首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Magnesium chloride was infused into the renal artery of anesthetized dogs in order to determine its effect on renal function. Natriuresis and diuresis were observed during MgCl2 infusion, but there appeared to be no effect on glomerular filtration rate (GFR), or plasma sodium or potassium concentrations. Although mean arterial blood pressure and renal plasma flow (RPF) decreased throughout the experiment, the fall was not significant until after stopping MgCl2 infusion. A significant stimulation of renin secretion occurred during magnesium administration.  相似文献   

2.
3.
4.
5.
To evaluate the effect of isotonic exercise on the response to angiotensin II, angiotensin II in saline solution was infused intravenously (7.5 ng X kg-1 X min-1) in seven normal sodium replete male volunteers before, during and after a graded uninterrupted exercise test on the bicycle ergometer until exhaustion. The subjects performed a similar exercise test on another day under randomized conditions when saline solution only was infused. At rest in recumbency angiotensin II infusion increased plasma angiotensin II from 17 to 162 pg X ml-1 (P less than 0.001). When the tests with and without angiotensin II are compared, the difference in plasma angiotensin II throughout the experiment ranged from 86 to 145 pg X ml-1. The difference in mean intra-arterial pressure averaged 17 mmHg at recumbent rest, 12 mmHg in the sitting position, 9 mmHg at 10% of peak work rate and declined progressively throughout the exercise test to become non-significant at the higher levels of activity. Plasma renin activity rose with increasing levels of activity but angiotensin II significantly reduced the increase. Plasma aldosterone, only measured at rest and at peak exercise, was higher during angiotensin II infusion; the difference in plasma aldosterone was significant at rest, but not at peak exercise. In conclusion, the exercise-induced elevation of angiotensin II does not appear to be an important factor in the increase of blood pressure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The effects of changes in brain serotonin content after injections of p-chlorophenylalanine (p-CPA), L-5-hydroxytryptophan (L-5HTP) and 5-6-dihydroxytryptamine (5-6DHT) on the mean arterial pressure (MAP), plasma renin activity (PRA) and peripheral levels of atrial natriuretic peptide (ANP) have been studied in normal and hypertensive (2K:1C model) male Wistar rats. The p-CPA (250 mg/kg) and L-5HTP (200 mg/kg) were injected i.p., while 5-6 DHT (15 micrograms/animal in 10 mu/animal vehicle) was injected into lateral brain ventricles. The effects were studied 24 h after the p-CPA injection, 2 h after L-5HTP and 10 or 20 days after 5-6DHT administration. The fall in brain serotonin produced by p-CPA and 5-6DHT did not modify the MAP values in the normal and hypertensive rat model, whereas the increase induced after L-5HTP injection only caused a slight decrease in arterial pressure in normotensive animals. The ARP experimented remarkable rises in the normal and hypertensive rats, these values increasing after L-5HTP and falling after p-CPA and 5-6 DHT injections. Similar changes are detected in the normal group after administration of these substances related to serotoninergic brain activity. The ANP levels rose after renal artery constriction, and they are not affected by the above mentioned substances. Only p-CPA and 5-6DHT reduced a low decrease in the ANP levels 10 days after their administration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Angiotensinogen (AGT) is mainly expressed in glial cells in close proximity to renin-expressing neurons in the brain. We previously reported that glial-specific overexpression of ANG II results in mild hypertension. Here, we tested the hypothesis that glial-derived AGT plays an important role in blood pressure regulation in hypertensive mice carrying human renin (hREN) and human AGT transgenes under the control of their own endogenous promoters. To perform a glial-specific deletion of AGT, we used an AGT transgene containing loxP sites (hAGT(flox)), so the gene can be permanently ablated in the presence of cre-recombinase expression, driven by the glial fibrillary acidic protein (GFAP) promoter. Triple transgenic mice (RAC) containing a: 1) systemically expressed hREN transgene, 2) systemically expressed hAGT(flox) transgene, and 3) GFAP-cre-recombinase were generated and compared with double transgenic mice (RA) lacking cre-recombinase. Liver and kidney hAGT mRNA levels were unaltered in RAC and RA mice, as was the level of hAGT in the systemic circulation, consistent with the absence of cre-recombinase expression in those tissues. Whereas hAGT mRNA was present in the brain of RA mice (lacking cre-recombinase), it was absent from the brain of RAC mice expressing cre-recombinase, confirming brain-specific elimination of AGT. Immunohistochemistry revealed a loss of AGT immunostaining glial cells throughout the brain in RAC mice. Arterial pressure measured by radiotelemetry was significantly lower in RAC than RA mice and unchanged from nontransgenic control mice. These data suggest that there is a major contribution of glial-AGT to the hypertensive state in mice carrying systemically expressed hREN and hAGT genes and confirm the importance of a glial source of ANG II substrate in the brain.  相似文献   

8.
The effects of changes in arterial pressure and in circulating volume on Plasma Renin Activity (PRA) in the intact rat were compared by two experimental procedures. Gradual volume depletion was induced by intraperitoneal injection of a hyperoncotic polyethyleneglycol solution (PEG) in absence of acute changes in Systolic Arterial Pressure (SAP). SAP was measured in the conscious state by the tail cuff technique. Plasma Protein Concentration (PPC) and Hematocrit (Hct) increases after PEG injection were compared as the index for measuring the Plasma Volume Reduction (PVR). PRA showed a significant (p less than 0.001) linear relationship with PPC, suggesting a direct dependence of renin secretion on volume depletion. Acute changes in the circulating volume were induced by controlled hemorrhages of 5.0, 10.0, 15.0 and 20.0 ml of blood/kg body weight. The increase in PRA showed a significant relationship with the changes in circulating volume, but it did not show any dependence on the changes in Mean Arterial Pressure (MAP). Our results suggest that, in the intact and conscious rat, renin secretion responds to the information from the cardiopulmonary volume receptors rather than to that from the high pressure receptors.  相似文献   

9.
10.
11.
12.
The contribution of the renin–angiotensin–aldosterone system (RAAS) to the development of congestive heart failure (CHF) and hypertension (HT) has long been recognized. Medications that are commonly used in the course of CHF and HT are most often given with morning food for the sake of convenience and therapeutic compliance. However, biological rhythms and their responsiveness to environmental clues such as food intake may noticeably impact the effectiveness of drugs used in the management of cardiovascular disorders. Only sparse information about the effect of feeding schedules on the biology of the RAAS and blood pressure (BP) is presently available. Two studies were designed to explore the chronobiology of renin activity (RA), BP, renal sodium (UNa,fe) and potassium (UK,fe) handling in relation to meal timing in dogs. In a first experiment (Study a), blood and urinary samples for measurement of RA, UNa,fe and UK,fe were drawn from 18 healthy beagle dogs fed a normal-sodium diet at either 07:00, 13:00 or 19:00?h. In a second experiment (Study b), BP was recorded continuously from six healthy, telemetered beagle dogs fed a similar diet at 07:00, or 19:00?h. Data were collected throughout 24-h time periods, and analyzed by means of nonlinear mixed-effects models. Differences between the geometric means of early versus late time after feeding observations were further compared using parametric statistics. In agreement with our previous investigations, the results indicate that RA, UNa,fe, UK,fe, systolic, and diastolic BP oscillate with a circadian periodicity in dogs fed a regular diet at 07:00?h. A cosine model with a fixed 24-h period was found to fit the variations of RA, UK,fe and BP well, whereas cyclic changes in UNa,fe were best characterized by means of a combined cosine and surge model, reflecting a postprandial sodium excretion followed by a monotonous decay. Our data show that feeding time has a marked influence on the chronobiology of the renin cascade, urinary electrolytes, and BP. Introducing a 6- or 12-h delay in the dogs’ feeding schedule caused a shift of similar magnitude (05:06 and 12:32?h for Studies a and b, respectively) in the rhythm of these biomarkers. In all study groups, RA and BP exhibited a marked fall just after food intake. The drop in RA is consistent with sodium and water-induced body fluid expansion, while the reduction of BP could be related to the decreased activity of renin and the secretion of vasodilatory gut peptides. An approximately 1.5-fold (1.2–1.6-fold) change between the average early and late time after feeding observations was found for RA (p?<?0.0001), UNa,fe (p?<?0.01) and UK,fe (p?<?0.05). Postprandial variations in BP, albeit small (ca. 10?mmHg), were statistically significant (p?<?0.01) and supported by the model-based analysis.

In conclusion, the timing of food intake appears to be pivotal to the circadian organization of the renin cascade and BP. This synchronizing effect could be mediated by feeding-related signals, such as dietary sodium, capable of entraining circadian oscillators downstream of the master, light–dark-adjusted pacemaker in the suprachiasmatic nucleus.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号