首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. rRNA was isolated from rat liver at short intervals after the intraperitoneal injection of [(14)C]methyl methanesulphonate (50mg/kg) or NN-di[(14)C]methylnitrosamine (2mg/kg). These doses were chosen to minimize the effects of toxicity. 2. The following methods of hydrolysis of [(14)C]methylated rRNA were employed: enzymic digestion to nucleosides at pH8; alkaline hydrolysis and conversion into nucleosides; acid hydrolysis to bases. 3. The methylation products were analysed by chromatography on columns of Dowex-50 (H(+) form) and Dowex-50 (NH(4) (+) form). 4. With both methylating agents the principal product of methylation was 7-methylguanine. Differences were obtained, however, in the molar proportions of the minor bases 3-methylcytosine, 1-methyladenine and 7-methyladenine. Methylation at the O-6 position of guanine was a significant feature of rRNA obtained from the NN-di[(14)C]methylnitrosamine-treated animals but was not detected in rRNA after treatment with [(14)C]methyl methanesulphonate.  相似文献   

2.
1. The incorporation of methyl groups into histones from dimethylnitrosamine and from methionine was studied by injection of the labelled compounds, isolation of rat liver and kidney histones, and analysis of hydrolysates by column chromatography. 2. Labelled methionine gave rise to labelled in-N-methyl-lysine, di-in-N-methyl-lysine and an amino acid presumed to be omega-N-methyl-arginine. 3. Administration of labelled dimethylnitrosamine gave rise to labelled S-methylcysteine, 1-methylhistidine, 3-methylhistidine and in-N-methyl-lysine derived from the alkylating metabolite of dimethylnitrosamine. In addition, labelled formaldehyde released by metabolism of dimethylnitrosamine leads to the formation of labelled S-adenosylmethionine, and hence to labelling of in-N-methyl-lysine, di-in-N-methyl-lysine and omega-N-methylarginine by enzymic methylation. 4. The formation of in-N-methyl-lysine by alkylation of liver histones was confirmed by using doubly labelled dimethylnitrosamine to discriminate between direct chemical alkylation and enzymic methylation via S-adenosylmethionine. These experiments also suggested the possibility that methionine residues in the histones were alkylated to give methylmethionine sulphonium residues. 5. The extent of alkylation of liver histones was maximal at about 5h after dosing and declined between 5 and 24h. The methylated amino acids resulting from direct chemical alkylation were preferentially lost: this is ascribed to necrosis of the more highly alkylated cells. 6. Liver histones were about four times as alkylated as kidney histones; the extent of alkylation of liver histones was similar to that of liver total nuclear proteins. 7. Methyl methanesulphonate (120mg/kg) alkylated liver histones to a greater extent than did dimethylnitrosamine. Diethylnitrosamine also alkylated liver histones. 8. The results are discussed with regard to the possible effects of alkylation on histone function, and the possible role of histone alkylation in carcinogenesis by the three compounds.  相似文献   

3.
Abstract— Alkylation of rat brain nucleic acids in vivo was measured after a single intravenous injection (1 mmol/kg body wt.) of N -[14C]methyl- N -nitrosourea and [14C]methyl methanesulphonate. The main product with both compounds was 7-methylguanine, The extents of methylation on this position in DNA and RNA were similar with methylnitrosourea but methyl methanesulphonate produced twice as much 7-methylguanine in DNA as in cytoplasmic RNA. Brain DNA from rats treated with labelled methylnitrosourea contained radioactive O 6-methylguanine, accounting for about 12 per cent of the radioactivity present as 7-methylguanine and cytoplasmic RNA contained about half this amount of O 6-methylguanine. Neither DNA nor cytoplasmic RNA from methyl methanesulphonatetreated rats contained any detectable O 6-methylguanine. Treatment with both compounds resulted in varying small amounts of methylation of other nucleic acid bases including 1-methyladenine, 3-methyladenine and 3-methylcytosine. The possible relevance of alkylation of brain nucleic acids to the induction of brain tumours is discussed.  相似文献   

4.
1. The incorporation of [14C]leucine into liver proteins of rats was measured in vivo at various times after treatment of the animals with dimethylnitrosamine and was correlated with the state of the liver ribosomal aggregates. Inhibition of incorporation ran parallel with breakdown of the aggregates. 2. Inhibition of leucine incorporation into protein and breakdown of ribosomal aggregates were not preceded by inhibition of incorporation of [14C]orotate into nuclear RNA of the liver. 3. Evidence was obtained of methylation of nuclear RNA in the livers of rats treated with [14C]dimethylnitrosamine. 4. Zonal centrifugation analysis of radioactive, nuclear, ribosomal and transfer RNA from livers of rats treated with [14C]dimethylnitrosamine revealed labelling of all centrifugal fractions to about the same extent. 5. It is suggested that methylation of messenger RNA might occur in the livers of dimethylnitrosamine-treated rats and the possible relation of this to inhibition of hepatic protein synthesis is discussed.  相似文献   

5.
Daily oral administration of the anorexigenic agents chlorphentermine or phentermine (60 mg/kg) to rats for either 1, 3, 5 or 7 days resulted in a significant fall in the incorporation of [14C]thymidine into renal and hepatic DNA throughout the course of the experiment. Although 24 h after treatment with either drug there was no dramatic change in the incorporation of [14C]orotic acid into liver RNA, a statistically significant reduction was noted after 3, 5 and 7 days. In rat kidney, the incorporation of [14C]orotic acid into RNA was only significantly depressed by chlorphentermine at 5 days and by phentermine at 3 days. In general, treatment with either anorexigenic agent tended to significantly lower or not affect the endogenous concentrations of renal and hepatic putrescine, spermidine and spermine. The chlorphentermine-induced decrease in liver and kidney nucleic acid synthesis was accompanied by depression in the levels of cyclic AMP in both tissues as well as a reduction in the activity of adenylate cyclase in renal tissue. In contrast, chlorphentermine produced a rise in hepatic adenylate cyclase at 5 days followed by a return to control values after 7 days. The phentermine-induced alterations in nucleic acid metabolism appeared generally to occur independent of any changes in the adenylate cyclase-cyclic AMP system of renal and hepatic tissues. In view of the fact that nucleic acids, polyamines and cyclic AMP constitute integral components of the growth process, our data suggest that chlorphentermine and phentermine interfere with certain biochemical parameters associated with the development of kidney and liver.  相似文献   

6.
1. N[(14)C]-Methyl-N-nitrosourea, [(14)C]dimethylnitrosamine, [(14)C]dimethyl sulphate and [(14)C]methyl methanesulphonate were injected into rats, and nucleic acids were isolated from several organs after various time-intervals. Radioactivity was detected in DNA and RNA, partly in major base components and partly as the methylated base, 7-methylguanine. 2. No 7-methylguanine was detected in liver DNA from normal untreated rats. 3. The specific radioactivity of 7-methylguanine isolated from DNA prepared from rats treated with [(14)C]dimethylnitrosamine was virtually the same as that of the dimethylnitrosamine injected. 4. The degree of methylation of RNA and DNA produced in various organs by each compound was determined, and expressed as a percentage of guanine residues converted into 7-methylguanine. With dimethylnitrosamine both nucleic acids were considerably more highly methylated in the liver (RNA, about 1% of guanine residues methylated; DNA, about 0.6% of guanine residues methylated) than in the other organs. Kidney nucleic acids were methylated to about one-tenth of the extent of those in the liver, lung showed slightly lower values and the other organs only very low values. N-Methyl-N-nitrosourea methylated nucleic acids to about the same extent in all the organs studied, the amount being about the same as that in the kidney after treatment with dimethylnitrosamine. In each case the RNA was more highly methylated than the DNA. Methyl methanesulphonate methylated the nucleic acids in several organs to about the same extent as N-methyl-N-nitrosourea, but the DNA was more highly methylated than the RNA. Dimethyl sulphate, even in toxic doses, gave considerably less methylation than N-methyl-N-nitrosourea in all the organs studied, the greatest methylation being in the brain. 5. The rate of removal of 7-methylguanine from DNA of kidneys from rats treated with dimethylnitrosamine was compared with the rate after treatment of rats with methyl methanesulphonate. No striking difference was found. 6. The results are discussed in connexion with the organ distribution of tumours induced by the compounds under study and in relation to the possible importance of alkylation of cellular components for the induction of cancer.  相似文献   

7.
1. Nuclei from rat liver incubated with S-adenosyl[methyl-(14)C]methionine incorporated radioactivity into RNA and into lipid and protein. 2. All of the labelled RNA was extracted from the nuclei with trichloroacetic acid at 90 degrees C. 3. The [(14)C]methyl-group incorporation into the hot-trichloroacetic acid extract was 30% inhibited by the addition of actinomycin D (100mug/mg of DNA) or by the omission of CTP, GTP and UTP. 4. Assuming that the main substrate for this triphosphate-dependent methylation was newly synthesized precursor rRNA containing one methyl group/30 uridylate residues, it was calculated that approx. 60% of the [(14)C]UMP incorporated under similar conditions represented precursor rRNA synthesis. 5. In agreement with this, low concentrations of actinomycin D (approx. 1mug/mg of DNA) sufficient to abolish the triphosphate-dependent incorporation of [(14)C]methyl group inhibited 68% of the [(14)C]UMP incorporation. 6. The incorporation of [(14)C]UMP by nuclei from starved animals decreased progressively with increasing periods of starvation, whereas the triphosphate-dependent [(14)C]methyl-group incorporation was not further decreased after 1 day of starvation. 7. This suggests that precursor rRNA synthesis decreased within 1 day whereas other species of RNA were affected only after longer periods of starvation.  相似文献   

8.
1. Administration of a single dose of dimethylnitrosamine to rats temporarily fed on a protein-deficient diet causes a high incidence of kidney tumours. The effect of such a dose of dimethylnitrosamine (40mg/kg body wt.) on metabolism of nucleic acids and protein in rat liver and kidneys was examined during the week immediately after administration. 2. Incorporation of [(14)C]leucine and [(14)C]orotate into hepatic macromolecules was inhibited within 5h of injection of dimethylnitrosamine, and did not recover for at least 5 days. Interpretation of these results is complicated by the concomitant extensive hepatic necrosis. 3. Renal RNA synthesis was assayed by incorporation of [(14)C]orotate in vivo and measurement of DNA-dependent RNA polymerase activity in vitro. Both systems indicate biphasic inhibition; minimal activity was recorded 9h and 3 days after treatment. Changes in incorporation of [(14)C]leucine into renal protein were similar but less marked. 4. Sucrose-density-gradient analysis of renal cytoplasmic RNA indicated increased synthesis of rRNA 24h after injection of the nitrosamine. The rate of loss of radioactivity from kidney ribosomes pre-labelled with [(14)C]orotate was not modified by dimethylnitrosamine. 5. Dimethylnitrosamine increased incorporation of [(3)H]-thymidine into renal DNA. The three distinct periods of stimulated synthesis observed are discussed, with particular reference to recently published morphological studies of the sequential development of kidney tumours induced by dimethylnitrosamine in protein-depleted rats.  相似文献   

9.
[3H]uridine and [3H]orotic acid were equally utilized for labelling of RNA in mouse liver. Incorporation of [3H]cytidine was 2-3 times as high as that of [3H]-labelled uridine or orotic acid. These results differ from findings in rat liver, where both cytidine and orotic acid are better utilized for RNA labelling than is uridine. The ratio between liver RNA [3H]-activity and volatile [3H]-activity was 2, 3 and 13, respectively, at 300 min after injection of labelled uridine, orotic acid and cytidine, indicating an efficient chanelling of cytidine into liver anabolic pathways.  相似文献   

10.
A study has been made of the histone and non-histone chromosomal proteins of rat liver after treatment in vivo with dimethylnitrosamine (DMN) (2 mg/kg). DMN was found not to affect histone turnover, as measured by 3H-labelled amino-acids incorporation. A decrease was observed in specific activity of the histones with time after injection of [14C]DMN or [14C]-formate and this was attributable to demethylation of both abnormal and normal methylation sites in these proteins. In the case of the non-histone proteins, DMN was found to increase greatly the turnover of those non-histone proteins loosely associated with chromatin DNA and RNA; turnover of those non-histone proteins tightly bound to chromatin DNA and RNA was unaffected. Demethylation of both normal and abnormal methylation sites was found to take place from both non-histone protein fractions. In the case of the loosely bound non-histone proteins a lower rate of demethylation was observed after DMN treatment.  相似文献   

11.
12.
The biosynthesis of cytidine nucleotides and the level of microsomal cytochrome P-450 in intact and regenerating rat liver after repeated administration of alpha-hexachlorocyclohexane (alpha-HCH) were compared. In alpha-HCH treated animals the utilization of [2-14C] orotic acid for the synthesis of cytidine nucleotides is suppressed. In 24-h regenerating liver the incorporation of labelled orotic acid into cytidine nucleotides is markedly activated; the degree of activation is lower in regenerating livers of alpha-HCH treated animals. The changes in the level of cytochrome P-450 vary inversely with the changes in the utilization of [2-14C] orotic acid for the synthesis of cytidine nucleotides. The activity of cytidine triphosphate synthetase of liver cytosol increases shortly after the administration of alpha-HCH; uridine-cytidine kinase is enhanced in the later stages of the drug action. Within 15-45 min after the administration of alpha-HCH the uptake of [U-14 C] cytidine into the liver and its incorporation into RNA cytosine are increased. After the administration of the drug the uptake of [2-14 C] uridine and its incorporation into RNA uracil is also enhanced whereas its utilization for the synthesis of cytidine nucleotides of the acid-soluble extract as well as for the RNA cytosine are suppressed.  相似文献   

13.
Hybridizable ribonucleic acid of rat brain   总被引:5,自引:4,他引:1       下载免费PDF全文
1. Cerebral RNA of adult and newborn rats was labelled in vivo by intracervical injection of [5-3H]uridine or [32P]phosphate. Hepatic RNA of similar animals was labelled by intraperitoneal administration of [6-14C]orotic acid. Nuclear and cytoplasmic fractions were isolated and purified by procedures involving extraction with phenol and repeated precipitation with ethanol. 2. The fraction of pulse-labelled RNA from cerebral nuclei that hybridized to homologous DNA exhibited a wide range of turnover values and was heterogeneous in sucrose density gradients. 3. Base composition of the hybridizable RNA was similar to that of the total pulse-labelled material; both were DNA-like. 4. Pulse-labelled cerebral nuclear RNA hybridized to a greater extent than cytoplasmic RNA for at least a week after administration of labelled precursor. This finding suggested that cerebral nuclei contained a hybridizable component that was not transferred to cytoplasm. 5. The rates of decay of the hybridizable fractions of cerebral nuclei and cytoplasm were faster in the newborn animal than in the adult. Presumably a larger proportion of labile messenger RNA molecules was present in the immature brain. 6. Cerebral nuclear and cytoplasmic RNA fractions from newborn or adult rats, labelled either in vivo for periods varying from 4min. to 7 days or in vitro by exposure to [3H]-dimethyl sulphate, uniformly hybridized more effectively than the corresponding hepatic preparation. These data suggested that a larger proportion of RNA synthesis was oriented towards messenger RNA formation in brain than in liver.  相似文献   

14.
1. Evidence is presented for the excretion of 7-methylguanine in normal rat urine at a rate of approx. 65μg./day. Experiments with animals in which the nucleic acids had been prelabelled by treatment of the neonatal rats with [14C]-formate gave evidence that the methylated base originated in the nucleic acids of the rat. 2. Injection of [14C]dimethylnitrosamine leads to an increased excretion of 7-methylguanine, and the base becomes labelled in the methyl group. The disappearance of labelled 7-methylguanine formed in nucleic acids of rats treated with the carcinogen therefore does not take place by an N-demethylation reaction, but by liberation of the intact methylated base.  相似文献   

15.
The biosynthesis of cytidine nucleotides of liver rRNA was studied following single administration of seventeen different compounds. Only the substances recognized as inducers of the mixed-function oxidases of liver microsomes decrease the utilization of [2-14C]orotic acid for the synthesis of rRNA cytidine nucleotides.  相似文献   

16.
After the DNA of newborn female rats had been labelled by repeated injections of [14C]orotate (totalling 36 μCi) during the first 3 weeks of life, approximately 1 000 000 dpm were found in the DNA of the liver, lungs, kidneys, gut, brain, heart and spleen of 8-week-old rats. Methyl methanesulphonate (MMS) (80 mg/kg) and di-(2-chloroethyl)methylamine (HN2) (5 mg/kg) injection increased the amount of 14C-labelled DNA pyrimidine nucleosides excreted in the urine to 5000 dpm from 350 dpm before injection. The effect on RNA products was much less marked.  相似文献   

17.
The structure and biological activity (the level of the labelled precursor incorporation into RNA) of active and repressed chromatin of the liver and small intestine mucosa were studied in adult (6-8 months) and old (24-26 months) rats. The content of repressed chromatin fraction in both tissues is found to increase with age. In the liver of old rats the level of [14C[ orotic acid incorporation into RNA of chromatin fractions decreases, radioactivity of the acid-soluble fraction being unchanged. In the small intestine mucosa a high leve of [14C] orotic acid incorporation into chromatin RNA with ageing is due to an increase in permeability of the mucosa cells.  相似文献   

18.
—Measurements of the incorporation of [14C]NaHCO3 into orotic acid, uridine nucleotides and RNA in tissue minces establish the occurrence of the complete orotate pathway for the de novo biosynthesis of pyrimidines in rat brain. Selective inhibition of the incorporation of various radiolabelled precursors into orotic acid by uridine demonstrates the operation of a feedback control mechanism in brain minces and indicates carbamoylphosphate synthetase to be the site of inhibition; purine nucleosides were similarly found to inhibit the de novo biosynthesis of pyrimidines. The activity of the orotate pathway, as assessed by the rate of incorporation of [14C]NaHCO3 into orotic acid, was found to be very high in fetal brain and to decline rapidly with neurological development; the mature rat brain exhibits less than 1% of the activity of the fetal brain at 18 days of gestation. Comparative studies on the ability of minces of the brain and several extraneural tissues to utilize [14C]NaHCO3 and [14C]aspartate as precursors of orotic acid lead us to speculate that variations in the ability of tissues to synthesize orotic acid de novo are determined by similar variations in their ability to synthesize carbamoylphosphate.  相似文献   

19.
The simultaneous administration of a dose of 1.5 mg/kg body wt. cycloheximide with 20 mg/kg body wt. dimethylnitrosamine to rats did not affect the metabolism of the nitrosamine as deduced by following its concentration in the blood nor affect the level of alkylation by the nitrosamine of cytoplasmic RNA in the liver. Incorporation of [14C]leucine into hepatic protein, which was maximally inhibited 60% 3 h after administration of the same dose of dimethylnitrosamine alone, was reduced by 94% within 1 h in rats treated with dimethylnitrosamine and cycloheximide.Polyribosome structure was determined by sucrose gradient centrifugation. Disaggregation of hepatic polyribosomes as a result of administration of the nitrosamine alone was most marked at 4 h, but by 8 h there was a recovery of polyribosome structure and a relative decrease in the number of monomeric ribosomes. Administration of cycloheximide alone did not affect the structure of hepatic polyribosomes. When dimethylnitrosamine and cycloheximide were given simultaneously the immediate breakdown of polyribosomes that normally followed administration of dimethylnitrosamine was prevented for at least 4 h; however after 8 h there was considerable disaggregation of the polyribosomes in the liver. The implications of these observations for the mechanism of inhibition of protein synthesis by dimethylnitrosamine are discussed.  相似文献   

20.
The biosynthesis of pyrimidine components in rat liver varies with the time of the day. The concentrations of both the cytidine and the uridine components of the acid-soluble extract are lowest in the morning hours and highest around midnight. The utilization of [2-14C]orotic acid for the synthesis of the pyrimidine components of the acid-soluble extract, RNA, and DNA has a similar character. Analogous changes also are seen in the uptake of [U-14C]cytidine and its utilization for the synthesis of RNA cytosine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号