, muscles and hepatopancreatic of prawns were higher in early postmoult and late premoult animals, whereas they were lower in late postmoult, intermoult and early premoult animals. Gill residual ATPase activity was significantly higher in postmoult animals, while the peak value of hepatopancreatic residual ATPase activity appeared in intermoult stage.  相似文献   

4.
The present work focuses on the moult cycle of Armadillo officinalis. For a 100‐day period, 134 animals were observed and routinely examined with the aim of detecting distinctive morphological characters in the several stages and substages of the moult cycle and of disclosing their duration. Statistical tests and Poisson regression models with robust standard errors were used to investigate differences and relationships between moult and the size and gender of the animals. The appearance of the calcium carbonate deposits on the pereon sternites during the premoult stage was documented in detail, and three main substages were identified. The average duration of the premoult and of the biphasic ecdysis was about 12 and 1.5 days, respectively. This observation period, however, did not allow to establish a determined average duration of the intermoult stage, which was extremely variable. This stage lasted for 2 months or more in most of the cases observed, but about 1‐month‐long intermoult stages were also recorded. No statistically significant association was found between the number of moults and gender and size of the animals.  相似文献   

5.
1. This paper investigates moult stage and size-specific changes in whole body composition during growth in juvenile crayfish in order to better describe the nature of growth and energy use. 2. Composition is described in terms of moult stage and size-specific wet, dry and ash-free dry weight, water, carbon, protein nitrogen, non-protein nitrogen, ash and energy. Dry weight and ash-free dry weight (AFDW) peaked in the middle and in the later stages of premoult. Both peaks were about 2–2.3 times postmoult weight. Losses in tissue weight during ecdysis were substantial in the smallest crayfish but declined with size. Water was taken up between late premoult and early postmoult. Tissue accumulation occurred primarily between B and D1.3, with further weight gain largely the result of fluid uptake. Ash increased immediately postmoult with a major peak occurring during intermoult. Mean organic carbon varied between 33 and 35.5% of the body and 49% of the exuvia. Chitin varied between 9 and 17% of body AFDW and made up about 50.5% of the exuvia. Protein content varied between 47 and 62% of body AFDW and about 25% of the exuvia. Carbon, chitin and protein were not affected by moult stage but protein declined with ocular carapace length (OCL) in larger crayfish. Mean caloric content varied between 19 and 22 J mg-1 AFDW depending on size and moult stage. Caloric content increased with OCL during premoult and early intermoult then declined with size until part of the way through premoult. 3. Relationships between protein, chitin and remaining carbon (organic carbon minus chitin) were examined. It is suggested that protein and some carbon are catabolized during the moulting process, possibly to fuel metabolism. Models are presented showing changes in proximate composition over the moult cycle for two sizes of crayfish, and tissue and energy accumulation and loss over a series of moult cycles and sizes from 3.1 mm to 17 mm OCL.  相似文献   

6.
Calcium ions are an important second messagers in the life of organisms, such as in silkworm growth and their developmental processes; these ions can trigger various effects, including the muscle excitation-contraction coupling mechanism, secretion of endocrine and exocrine glands, neuronal activities, midgut nutrients metabolisms, sensory system, enzymatic systems, and acceleration of metabolism activities. This paper reviewed the ecdysis process and mechanisms, where calcium plays an important role in larvae-to-larvae ecdysis and larvae-to-pupae and pupae-to-moth metamorphosis of silkworms; the paper focuses on the advanced achievements in the field of calcium actions during larvae-to-larvae and larvae-to-pupae changes. Calcium ion channels are shown to be the action mechanism of phospholipase C in the G protein cascade of the calcium signal transduction pathway, and the activators and inhibitors of these calcium channels are further discussed.  相似文献   

7.
Terrestrial isopods moult first the posterior and then the anterior half of the body. During the moulting cycle they retain a significant fraction of cuticular calcium partly by storing it in sternal CaCO3 deposits. We analysed the calcium content in whole Ligia hawaiiensis and the calcium distribution between the posterior, the anterior ventral, and the anterior dorsal cuticle during four stages of the moulting cycle. The results indicate that: (1) overall, about 80% of the calcium is retained and 20% is lost with the exuviae, (2) in premoult 68% of the calcium in the posterior cuticle is resorbed (23% moved to the anterior ventral cuticle, 17% to the anterior dorsal cuticle, and the remaining 28% to internal tissues), (3) after the posterior moult 83% of the calcium in the anterior cuticle is shifted to the posterior cuticle and possibly to internal storage sites, (4) following the anterior moult up to 54% of the calcium in the posterior cuticle is resorbed and used to mineralise the new anterior cuticle. 45Ca-uptake experiments suggest that up to 80% of calcium lost with the anterior exuviae may be regained after its ingestion. Whole body calcium of Ligia hawaiiensis is only 0.7 times that of the fully terrestrial isopods. These terrestrial species can retain only 48% of whole body calcium, suggesting that the amount of calcium that can be retained by shifting it between the anterior and posterior integument is limited. We propose that fully terrestrial Oniscidea rely to a larger degree on other calcium sources like internal stores and uptake from the ingested exuviae.  相似文献   

8.
B Turbeck 《Tissue & cell》1974,6(4):627-640
Concentrically laminated granules, spherites, are sometimes found in the regenerative cells of midgut of some species of lepidopterous larvae. The spherites are formed in cytoplasmic vesicles just before ecdysis and disappear during the differentiation of the regenerative cells to columnar and goblet cells. They function as intracellular stores of compounds used in the growth of the cell. Phosphates of magnesium and perhaps calcium are probable constituents. Spherites are sometimes also found in the degenerating columnar cells where they are excreted into the lumen with the exfoliating epithelium. The phenomenon of periodic precipitation which is the physical-chemical basis of the formation of spherites is discussed.  相似文献   

9.
Decapod crustaceans show proliferation of the nerve cells in the olfactory lobe throughout their lives. However, the regulation of this process is still poorly understood, since it may vary with endogenous and exogenous factors. The objective of the present investigation was to quantify the proliferation of nerve cells and number of nerve cells with ecdysone receptors in the clusters of the central olfactory system in Neohelice granulata, according to moult stages and in different seasons (summer and winter). Three injections of bromodeoxyuridine (BrdU) were administered to the crabs. Brains were sectioned by microtome and fixed on slides for immunohistochemistry with anti-BrdU and anti-EcR antibodies. The proliferation of nerve cells was higher in winter than in summer, probably because in winter the crabs do not breed and the premoult and postmoult periods are longer. Crabs in postmoult exhibited more BrdU-labelled cells than crabs in premoult or intermoult in winter, because of a greater number of mitoses related to an increase in body size and addition of olfactory receptor neurons. The number of EcR-labelled cells was higher in premoult than in postmoult or intermoult in winter. The proliferation of nerve cells is regulated seasonally and according to moult stages.  相似文献   

10.
Amino acids were measured in claw muscle and haemolymph in the freshwater decapod crustacean, Cherax destructor, at different stages of the moult cycle. The total pool of amino acids in muscles from animals in intermoult (97+/-13 mmol kg(-1) muscle), premoult (80+/-20 mmol kg(-1)) and postmoult (97+/-19 mmol kg(-1)) were not significantly different. Despite the relatively stable total pool of amino acids, there were changes in the concentrations of alanine, glutamine and proline over the moult cycle. Compared to intermoult, claw muscles from animals in premoult had a lower concentration of proline, and animals in postmoult had higher concentrations of alanine and glutamine, but lower concentrations of proline. Concentrations of alanine and glutamine in claw muscle of animals in postmoult were higher and proline concentrations lower than in the same animals during the premoult stage. The concentration of proline in haemolymph was lower in animals in premoult and postmoult compared to intermoult. The total amino acid pool in the claw muscle of Cherax destructor did not change significantly over the moult which is distinctly different to the changes in amino acids reported in the claw muscles of marine decapod crustaceans.  相似文献   

11.
Ecological diversification into new environments presents new mechanical challenges for locomotion. An extreme example of this is the transition from a terrestrial to an aquatic lifestyle. Here, we examine the implications of life in a neutrally buoyant environment on adaptations of the axial skeleton to evolutionary increases in body size. On land, mammals must use their thoracolumbar vertebral column for body support against gravity and thus exhibit increasing stabilization of the trunk as body size increases. Conversely, in water, the role of the axial skeleton in body support is reduced, and, in aquatic mammals, the vertebral column functions primarily in locomotion. Therefore, we hypothesize that the allometric stabilization associated with increasing body size in terrestrial mammals will be minimized in secondarily aquatic mammals. We test this by comparing the scaling exponent (slope) of vertebral measures from 57 terrestrial species (23 felids, 34 bovids) to 23 semi‐aquatic species (pinnipeds), using phylogenetically corrected regressions. Terrestrial taxa meet predictions of allometric stabilization, with posterior vertebral column (lumbar region) shortening, increased vertebral height compared to width, and shorter, more disc‐shaped centra. In contrast, pinniped vertebral proportions (e.g. length, width, height) scale with isometry, and in some cases, centra even become more spool‐shaped with increasing size, suggesting increased flexibility. Our results demonstrate that evolution of a secondarily aquatic lifestyle has modified the mechanical constraints associated with evolutionary increases in body size, relative to terrestrial taxa.  相似文献   

12.
Mechanism of store-operated calcium entry   总被引:3,自引:0,他引:3  
Activation of receptors coupled to the phospholipase C/IP3 signalling pathway results in a rapid release of calcium from its intracellular stores, eventually leading to depletion of these stores. Calcium store depletion triggers an influx of extracellular calcium across the plasma membrane, a mechanism known as the store-operated calcium entry or capacitative calcium entry. Capacitative calcium current plays a key role in replenishing calcium stores and activating various physiological processes. Despite considerable efforts, very little is known about the molecular nature of the capacitative channel and the signalling pathway that activates it. This review summarizes our current knowledge about store operated calcium entry and suggests possible hypotheses for its mode of activation.  相似文献   

13.
The relation of skeleton weight to body weight with increasing size is compared for aquatic and terrestrial vertebrates. Due to the buoyancy of water, the skeleton weights of aquatic vertebrates (fishes and whales) vary in nearly direct proportion (exponent 1.0) to body weight; while the skeletons of terrestrial vertebrates occupy an increasingly greater proportion of total body weight as size increases (exponent greater than i. i) due to the necessity of supporting their weight on land.  相似文献   

14.
Crustacean calcium bodies are epithelial sacs which contain a mineralized matrix. The objectives of this study were to describe the microscopic anatomy of calcium bodies in the terrestrial isopod Hyloniscus riparius and to establish whether they undergo molt-related structural changes. We performed 3D reconstruction of the calcium bodies from paraffin sections and analyzed their structure with light and electron microscopy. In addition, we analyzed the chemical composition of their mineralized matrices with micro-Raman spectroscopy. Two pairs of these organs are present in H. riparius. One pair is filled with bacteria while the other pair is not. In non-molting animals, the bacteria-filled calcium bodies contain apatite crystals and the bacteria-free calcium bodies enclose CaCO3-containing concretions with little organic matrix. During preparation for molt, an additional matrix layer is deposited in both pairs of calcium bodies. In the bacteria-filled calcium bodies it contains a mixture of calcium carbonate and calcium phosphate, whereas only calcium carbonate is present in bacteria-free calcium bodies. After ecdysis, all mineral components in bacteria-free calcium bodies and the additional matrix layer in bacteria-filled calcium bodies are completely resorbed. During calcium resorption, the apical surface of the calcium body epithelium is deeply folded and electron dense granules are present in spaces between epithelial cells. Our results indicate that the presence of bacteria might be linked to calcium phosphate mineralization. Calcium bodies likely provide a source of calcium and potentially phosphate for the mineralization of the new cuticle after molt. Unlike other terrestrial isopods, H. riparius does not form sternal CaCO3 deposits and the bacteria-free calcium bodies might functionally replace them in this species.  相似文献   

15.
The moulting cycle and the time course of changes in body density from hatching to the end of the megalopal stage in snow crab (Chionoecetes opilio) larvae were investigated in laboratory-reared specimens. Morphological changes in the epidermis and cuticle were photographically documented to characterize the moult-cycle stages: A–B (postmoult), C (intermoult), D (premoult) and E (ecdysis). Moult-stage characteristics were based on a microscopical examination of integumental modifications, particularly of the telson. During stages A–C, the larval cuticle changed from a spongy structure to become conspicuously thicker and more solid in appearance. In stage D, the epidermis retracted from the cuticle and new setae and appendages were formed. The body densities of larval snow crabs were lowest just after moulting; they increased greatly during stage C, and then gradually increased to reach a plateau at 1.0897–1.0931 g cm?3 during stage D. Over the whole larval period, they have a density greater than that of seawater. These observations will assist in understanding of larval distribution and transport in snow crabs in their natural habitat, and provide a useful tool to determine the developmental stages of larvae sampled from the plankton and from larval cultures.  相似文献   

16.
Holthuisana transversa reabsorbs much of its exoskeletal calcium in the last 3 days before ecdysis and stores it in circulating granules in the haemocoel and in non-circulating granules in the subepidermal connective tissue. Calcium enters the epidermal cells from the moulting fluid, probably through their apical microvilli and is either incorporated into intracellular calcium granules or exits the cell via the basolateral membranes to be used in formation of two other granule types. Intracellular granules (0.4–2 μm long) form in large masses in the apical cytoplasm of the epidermal cells. They are formed as membrane-bound vesicles by the Golgi, and calcium and organic matrix material are added from the surrounding cytoplasm. As development proceeds, lamellae appear and calcium carbonate is deposited in the matrix. Granule masses move basally and are stored in the connective tissue. Calcium is also incorporated into extracellular large granules (0.8–3.8 μm long) which are formed in narrow intercellular channels between epidermal cells. A third granule type (small granules, 0.26 μm diameter) is formed in subepidermal connective tissue cells and released into the haemolymph in very large numbers. Calcium was identified in the two larger granule types using X-ray microanalysis and significant amounts of phosphorus and potassium were also present in the large granules. A model for ion cycling between the exoskeleton and granules is presented.  相似文献   

17.
The study investigates the change in osmolality and haemolymph constituents in marron Cherax cainii and yabbies Cherax destructor associated with moult stages, body weights and their feeding status. A total of 582 haemolymph samples from 5 moult stages (postmoult-AB, intermoult-C, and premoult stages – D0, D1, D2), two body weight classes (2–15 g and 61–75 g) and nutritional status were used for analysis of osmolality, protein, glucose, and ionic concentrations of potassium and chloride following the standard biochemical procedures. The haemolymph protein, glucose, potassium and chloride levels were highest at intermoult and early premoult stages, and lowest at postmoult in both crayfish species. Except protein, no significant differences were seen in analyzed parameters between various weight classes and two species. Haemolymph osmolality, protein and glucose were significantly higher in fed crayfish, whereas no variations in haemolymph potassium and chloride concentrations were observed between the fed and unfed crayfish. Maximum osmolality was recorded at 7–8 h after feeding in both crayfish species. The results showed that the biochemical changes in the haemolymph of marron and yabbies are related to moult stages, body weight and feeding and thus can be used as tools for determining suitable diets.  相似文献   

18.
Before moulting, terrestrial isopods resorb calcium carbonate (CaCO3) from the posterior cuticle and store it in sternal deposits. These consist mainly of amorphous calcium carbonate (ACC) spherules that develop within the ecdysial space between the anterior sternal epithelium and the old cuticle. Ions that occur in the moulting fluid, including those required for mineral deposition, are transported from the hemolymph into the ecdysial space by the anterior sternal epithelial cells. The cationic composition of the moulting fluid probably affects mineral deposition and may provide information on the ion-transport activity of the sternal epithelial cells. This study presents the concentrations of inorganic cations within the moulting fluid of the anterior sternites during the late premoult and intramoult stages. The most abundant cation is Na+ followed by Mg2+, Ca2+ and K+. The concentrations of these ions do not change significantly between the stages whereas the mean pH changed from 8.2 to 6.9 units between mineral deposition in late premoult, and resorption in intramoult, respectively. Measurements of the transepithelial potential show that there is little driving force for passive movements of calcium across the anterior sternal epithelium. The results suggest a possible role of magnesium ions in ACC formation, and a contribution of pH changes to CaCO3 precipitation and dissolution.  相似文献   

19.
Summary In Rhapidostreptus virgator exocrine gland complexes are found in the anal valves of both sexes. Every gland complex consists of about 200 secretory units, each of which is comprised of four cells: two secretory cells, an intermediary cell, and a canal cell. The amount of secretion produced by these glands varies during the intermoult cycle: it is very small in freshly moulted individuals (postmoult phase), at a medial level during the following intermoult phase, and very large in the premoult phase. The secretion may be used to form the excrement clumps and above all to build the moulting chamber.  相似文献   

20.
Abstract

The present study describes the effect of bilateral eyestalk ablation (BESA) on reproduction and moulting of spiny lobster Panulirus homarus females in their early and late intermoult stages. The lobsters obtained from the wild were conditioned for the experiment. The experiments were conducted at the Calicut research centre of Central Marine Fisheries Research Institute, India. Eyestalk ablation of females was done by ligation. The responses of the bilaterally eyestalk-ablated lobsters were statistically analysed. BESA conducted on the early and late intermoult stages resulted in the simultaneous acceleration of the somatic growth and reproductive processes with higher emphasis for oogenesis in lobsters ablated in the early intermoult phase and comparatively lower activity in those ablated in the late intermoult phase. Ablation in late intermoult phase resulted in faster entry into the premoult stage compared to the control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号