首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Summary Three phenotypically yellow, mendelian mutants of Chlamydomonas reinhardtii have been isolated and tested for allelism with the yellow mutant v-1a 1 and with each other. The three mutants represent three new yellow loci, two of which are located on linkage group I. Like y-1a, the mutants accumulate protochlorophyllide when grown under dim light, but have a wildtype phenotype when grown in the light. We conclude that the control of light-independent protochlorophyllide reduction is more complex than has been thought previously.  相似文献   

3.
4.
5.
6.
The inhibitor of mRNA synthesis, 6-methylpurine, inhibited nitrate reductase derepression in either ammonium-grown or methylammonium-treated wild-type cells of Chlamydomonas reinhardtii, but not in nitrogen-starved cells. In contrast, 6-methylpurine did not inhibit nitrate reductase synthesis in the methylammonium-resistant mutant 2170 (ma-1) either grown on ammonium, treated with methylammonium or nitrogen starved, but did inhibit the continuous synthesis of nitrate reductase, which required the presence of nitrate in the media. In both wild-type and mutant 2170 grown on ammonium and transferred to nitrate media, cycloheximide immediately prevented nitrate reductase derepression when added either at the beginning or at different times of induction treatment. Unlike wild-type cells, mutant 2170 was able to take up either nitrate or nitrite simultaneously with ammonium in whose presence nitrate and nitrite reductases were synthesized. However, synthesis of nitrate reductase was progressively inhibited in the mutant cells when the intracellular ammonium levels were raised as a result of an increase in either the external pH or the extracellular ammonium concentrations. The results rule out the existence of maturase-like proteins in Chlamydomonas and indicate that ammonium has a double effect on the regulation of nitrate reductase synthesis: (a) it prevents nitrate reductase mRNA production; and (b) it controls negatively the expression of this mRNA.  相似文献   

7.
Recombinant proteins have become more and more important for the pharmaceutical and chemical industry. Although various systems for protein expression have been developed, there is an increasing demand for inexpensive methods of large-scale production. Eukaryotic algae could serve as a novel option for the manufacturing of recombinant proteins, as they can be cultivated in a cheap and easy manner and grown to high cell densities. Being a model organism, the unicellular green alga Chlamydomonas reinhardtii has been studied intensively over the last decades and offers now a complete toolset for genetic manipulation. Recently, the successful expression of several proteins with pharmaceutical relevance has been reported from the nuclear and the chloroplastic genome of this alga, demonstrating its ability for biotechnological applications.  相似文献   

8.
9.
Whereas in freely suspended cell cultures growing photoautotrophically under non-limiting carbon conditions nitrite and nitrate were simultaneously consumed after ammonium consumption was complete, in alginate-entrapped cell cultures a sequential consumption of nitrite (first) and nitrate was observed after ammonium had almost been fully removed. In this paper results are reported that show inhibition of nitrate consumption by nitrite in immobilized cells. However no inhibition of nitrate active transport was observed. The sequential consumption of ammonium, nitrite and nitrate by Ca-alginate immobilized cells is explained on the basis of local ammonium accumulation due to its photoproduction by photorespiration, that could be caused by the increase of the O2/CO2 ratio around the entrapped cells. Measurements of light-dependent oxygen production (LDOP) and activity levels of nitrogen assimilation enzymes, including nitrite reductase (NiR) and glutamine synthetase (GS) in immobilized cells, determined under photorespiration stimulating conditions, are shown that support this explanation.  相似文献   

10.
Cadmium (Cd(2+)) or copper (Cu(2+)) ions are toxic for Chlamydomonas reinhardtii growth, at 300 microM, and the alga may accumulate about 0.90+/-0.02 and 0.64+/-0.02% of its dry weight, respectively. Metal contamination changes the elemental composition of dried alga biomass, which indicates the possibility to use C. reinhardtii as biosensor and bioremediator of the aquatic contamination by heavy metals. Either, Cd(2+) or Cu(2+), inhibits about 20% of the nitrate consumption rate by the cells, while only Cd(2+) increases about 40% the sulfate consumption rate. The presence of 1 mM calcium (Ca(2+)) in the culture medium increases the C. reinhardtii productivity (about 50%), the nitrate uptake rate (about 20%) and the sulfate uptake rate (about 30%). In addition, Ca(2+) overcomes the Cd(2+) (300 microM) toxicity by decreasing (about 35%) the intracellular accumulation of metal. Sulfur-starvation induces in C. reinhardtii the expression of serine acetyltransferase and O-acetylserine(thiol)lyase activities, but decreases 50% the consumption rate of nitrate by the cells. Sulfate is also required for the full expression of the nitrate reductase (NR), nitrite reductase (NiR) and glutamate synthase activities.  相似文献   

11.
The STA8 locus of Chlamydomonas reinhardtii was identified in a genetic screen as a factor that controls starch biosynthesis. Mutations of STA8 cause a significant reduction in the amount of granular starch produced during nutrient limitation and accumulate phytoglycogen. The granules remaining in sta8 mutants are misshapen, and the abundance of amylose and long chains in amylopectin is altered. Mutations of the STA7 locus, which completely lack isoamylase activity, also cause accumulation of phytoglycogen, although sta8 and sta7 mutants differ in that there is a complete loss of granular starch in the latter. This is the first instance in which mutations of two different genetic elements in one plant species have been shown to cause phytoglycogen accumulation. An analytical procedure that allows assay of isoamylase in total extracts was developed and used to show that sta8 mutations cause a 65% reduction in the level of this activity. All other enzymes known to be involved in starch biosynthesis were shown to be unaffected in sta8 mutants. The same amount of total isoamylase activity (approximately) as that present in sta8 mutants was observed in heterozygous triploids containing two sta7 mutant alleles and one wild-type allele. This strain, however, accumulates normal levels of starch granules and lacks phytoglycogen. The total level of isoamylase activity, therefore, is not the major determinant of whether granule production is reduced and phytoglycogen accumulates. Instead, a qualitative property of the isoamylase that is affected by the sta8 mutation is likely to be the critical factor in phytoglycogen production.  相似文献   

12.
Two new nitrate assimilation-related genes, Nrt2;3 and Nar5, have been identified in Chlamydomonas reinhardtii. The Nrt2;3 gene is a new member of the Nrt2 family, encoding high-affinity nitrate (nitrite) transporters. Like that of the nitrate assimilation genes, expression of the Nrt2;3 gene is down-regulated by ammonium and positively controlled by Nit2, a regulatory locus specific for the pathway. The three Nrt2 genes of C. reinhardtii are differentially regulated by the nitrogen source. Expression of Nrt2;3 and of Nrt2;1, a nitrate/nitrite-bispecific transporter gene, was induced by nitrate and more efficiently by nitrite. Accumulation of mRNA of Nrt2;2, the nitrate-specific transporter gene, was only induced efficiently by nitrate. The Nar5 gene is located upstream of the Nrt2;3 genomic region and expression of its mRNA is down-regulated by ammonium. The Nrt2;3 and Nar5 genes are overexpressed in a deletion mutant that lacks nitrate assimilation loci.  相似文献   

13.
McCarthy SS  Kobayashi MC  Niyogi KK 《Genetics》2004,168(3):1249-1257
Carotenoids play an integral and essential role in photosynthesis and photoprotection in plants and algae. A collection of Chlamydomonas reinhardtii mutants lacking carotenoids was characterized for pigment and tocopherol (vitamin E) composition, growth phenotypes under different light conditions, and the molecular basis of their mutant phenotype. The carotenoid-less mutants, or "white" mutants, were also deficient in chlorophylls but had approximately twice the tocopherol content of the wild type. White mutants grew in the dark but were unable to survive in the light, even under very low light conditions on acetate-containing medium. Genetic crosses and recombination tests revealed that all individual white mutants in the collection are alleles of a single gene, lts1, and the white phenotype was closely linked to a marker located in the phytoene synthase gene. DNA sequencing of the phytoene synthase gene from each of the mutants revealed nonsense, missense, frameshift, and splice site mutations. Transformation with a wild-type copy of the phytoene synthase gene was able to complement the lts1-210 mutation. Together, these results show that all the white mutants examined in this work are affected in the phytoene synthase gene.  相似文献   

14.
15.
16.
17.
18.
The Chlamydomonas reinhardtii strain Tx11-8 is a transgenic alga that bears the nitrate reductase gene (Nia1) under control of the CabII-1 gene promoter (CabII-1-Nia1). Approximately nine copies of the chimeric CabII-1-Nia1 gene were found to be integrated in this strain and to confer a phenotype of chlorate sensitivity in the presence of ammonium. We have used this strain for the isolation of spontaneous chlorate resistant mutants in the presence of ammonium that were found to be defective at loci involved in MoCo metabolism and light-dependent growth in nitrate media. Of a total of 45 mutant strains analyzed first, 44 were affected in the MoCo activity (16 Nit, unable to grow in nitrate, and 28 Nit+, able to grow in nitrate). All the Nit strains lacked MoCo activity. Diploid complementation of Nit, MoCo strains with C. reinhardtii MoCo mutants and genetic analysis indicated that some strains were defective at known loci for MoCo biosynthesis, while three strains were defective at two new loci, hereafter named Nit10 and Nit11. The other 28 Nit+ strains showed almost undetectable MoCo activity or activity was below 20% of the parental strain. Second, only one strain (named 23c+) showed MoCo and NR activities comparable to those in the parental strain. Strain 23c+ seems to be affected in a locus, Nit12, required for growth in nitrate under continuous light. It is proposed that this locus is required for nitrate/chlorate transport activity. In this work, mechanisms of chlorate toxicity are reviewed in the light of our results.  相似文献   

19.
Chemoresponses of Chlamydomonas reinhardtii   总被引:3,自引:0,他引:3       下载免费PDF全文
Cells of Chlamydomonas reinhardtii have been found to respond to chemicals in two ways: chemokinesis and chemotaxis. Several amino acids, fatty acids, and inorganic salts can stimulate these responses.  相似文献   

20.
Herbicides play an important role in agricultural practices but the introduction of these compounds into the aquatic environment can have severe consequences for non-target organisms such as microalgae. The ubiquitous green freshwater microalga Chlamydomonas reinhardtii, a model species in all aspects of microalgal physiology, was used to assess the toxicity of atrazine, one of the most widely used herbicides throughout the world. Atrazine acts on photosynthesis and therefore can affect non-target primary producers, such as microalgae.

Growth, dry weight, elemental composition, photosynthetic pigments and protein contents and nitrate reductase activity were studied. After 96 h of exposure to different atrazine concentrations all the parameters studied were affected, but different sensitivities to the herbicide were shown. Nitrate reductase (NR) activity was strongly affected even at an atrazine concentration that did not affect growth (0.1 µM); the lowest concentrations of atrazine assayed (0.1 and 0.25 µM) provoked a > 40% decrease in NR activity and NR decreased > 80% with atrazine concentrations of 0.5 µM. C/N ratio was also affected by all the atrazine concentrations assayed. Nitrate reductase activity and C/N ratio were better indicators of the cellular stress state than data on other biochemical components or growth rate. Among cell parameters assayed, the NR activity stood out as a sensitive cytotoxicity endpoint and the activity of this enzyme can be suggested as a sensitive biomarker of stress induced by atrazine in C. reinhardtii.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号