首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
To facilitate detection of gene activity in tissue sections we combined common protocols of in situ hybridization on tissue sections (TSISH) with the technique of whole-mount in situ hybridization (WMISH). Miniature glass slides for mounting tissue sections were cut from regular microscope slides and handled for in situ hybridization in laboratory-made 2-ml containers (baskets) similar to those originally used for WMISH on Drosophila embryos. A salient point of the method is the use of airtight reaction vessels placed in a dry thermostat for critical hybridization steps as this facilitates reproducible and stringent hybridization conditions which are difficult to achieve on tissue sections otherwise. The practicability of the method is illustrated on consecutive serial frozen sections of murine neonatal cerebellum hybridized for math1 and neuroD, two developmentally regulated genes with distinct expression patterns. For both genes excellent spatial resolution and a highly dynamic range of signal intensity was obtained. The approach enables simple processing of multiple probes, allows the efficient and economic use of small tissue samples and is amenable to automation.  相似文献   

3.
The effects have been examined of different methods and regimens for tissue fixation, preservation, permeabilization and immunostaining of different mRNAs detected by in situ hybridization in paraffin-embedded samples. The three main hormone mRNAs expressed in the thyro–parathyroid glands, namely thyroglobulin, calcitonin and parathyroid hormone mRNAs, were chosen as the target nucleic acid sequences to be detected using digoxigenin-labelled probes. Our results suggest that chemical fixation and permeabilization of tissue samples are restrictive steps. Thus, paraformaldehyde fixation provides excellent signal intensities and non-detectable background levels whereas routine formalin and Bouin's solution give unsatisfactory results. A clear linear correlation was also found between signal intensity and proteinase K permeabilization. Moreover, the optimization of immunohistochemical steps, such as anti-digoxigenin antibody concentration and colour development times, enhance the intensity and specificity of hybrid signals. Furthermore, our results show that, in contrast to some data in the literature, paraffin-embedded tissue is suitable for detection of mRNAs by in situ hybridization. It gives equivalent intensities of specific signal and superior histological and cellular resolutions when compared to cryopreserved tissue.  相似文献   

4.
5.
1.  We have described a general ribonucleotide probein situ hybridization methodology for localization of mRNA in frozen, unfixed tissue sections of brain.
2.  The most important steps in obtaining consistent and reproducible autoradiographs with ribonucleotide probes were tissue acetylation and application of the radiolabeled probe to tissue sections under unsealed, glass coverslips.
3.  Variability of the hybridization signal in tissue sections has been minimized to achieve a high degree of reproducibility within a given experiment as determined by densitometric analysis of rat glucocorticoid and mineralocorticoid receptor mRNA hybridization autoradiographs.
4.  Tissue quality has been optimized for high-resolution anatomical localization of mRNA species by nuclear track emulsion.
5.  The protocol is amenable to rapid, batchwise processing of tissue samples.
  相似文献   

6.
7.
8.
The effect of different denaturation and hybridization procedures on the efficiency of in situ 3H-cRNA hybridization with DNA in the polytene chromosomes of Drosophila hydei was investigated.Denaturation of the DNA in the squash preparations with 90% formamide in 0.1 × SSC at 65 °C for 2.5 h gave a significantly higher retention of radioactivity following in situ hybridization than did denaturation by 30 sec incubation in boiling 0.1 × SSC.A comparison of the effect of various SSC concentrations in the hybridization mixture revealed that among the SSC concentrations tested, 3 × SSC or 4 × SSC gave the highest efficiency of hybrid formation.Hybridization in 50% formamide at 20 °C resulted in continuing hybrid formation over a period of 3.5 h, the majority of the cRNA/DNA hybrids being formed within the first 10 min of the incubation period. The thermal dissociation profile of in situ cRNA/DNA hybrids formed in 50% formamide, 4 × SSC at 20 °C, as determined in 0.1 × SSC indicated a Tm of 66 °C. The shape of the profile and the results of competition experiments suggested a high fidelity of base-matching in the in situ 3H-cRNA/DNA hybrids.Non-chromosomal background labeling in autoradiographs of polytene chromosomes hybridized with 3H-cRNA was effectively reduced by adding a 200–1000 fold excess of cold 28S + 18S RNA.  相似文献   

9.
10.
11.
In this study we describe a method for the detection of mRNAs at the ultrastructural level using a non-radioactive in situ hybridization method based on digoxigenin-labelled cRNA probes and gold-labelled digoxigenin-specific antibodies. We applied this protocol to an analysis of the expression of the extracellular matrix protein tenascin in the developing cerebellar cortex of the mouse. To gain an impression of the sensitivity attainable with digoxigenin-labelled probes, we first established at the light microscopic level that the hybridization signal obtained with the non-radioactive probe is as sensitive as that obtained with a 35S-labelled probe. The non-radioactive hybridization protocol was then combined with electron microscopic post-embedding and immunogold detection techniques. Tenascinspecific, digoxigenin-labelled cRNA probes were hybridized to ultrathin sections of Lowicryl K4M-embedded tissue and the probe/target mRNA hybrids were detected using gold-labelled antibodies to digoxigenin. In agreement with the observations from in situ hybridization at the light microscopic level, specific labelling was observed in Golgi epithelial cells in the region of the Purkinje cell layer and cells in the internal granular layer, which could be identified as astrocytes by ultrastructural criteria. Labelling was detectable in association with free ribosomes and ribosomes of the rough endoplasmic reticulum. In addition, focal hybridization signals were occasionally found in the nucleus. No signal was observed in Golgi epithelial cells or astrocytes using sense or in any other cerebellar cell type using either sense or anti-sense probes. The described in situ hybridization technique uses ultrastructural criteria to associate the presence of a given mRNA species with a particular cell type. Additionally, it provides information about the target mRNA's subcellular distribution, thus offering the possibility to study intracellular transport of particular mRNAs.  相似文献   

12.
We present a novel method using flow cytometry–fluorescence in situ hybridization (flow–FISH) to detect specific messenger RNA (mRNA) in suspended cells using locked nucleic acid (LNA)-modified oligonucleotide probes. β-Actin mRNA was targeted in whole A549 epithelial cells by hybridization with a biotinylated, LNA-modified probe. The LNA bound to β-actin was then stained using phycoerythrin-conjugated streptavidin and detected by flow cytometry. Shifts in fluorescence signal intensity between the β-actin LNA probe and a biotinylated, nonspecific control LNA were used to determine optimal conditions for this type of flow–FISH. Multiple conditions for permeabilization and hybridization were tested, and it was found that conditions using 3 μg/ml of proteinase K for permeabilization and 90 min hybridization at 60 °C with buffer containing 50% formamide allow cells containing the LNA-bound mRNA to be detected and differentiated from the control LNA with high confidence (< 14% overlap between curves). This combined method, called LNA flow–FISH, can be used for detection and quantification of other RNA species as well as for telomerase measurement and detection.  相似文献   

13.
14.
A technique has been developed for localizing hybrids formed in situ on semi-thin and ultrathin sections of Lowicryl K4M-embedded tissue. Biotinylated dUTP (Bio-11-dUTP and/or Bio-16-dUTP) was incorporated into mitochondrial rDNA and small nuclear U1 probes by nick-translation. The probes were hybridized to sections of Drosophila ovaries and subsequently detected with an anti-biotin antibody and protein A-gold complex. On semi-thin sections, probe detection was achieved by amplification steps with anti-protein A antibody and protein A-gold with subsequent silver enhancement. At the electron microscope level, specific labeling was obtained over structures known to be the site of expression of the appropriate genes (i.e., either over mitochondria or over nuclei). The labeling pattern at the light microscope level (semi-thin sections) was consistent with that obtained at the electron microscope level. The described nonradioactive procedures for hybrid detection on Lowicryl K4M-embedded tissue sections offer several advantages: rapid signal detection: superior morphological preservation and spatial resolution; and signal-to-noise ratios equivalent to radiolabeling.  相似文献   

15.
16.
Oligonucleotides that carry a detectable label can be used to probe for mRNA targets in in situ hybridization experiments. Oligonucleotide probes (OPs) have several advantages over cDNA probes and riboprobes. These include the easy synthesis of large quantities of probe, superior penetration of probe into cells and tissues, and the ability to design gene- or allele-specific probes. One significant disadvantage of OPs is poor sensitivity, in part due to the constraints of adding and subsequently detecting multiple labels per oligonucleotide. In this study, we compared OPs labeled with multiple detectable haptens (such as biotin, digoxigenin, or fluorescein) to those directly conjugated with horseradish peroxidase (HRP). We used branching phosphoramidites to add from two to 64 haptens per OP and show that in cells, 16-32 haptens per OP give the best detection sensitivity for mRNA targets. OPs were also made by directly conjugating the same oligonucleotide sequences to HRP. In general, the HRP-conjugated OPs were more sensitive than the multihapten versions of the same sequence. Both probe designs work well both on cells and on formaldehyde-fixed, paraffin-embedded tissues. We also show that a cocktail of OPs further increases sensitivity and that OPs can be designed to detect specific members of a gene family. This work demonstrates that multihapten-labeled and HRP-conjugated OPs are sensitive and specific and can make superior in situ hybridization probes for both research and diagnostic applications.  相似文献   

17.
In situ hybridization studies with [32P] and [3H] labelled antisense RNA probes were undertaken to determine optimal methods of tissue fixation, tissue sectioning, and conditions of hybridization, and to compare the relative merits of the two different radioactive labels. The distribution of somatostatin mRNA in neurons of rat brain using a labelled antisense somatostatin RNA probe was employed as a model for these studies. The highest degree of sensitivity for in situ hybridization was obtained using paraformaldehyde fixation and vibratome sectioning. Optimal autoradiographic localization of mRNA was obtained within 7 days using [32P] labelled probes. However, due to the high energy emittance of [32P], precise intracellular localization of hybridization sites was not possible. [3H] labelled RNA probes gave more precise cellular localization but required an average of 18-20 days autoradiographic exposure. The addition of the scintillator, PPO, decreased the exposure time for the localization of [3H] labelled probes to seven days. We also report a method for combined in situ hybridization and immunocytochemistry for the simultaneous localization of somatostatin in mRNA and peptide in individual neurons.  相似文献   

18.
Nuclear retinoid receptors mediate retinoid effects in controlling cell growth, differentiation, apoptosis, and carcinogenesis. Altered expression or activity of these receptors could abolish the retinoid signal transduction pathway and be associated with human carcinogenesis. In situ hybridization is a powerful tool for analyzing gene expression in formalin-fixed, paraffin-embedded tissue sections, especially for newly cloned genes or when no antibodies are available. Detection of altered retinoid receptor expression using in situ hybridization in premalignant and malignant tissues has provided important information about the roles of these receptors in cancer development and the response of these tissues to retinoid treatment. Among these receptors, altered expression of retinoic acid receptor-beta (RAR-beta) has been mostly detected in human cancers, including those of the head and neck, lung, esophagus, mammary gland, pancreas, and cervix. RAR-beta is thus currently used as a surrogate endpoint biomarker in different clinical prevention trials of various cancers.  相似文献   

19.
20.
We used in situ nucleic acid hybridization cytochemistry to examine cell types and subcellular sites expressing albumin (alb) or pro alpha 2 collagen (col) mRNA in livers from normal and analbuminemic rodents. Biotinylated cDNA or RNA probes were applied to aldehyde-fixed, non-frozen sections and the resulting DNA-RNA or RNA-RNA hybrids were subsequently visualized by enzymatic detection of either peroxidase or alkaline phosphatase conjugated to anti-biotin IgG or streptavidin. In normal rat liver, alb mRNA was expressed in all hepatocytes and was localized to discrete subcellular structures distributed as aggregates in the cytoplasm and in specific structures encircling the nucleus; these subcellular structures most likely represent the endoplasmic reticulum and nuclear envelope. In mouse liver, pro alpha 2 col mRNA was identified in a subpopulation of sinusoidal lining cells which have the morphological appearance of lipocytes. In liver from analbuminemic rats, a small number of hepatocytes, distributed throughout the hepatic lobule, expressed alb mRNA at high levels; the subcellular distribution of this alb mRNA was essentially identical to that observed in normal rat hepatocytes. Since non-radioactive in situ hybridization detected mRNA within the boundaries of individual cells and showed its precise subcellular location under conditions in which there was excellent preservation of tissue morphology, this procedure should be useful for a wide variety of histopathologic studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号