首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
In many birds, the middle ears are connected through an air-filled interaural pathway. Sound transmission through this pathway may improve directional hearing. However, attempts to demonstrate such a mechanism have produced conflicting results. One reason is that some species of birds develop a lower static air pressure in the middle ears when anaesthetized, which reduces eardrum vibrations. In anaesthetized budgerigars with vented interaural air spaces and presumed normal eardrum vibrations, we find that sound propagating through the interaural pathway considerably improves cues to the directional hearing. The directional cues in the received sound combined with amplitude gain and time delay of sound propagating through the interaural pathway quantitatively account for the observed dependence of eardrum vibration on direction of sound incidence. Interaural sound propagation is responsible for most of the frontal gradient of eardrum vibration (i.e. when a sound source is moved from a small contralateral angle to the same ipsilateral angle). Our study confirms that at low frequencies the interaural sound propagation may cause vibrations of the eardrum to differ much in time, thus providing a possible cue for directional hearing. The acoustically effective size of the head of our birds (diameter 28 mm) is much larger than expected from the dimensions of the skull, so apparently the feathers on the head have a considerable acoustical effect.Dedicated to Professor Franz Huber on the occasion of his 80th birthday.  相似文献   

2.
We investigated directionalities of eardrum vibration and auditory nerve response in anesthetized northern leopard frogs (Rana pipiens pipiens). Simultaneous measures of eardrum velocities and firing rates from 282 auditory nerve fibers were obtained in response to free-field sounds from eight directions in the horizontal plane. Sound pressure at the external surface of the ipsilateral eardrum was kept constant for each presentation direction (± 0.5 dB). Significant effects of sound direction on eardrum velocity were shown in 90% of the cases. Maximum or minimum eardrum velocity was observed more often when sounds were presented from the lateral and posterior fields, or from the anterior and contralateral fields, respectively. Firing rates of 38% of the fibers were significantly affected by sound direction and maximum or minimum firing rate was observed more frequently when sounds were delivered from the lateral fields, or from the anterior and contralateral fields, respectively. Directionality patterns of eardrum velocity and nerve firing also vary with sound frequency. Statistically significant correlation between eardrum velocity and nerve fiber firing rate was demonstrated in only 45% of the fibers, suggesting that sound transmission to the inner ear through extratympanic pathways plays a non-trivial role in the genesis of directionality of auditory nerve responses.Abbreviations CF characteristic frequency - SVL snout-vent length - TM tympanic membrane  相似文献   

3.
Summary The physical measurements reported here test whether the European starling (Sturnus vulgaris) evaluates the azimuth direction of a sound source with a peripheral auditory system composed of two acoustically coupled pressure-difference receivers (1) or of two decoupled pressure receivers (2).A directional pattern of sound intensity in the freefield was measured at the entrance of the auditory meatus using a probe microphone, and at the tympanum using laser vibrometry. The maximum differences in the soundpressure level measured with the microphone between various speaker positions and the frontal speaker position were 2.4 dB at 1 and 2 kHz, 7.3 dB at 4 kHz, 9.2 dB at 6 kHz, and 10.9 dB at 8 kHz. The directional amplitude pattern measured by laser vibrometry did not differ from that measured with the microphone. Neither did the directional pattern of travel times to the ear. Measurements of the amplitude and phase transfer function of the starling's interaural pathway using a closed sound system were in accord with the results of the free-field measurements.In conclusion, although some sound transmission via the interaural canal occurred, the present experiments support the hypothesis 2 above that the starling's peripheral auditory system is best described as consisting of two functionally decoupled pressure receivers.Abbreviations CM cochlear microphonics - ITD interaural time difference - IID interaural intensity difference - MRA minimum resolvable angle - dB SPL sound-pressure level (re 0.00002 Pa)  相似文献   

4.
Summary The directionality of cochlear microphonic potentials in the azimuthal plane was investigated in the pigeon (Columba livia), using acoustic free-field stimulation (pure tones of 0.25–6 kHz).At high frequencies in the pigeon's hearing range (4–6 kHz), changing azimuth resulted in a maximum change of the cochlear microphonic amplitude by about 20 dB (SPL). The directionality decreased clearly with decreasing frequency.Acoustic blocking of the contralateral ear canal could reduce the directional sensitivity of the ipsilateral ear by maximally 8 dB. This indicates a significant sound transmission through the bird's interaural pathways. However, the magnitude of these effects compared to those obtained by sound diffraction (maximum > 15 dB) suggests that pressure gradients at the tympanic membrane are only of subordinate importance for the generation of directional cues.The comparison of interaural intensity differences with previous behavioral results confirms the hypothesis that interaural intensity difference is the primary directional cue of azimuthal sound localization in the high-frequency range (2–6 kHz).Abbreviations CM cochlear microphonic potential - IID interaural intensity difference - IID-MRA minimum resolvable angle calculated from interaural intensity difference - MRA minimum resolvable angle - OTD interaural ongoing time difference - RMS root mean square - SPL sound pressure level  相似文献   

5.
1.  We used laser vibrometry and free field sound stimulation to study the frequency responses of the eardrum and the lateral body wall of awake male Eleutherodactylus coqui.
2.  The eardrum snowed one of two distinct frequency responses depending on whether the glottis was open (GO response) or closed (GC response) during the measurement.
3.  The lateral body wall vibrated with a maximum amplitude close to that of the eardrum and in the same frequency range.
4.  Covering the frog's body wall with vaseline reduced the vibration amplitude of the GC response by up to 15 dB.
5.  When a closed sound delivery system was used to stimulate a local area of the body wall the eardrum also showed one of two types of responses.
6.  These results suggest that sound is transmitted via the lung cavity to the internal surface of the eardrum. This lung input has a significant influence on the vibrations of the eardrum even when the glottis is closed.
7.  The vibration amplitude of the eardrum changed with the angle of sound incidence. The directionality was most pronounced in a narrow frequency range between the two main frequencies of the conspecific advertisement call.
  相似文献   

6.
The acoustically induced motion of the eardrum of the frog was measured by an incoherent optical technique. When free-field sound stimulation was used, the eardrum vibration had a band-pass characteristic with maximum amplitude at 1-2.5 kHz. However, when the sound was presented in a closed-field acoustic coupler the response was low-pass (cut-off frequency about 2.5 kHz). We demonstrate that the motion is the result of the mechanical properties of the eardrum and the sound pressure acting upon it. The net pressure is due to a combination of sound incident directly on the front of the drum and of sound conducted to the rear via internal (resonant) pathways. The frog ear therefore acts as a pressure-gradient receiver at low frequency and a pressure receiver at high frequency. A model is proposed and analysed in terms of its electrical analogue. This model accounts for both our own experimental observations and those of previous studies.  相似文献   

7.
Zhang X  Dai Y  Zhang S  She W  Du X  Shui X 《PloS one》2012,7(1):e28961

Background

It has been believed that location of the perforation has a significant impact on hearing loss. However, recent studies have demonstrated that the perforation sites had no impact on hearing loss. We measured the velocity and pattern of the manubrium vibration in guinea pigs with intact and perforated eardrum using a laser Doppler vibrometer in order to determine the effects of different location perforations on the middle ear transfer functions.

Methods

Two bullas from 2 guinea pigs were used to determine stability of the umbo velocities, and 12 bullas from six guinea pigs to determine the effects of different location perforations on sound transmission. The manubrium velocity was measured at three points on the manubrium in the frequencies of 0.5–8 kHz before and after a perforation was made. The sites of perforations were in anterior-inferior (AI) quadrants of left ears and posterior-inferior (PI) quadrants of right ears.

Results

The manubrium vibration velocity losses were noticed in the perforated ears only below 1.5 kHz. The maximum velocity loss was about 7 dB at 500 Hz with the PI perforation. No significant difference in the velocity loss was found between AI and PI perforations. The average ratio of short process velocity to the umbo velocity was approximately 0.5 at all frequencies. No significant differences were found before and after perforation at all frequencies (p>0.05) except 7 kHz (p = 0.004) for both AI and PI perforations.

Conclusions

The manubrium vibration velocity losses from eardrum perforation were frequency-dependent and the largest losses occur at low frequencies. Manubrium velocity losses caused by small acute inferior perforations in guinea pigs have no significant impact on middle ear sound transmission at any frequency tested. The manubrium vibration axis may be perpendicular to the manubrium below 8 kHz in guinea pigs.  相似文献   

8.
Summary Female treefrogs (Hyla cinerea andH. gratiosa) can accurately localize a sound source (playback of male mating calls) if both ears are intact. When the sensitivity of one eardrum is attenuated, by coating it with a thin layer of silicone grease, females no longer can locate the sound source. This study demonstrates that female anurans rely on interaural cues for localization of a calling male. The neural basis for an anuran's sound localization ability presumably involves binaural convergence on single cells in the central auditory nervous system.This work was supported by research grants from the National Science Foundation and the U.S. Public Health Service. The assistance of Anne J.M. Moffat in measuring the directional characteristics of the loudspeaker is gratefully appreciated.  相似文献   

9.
Anuran ears function as pressure difference receivers, and the amplitude and phase of tympanum vibrations are inherently directional, varying with sound incident angle. We quantified the nature of this directionality for Cope’s gray treefrog, Hyla chrysoscelis. We presented subjects with pure tones, advertisement calls, and frequency-modulated sweeps to examine the influence of frequency, signal level, lung inflation, and sex on ear directionality. Interaural differences in the amplitude of tympanum vibrations were 1–4 dB greater than sound pressure differences adjacent to the two tympana, while interaural differences in the phase of tympanum vibration were similar to or smaller than those in sound phase. Directionality in the amplitude and phase of tympanum vibration were highly dependent on sound frequency, and directionality in amplitude varied slightly with signal level. Directionality in the amplitude and phase of tone- and call-evoked responses did not differ between sexes. Lung inflation strongly affected tympanum directionality over a narrow frequency range that, in females, included call frequencies. This study provides a foundation for further work on the biomechanics and neural mechanisms of spatial hearing in H. chrysoscelis, and lends valuable perspective to behavioral studies on the use of spatial information by this species and other frogs.  相似文献   

10.
Traditionally, the medial superior olive, a mammalian auditory brainstem structure, is considered to encode interaural time differences, the main cue for localizing low-frequency sounds. Detection of binaural excitatory and inhibitory inputs are considered as an underlying mechanism. Most small mammals, however, hear high frequencies well beyond 50 kHz and have small interaural distances. Therefore, they can not use interaural time differences for sound localization and yet possess a medial superior olive. Physiological studies in bats revealed that medial superior olive cells show similar interaural time difference coding as in larger mammals tuned to low-frequency hearing. Their interaural time difference sensitivity, however, is far too coarse to serve in sound localization. Thus, interaural time difference sensitivity in medial superior olive of small mammals is an epiphenomenon. We propose that the original function of the medial superior olive is a binaural cooperation causing facilitation due to binaural excitation. Lagging inhibitory inputs, however, suppress reverberations and echoes from the acoustic background. Thereby, generation of antagonistically organized temporal fields is the basic and original function of the mammalian medial superior olive. Only later in evolution with the advent of larger mammals did interaural distances, and hence interaural time differences, became large enough to be used as cues for sound localization of low-frequency stimuli. Accepted: 28 February 2000  相似文献   

11.
1.  Responses of 73 fibers to dorso-ventral vibration were recorded in the saccular and utricular branchlets of Rana pipiens pipiens using a ventral approach. The saccular branchlet contained nearly exclusively vibration-sensitive fibers (33 out of 36) with best frequencies (BFs) between 10 and 70 Hz, whereas none of the 37 fibers encountered in the utricular branchlet responded to dorso-ventral vibrations.
2.  Using a dorsal approach we recorded from the VIIIth nerve near its entry in the brainstem and analyzed responses to both sound and vibration stimuli for 65 fibers in R. pipiens pipiens and 25 fibers in Leptodactylus albilabris. The fibers were classified as amphibian papilla (AP), basilar papilla (BP), saccular or vestibular fibers based on their location in the nerve. Only AP and saccular fibers responded to vibrations. The AP-fibers responded to vibrations from 0.01 cm/s2 and to sound from 40 dB SPL by increasing their spike rate. Best frequencies (BFs) ranged from 60 to 900 Hz, and only fibers with BFs below 500 Hz responded to vibrations. The fibers had identical BF's for sound and vibration. The saccular fibers had BFs ranging from 10 to 80 Hz with 22 fibers having BFs at 40–50 Hz. The fibers responded to sound from 70 dB SPL and'to vibrations from 0.01 cm/s2.
3.  No differences in sensitivity, tuning or phase-locking were found between the two species, except that most BP-fibers in R. pipiens pipiens had BFs from 1.2 to 1.4 kHz, whereas those in L. albilabris had BFs from 2.0 to 2.2 kHz (matching the energy peak of L. albilabris' mating call).
4.  The finding that the low-frequency amphibian papilla fibers are extremely sensitive to vibrations raises questions regarding their function in the behaving animal. They may be substrate vibration receptors, respond to sound-induced vibrations or bone-conducted sound.
  相似文献   

12.
The spatial resolution of the human auditory system was studied under conditions, where the location of the sound source was changed according to different temporal patterns of interaural time delay. Two experimental procedures were run in the same group of subjects: a psychophysical procedure (the transformed staircase method) and an electrophysiological one (which requires recording of mismatch negativity, the auditory evoked response component). It was established that (1) the value of the mismatch negativity reflected the degree of spatial deviation of the sound source; (2) the mismatch negativity was elicited even at minimum (20μs) interaural time delays under both temporal patterns (abrupt azimuth change and gradual sound movement at different velocities); (3) an abrupt change of the sound source azimuth resulted in a greater mismatch negativity than gradual sound movement did if the interaural time delay exceeded 40 μs; (4) the discrimination threshold values of the interaural delay obtained in the psychophysical procedure were greater than the minimum interaural delays that elicited mismatch negativity, with the exception of the expert listeners, who exhibited no significant difference.  相似文献   

13.
Two potential sensory cues for sound location are interaural difference in response strength (firing rate and/or spike count) and in response latency of auditory receptor neurons. Previous experiments showed that these two cues are affected differently by intense prior stimulation; the difference in response strength declines and may even reverse in sign, but the difference in latency is unaffected. Here, I use an intense, constant tone to disrupt localization cues generated by a subsequent train of sound pulses. Recordings from the auditory nerve confirm that tone stimulation reduces, and sometimes reverses, the interaural difference in response strength to subsequent sound pulses, but that it enhances the interaural latency difference. If sound location is determined mainly from latency comparison, then behavioral responses to a pulse train following tone stimulation should be normal, but if the main cue for sound location is interaural difference in response strength, then post-tone behavioral responses should sometimes be misdirected. Initial phonotactic responses to the post-tone pulse train were frequently directed away from, rather than towards, the sound source, indicating that the dominant sensory cue for sound location is interaural difference in response strength.  相似文献   

14.
Summary A dorsal approach to the eighth nerve and free-field stimulation were used to investigate the effect of sound direction and intensity on phase locking in auditory nerve fibers of the leopard frog Rana pipiens pipiens.Tuning curves of 75 auditory neurons were analyzed (Fig. 2). Amphibian papillar neurons, but not basilar papillar neurons, exhibit significant phase locking to short tone bursts at the characteristic frequency (CF), the degree of phase locking (vector strength) decreasing with the neuron's CF (Figs. 3, 4 and 10E). Vector strength increases with sound pressure level to saturate about 20 dB above threshold, while the preferred firing phase is only slightly affected (Figs. 5 and 6).In contrast, sound direction hardly affects vector strength (Figs. 7, 8, 9A and 10A and C), but has a strong influence on the preferred firing phase (Figs. 7, 8, 9B and C, 10B and D): With respect to anterior tone presentation there are phase lags for ipsilateral and phase leads for posterior and contralateral presentation. Phase differences between both ears show a sinusoidal or cardioid/ovoidal directional characteristic; maximum differences are found with antero-lateral tone presentation (Fig. 11). The directionality of phase locking decreases with the neuron's CF (Fig. 10F) and only slightly changes with sound pressure level (Fig. 12). Thus, phase locking of amphibian papilla neurons can potentially provide intensity-independent information for sound localization.Abbreviations SPL sound pressure level - FTC frequency threshold curve - CF characteristic frequency - TF test frequency - VS vector strength - AP amphibian papilla - BP basilar papilla  相似文献   

15.
Summary The coding of sound frequency and location in the avian auditory midbrain nucleus (nMLD) was examined in three diurnal raptors: the brown falcon (Falco berigora), the swamp harrier (Circus aeruginosus) and the brown goshawk (Accipiter fasciatus). Previously this nucleus has been studied with free field stimuli in only one other species, the barn owl (Tyto alba).We found some parallels between the organisation of nMLD in the diurnal raptors and that reported in the barn owl in that the central region of nMLD was tonotopically organised and contained cells that did not encode location, and the lateral region (nMLDl) contained cells which were sensitive to stimulus position. However, unlike the barn owl, which has units with circumscribed receptive fields, cells sensitive to stimulus location had large receptive fields which were restricted in azimuth but not in elevation (hemifield units). Such cells could not provide an acoustic space map in which both azimuthal and elevational dimensions were represented, but there was a tendency for units with contralateral borders to be found superficially, and those with ipsilateral borders to be found deep, in nMLDl. Hemifield units displayed receptive field properties consistent with the directional properties of the tympana in the presence of sound transmission through the interaural canal, if there is a central mechanism which is sensitive to interaural intensity differences.Abbreviations nMLD nucleus mesencephalicus lateralis pars dorsalis - SPL sound pressure level re 20 Pa - nMLDl lateral region of nMLD - ICC central nucleus of the inferior colliculus - ICX external nucleus of the inferior colliculus - IID interaural intensity difference - EI excitatory inhibitory  相似文献   

16.
1. We used laser vibrometry to study the vibrational frequency response of the eardrum of female gray tree frogs for different positions of the sound source in three-dimensional space. Furthermore, we studied the accuracy of 3-D phonotaxis in the same species for sounds with different frequency contents. 2. The directionality of the eardrum was most pronounced in a narrow frequency range between 1.3 and 1.8 kHz. 3. The average 3-D, horizontal and vertical jump error angles for phonotactic approaches with a sound similar to the natural advertisement call (1.1 and 2.2 kHz frequency components) were 23 degrees, 19 degrees and 12 degrees, respectively. 4. 3-D jump error angle distributions for the 1.4 + 2.2 kHz, 1.0 kHz and 2.0 kHz sounds were not significantly different from that for the 1.1 + 2.2 kHz sound. 5. The average 3-D jump error angle for the 1.4 kHz sound was 36 degrees, and the distribution was significantly different from that for the 1.1 + 2.2 kHz sound. Hence, phonotactic accuracy was poorer in the frequency range of maximum eardrum directionality. 6. Head scanning was not observed and is apparently unnecessary for accurate sound localization in three-dimensional space. 7. Changes in overall sound pressure level experienced by the frog during phonotactic approaches are not an important cue for sound localization.  相似文献   

17.
Schöneich S  Hedwig B 《PloS one》2010,5(12):e15141

Background

Auditory mate or prey localisation is central to the lifestyle of many animals and requires precise directional hearing. However, when the incident angle of sound approaches 0° azimuth, interaural time and intensity differences gradually vanish. This poses a demanding challenge to animals especially when interaural distances are small. To cope with these limitations imposed by the laws of acoustics, crickets employ a frequency tuned peripheral hearing system. Although this enhances auditory directionality the actual precision of directional hearing and phonotactic steering has never been studied in the behaviourally important frontal range.

Principal Findings

Here we analysed the directionality of phonotaxis in female crickets (Gryllus bimaculatus) walking on an open-loop trackball system by measuring their steering accuracy towards male calling song presented at frontal angles of incidence. Within the range of ±30°, females reliably discriminated the side of acoustic stimulation, even when the sound source deviated by only 1° from the animal''s length axis. Moreover, for angles of sound incidence between 1° and 6° the females precisely walked towards the sound source. Measuring the tympanic membrane oscillations of the front leg ears with a laser vibrometer revealed between 0° and 30° a linear increasing function of interaural amplitude differences with a slope of 0.4 dB/°. Auditory nerve recordings closely reflected these bilateral differences in afferent response latency and intensity that provide the physiological basis for precise auditory steering.

Conclusions

Our experiments demonstrate that an insect hearing system based on a frequency-tuned pressure difference receiver achieves directional hyperacuity which easily rivals best directional hearing in mammals and birds. Moreover, this directional accuracy of the cricket''s hearing system is reflected in the animal''s phonotactic motor response.  相似文献   

18.
The effect of binaural decorrelation on the processing of interaural level difference cues in the barn owl (Tyto alba) was examined behaviorally and electrophysiologically. The electrophysiology experiment measured the effect of variations in binaural correlation on the first stage of interaural level difference encoding in the central nervous system. The responses of single neurons in the posterior part of the ventral nucleus of the lateral lemniscus were recorded to stimulation with binaurally correlated and binaurally uncorrelated noise. No significant differences in interaural level difference sensitivity were found between conditions. Neurons in the posterior part of the ventral nucleus of the lateral lemniscus encode the interaural level difference of binaurally correlated and binaurally uncorrelated noise with equal accuracy and precision. This nucleus therefore supplies higher auditory centers with an undegraded interaural level difference signal for sound stimuli that lack a coherent interaural time difference. The behavioral experiment measured auditory saccades in response to interaural level differences presented in binaurally correlated and binaurally uncorrelated noise. The precision and accuracy of sound localization based on interaural level difference was reduced but not eliminated for binaurally uncorrelated signals. The observation that barn owls continue to vary auditory saccades with the interaural level difference of binaurally uncorrelated stimuli suggests that neurons that drive head saccades can be activated by incomplete auditory spatial information.  相似文献   

19.
Interaural level differences play an important role for elevational sound localization in barn owls. The changes of this cue with sound location are complex and frequency dependent. We exploited the opportunities offered by the virtual space technique to investigate the behavioral relevance of the overall interaural level difference by fixing this parameter in virtual stimuli to a constant value or introducing additional broadband level differences to normal virtual stimuli. Frequency-specific monaural cues in the stimuli were not manipulated. We observed an influence of the broadband interaural level differences on elevational, but not on azimuthal sound localization. Since results obtained with our manipulations explained only part of the variance in elevational turning angle, we conclude that frequency-specific cues are also important. The behavioral consequences of changes of the overall interaural level difference in a virtual sound depended on the combined interaural time difference contained in the stimulus, indicating an indirect influence of temporal cues on elevational sound localization as well. Thus, elevational sound localization is influenced by a combination of many spatial cues including frequency-dependent and temporal features.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号