首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To clone new replication origin(s) activated under RNase H-defective (rnh ) conditions in Escherichia coli cells, whole chromosomal DNA digested with EcoRI was to with a Kmr DNA fragment and transformed into an rnh derivative host. From the Kmr transformants, we obtained eight kinds of plasmid-like DNA, each of which contained a specific DNA fragment, termed Hot, derived from the E. coli genome. Seven of the Hot DNAs (HotA-G) mapped to various sites within a narrow DNA replication termination region (about 280 kb), without any particular selection. Because Hot DNA could not be transformed into a mutant strain in which the corresponding Hot region had been deleted from the chromosome, the Hot DNA, though obtained as covalently closed circular (ccc) DNA, must have arisen by excision from the host chromosome into which it had initially integrated, rather than by autonomous replication of the transformed species. While Hot DNA does not have a weak replication origin it does have a strong recombinational hotspot active in the absence of RNase H. This notion is supported by the finding that Chi activity was present on all Hot DNAs tested and no Hot-positive clone without Chi activity was obtained, with the exception of a DNA clone carrying the dif site.  相似文献   

2.
Summary Escherichia coli rnh mutants were isolated using localized mutagenesis and selective measurements of RNase H activity in mutagenized cell extracts with [3H]poly(rC)·poly(dG) as substrate. RNase H activity in extracts of one mutant, ON152 (rnh-91), was undetectable (less than 0.05% of that of wild-type cells). This mutant formed small colonies at 43 °C. At this temperature, accumulation of nascent fragments was more prominent in the rnh-91·polA4113 double mutant than in the polA4113 mutant; however, no accumulation was found in the rnh single mutant at 43° C. Unlike the 1–3 nucleotide primer RNA found on nascent fragments of polA4113 cells, primers from the rnh-91·polA4113 cells ranged from one to about ten bases. These results suggest that the 53 exonuclease activity of DNA polymerase I plays a major role in removal of primer RNA and that RNase H functions in an auxiliary role, excising the 5-portion of longer primers.The rnh mutant supports replication of ColE1-type plasmids. A possible mechanism of replication of such plasmids in rnh mutants and a role of RNase H in the initiation of chromosomal replication are discussed.  相似文献   

3.
RNase H-defective mutants of Escherichia coli.   总被引:21,自引:13,他引:8       下载免费PDF全文
  相似文献   

4.
Biochemistry of homologous recombination in Escherichia coli.   总被引:51,自引:0,他引:51       下载免费PDF全文
Homologous recombination is a fundamental biological process. Biochemical understanding of this process is most advanced for Escherichia coli. At least 25 gene products are involved in promoting genetic exchange. At present, this includes the RecA, RecBCD (exonuclease V), RecE (exonuclease VIII), RecF, RecG, RecJ, RecN, RecOR, RecQ, RecT, RuvAB, RuvC, SbcCD, and SSB proteins, as well as DNA polymerase I, DNA gyrase, DNA topoisomerase I, DNA ligase, and DNA helicases. The activities displayed by these enzymes include homologous DNA pairing and strand exchange, helicase, branch migration, Holliday junction binding and cleavage, nuclease, ATPase, topoisomerase, DNA binding, ATP binding, polymerase, and ligase, and, collectively, they define biochemical events that are essential for efficient recombination. In addition to these needed proteins, a cis-acting recombination hot spot known as Chi (chi: 5'-GCTGGTGG-3') plays a crucial regulatory function. The biochemical steps that comprise homologous recombination can be formally divided into four parts: (i) processing of DNA molecules into suitable recombination substrates, (ii) homologous pairing of the DNA partners and the exchange of DNA strands, (iii) extension of the nascent DNA heteroduplex; and (iv) resolution of the resulting crossover structure. This review focuses on the biochemical mechanisms underlying these steps, with particular emphases on the activities of the proteins involved and on the integration of these activities into likely biochemical pathways for recombination.  相似文献   

5.
DNA cloning by homologous recombination in Escherichia coli   总被引:18,自引:0,他引:18  
The cloning of foreign DNA in Escherichia coli episomes is a cornerstone of molecular biology. The pioneering work in the early 1970s, using DNA ligases to paste DNA into episomal vectors, is still the most widely used approach. Here we describe a different principle, using ET recombination, for directed cloning and subcloning, which offers a variety of advantages. Most prominently, a chosen DNA region can be cloned from a complex mixture without prior isolation. Hence cloning by ET recombination resembles PCR in that both involve the amplification of a DNA region between two chosen points. We apply the strategy to subclone chosen DNA regions from several target molecules resident in E. coli hosts, and to clone chosen DNA regions from genomic DNA preparations. Here we analyze basic aspects of the approach and present several examples that illustrate its simplicity, flexibility, and remarkable efficiency.  相似文献   

6.
7.
Ribosomal assembly defective mutants of Escherichia coli   总被引:5,自引:1,他引:4       下载免费PDF全文
  相似文献   

8.
J S Mudgett  W D Taylor 《Gene》1986,49(2):235-244
Plasmid DNA substrates were used to study ultraviolet (UV)-induced recombination events in Escherichia coli host cells. Plasmids derived from pBR322, containing all or part of the lac operon of E. coli, were irradiated with ultraviolet light before transformation into E. coli strains of different recA and lacY genotypes. Recombinational exchanges were identified by phenotypic changes in lactose utilization and were confirmed by restriction analysis of isolated plasmids. Ultraviolet-induced reciprocal plasmid-chromosome recombination occurred at a slightly higher frequency then non-reciprocal chromosome-to-plasmid recombination, and at a much higher frequency than non-reciprocal plasmid-to-chromosome recombination. These frequencies did not depend on segregative mechanisms. The asymmetry of non-reciprocal exchange was not due to the particular arrangement of wild-type and lacY1 alleles because the same results were observed when these were interchanged. The host recA gene was required for plasmid-chromosome recombination, and slightly enhanced plasmid survival. Evidence for plasmid replication prior to recombination was found in reciprocal recombinants, but rarely in the non-reciprocal recombinants analyzed. Irradiation of competent bacterial host cells prior to transformation did not effectively induce plasmid-chromosome recombination.  相似文献   

9.
10.
The RecA protein is a key bacterial recombination enzyme that catalyzes pairing and strand exchange between homologous DNA duplexes. In Escherichia coli, RecA protein assembly on DNA is mediated either by the RecBCD or RecFOR protein complexes. Correspondingly, two recombination pathways, RecBCD and RecF (or RecFOR), are distinguished in E. coli. Inactivation of both pathways in recB(CD) recF(OR) mutants results in severe recombination deficiency. Here we describe a novel, RecBCD- RecFOR-independent (RecBFI) recombination pathway that is active in ΔrecBCD sbcB15 sbcC(D) ΔrecF(OR) mutants of E. coli. In transductional crosses, these mutants show only four-fold decrease of recombination frequency relative to the wild-type strain. At the same time they recombine 40- to 90-fold better than their sbcB+ sbcC+ and ΔsbcB sbcC counterparts. The RecBFI pathway strongly depends on recA, recJ and recQ gene functions, and moderately depends on recG and lexA functions. Inactivation of dinI, helD, recX, recN, radA, ruvABC and uvrD genes has a slight effect on RecBFI recombination. After exposure to UV and gamma irradiation, the ΔrecBCD sbcB15 sbcC ΔrecF mutants show moderately increased DNA repair proficiency relative to their sbcB+ sbcC+ and ΔsbcB sbcC counterparts. However, introduction of recA730 allele (encoding RecA protein with enhanced DNA binding properties) completely restores repair proficiency to ΔrecBCD sbcB15 sbcC ΔrecF mutants, but not to their sbcB+ sbcC+ and ΔsbcB sbcC derivatives. Fluorescence microscopy with UV-irradiated recA-gfp fusion mutants suggests that the kinetics of RecA filament formation might be slowed down in the RecBFI pathway. Inactivation of 3′-5′ exonucleases ExoVII, ExoIX and ExoX cannot activate the RecBFI pathway in ΔrecBCD ΔsbcB sbcC ΔrecF mutants. Taken together, our results show that the product of the sbcB15 allele is crucial for RecBFI pathway. Besides protecting 3′ overhangs, SbcB15 protein might play an additional, more active role in formation of the RecA filament.  相似文献   

11.
rec genes and homologous recombination proteins in Escherichia coli   总被引:19,自引:0,他引:19  
A J Clark 《Biochimie》1991,73(4):523-532
The twenty-five years since the first published report of recA mutants in Escherichia coli has seen the identification of more than 12 other recombination genes. The genes are usually grouped into three pathways named RecBCD, RecE and RecF for prominent genes which function in each. A proposal is made here that there are two RecF pathways, one sensitive and one resistant to exonuclease I, the SbcB enzyme. Five methods of grouping the genes functionally are discussed: 1) by enzyme activity, 2) by common indirect suppressor, 3) by common phenotype, 4) by common regulation and 5) by epistasis. Five classes of enzyme activities implicated in recombination are discussed according to their involvement in presynapsis, synapsis or postsynapsis: 1) nucleases 2) helicases 3) DNA-binding proteins 4) topoisomerases and 5) ligases. Plausible presynaptic steps for the RecBCD, RecF (SbcBS) and RecE pathways show the common feature of generating 3'-terminated single-stranded DNA (ssDNA). On this ssDNA it is proposed that a RecA protein filament is generated discontinuously. This implies the existence of nucleation and possibly measurement and 3' end protection proteins. Specific proposals are made for which recombination genes might encode such products. Finally the generality of the RecA-ssDNA-filament mechanism of synapsis in the cellular biological world is discussed.  相似文献   

12.
Escherichia coli mutants defective in the uncH gene.   总被引:3,自引:14,他引:3       下载免费PDF全文
Plasmids carrying cloned segments of the unc operon of Escherichia coli have been used in genetic complementation analyses to identify three independent mutants defective in the uncH gene, which codes for the delta subunit of the ATP synthetase. Mutations in other unc genes have also been mapped by this technique. ATPase activity was present in extracts of the uncH mutants, but the enzyme was not as tightly bound to the membrane as it was in the parental strain. ATP-dependent membrane energization was absent in membranes isolated from the uncH mutants and could not be restored by adding normal F1 ATPase from the wild-type strain. F1 ATPase prepared from uncH mutants could not restore ATP-dependent membrane energization when added to wild-type membranes depleted of F1. Membranes of the uncH mutants were not rendered proton permeable as a result of washing with low-ionic-strength buffer.  相似文献   

13.
A method is described for the isolation of Escherichia coli mutants that show increased recombination between a pair of chromosomal duplications. These "hyper-rec" mutants display a variety of secondary phenotypes. I have isolated a large number of hyper-rec mutants and found them useful in screening for mutants that accumulate labeled DNA fragments after short pulses with [3H]thymidine. The mutants so recovered include ones that are defective in deoxyribonucleic acid ligase, deoxyribonucleic acid polymerase I and its associated 5' yields 3' exonuclease, and a group of mutants, dnaS, that accumulate abnormally short Okazaki fragments. Evidence is presented that suggests that the lac-att80 segment of the chromosome cannot be inverted.  相似文献   

14.
Summary Male strains of Escherichia coli K12 excrete a protein which stimulates recombination in conjugation. The properties of four Rsf- mutants unable to produce this recombination-stimulating factor (RSF) have been studied. Two of the mutants have a pleiotropic phenotype which includes hypersensitivity to the lethal effects of ultraviolet (UV) and monofunctional alkylating agents (MAA) and markedly decreased growth rates at elevated temperatures. The latter property is associated with a diminished rate of DNA synthesis. Many more single-strand breaks are detected in the DNA of the pleiotropic mutants after MAA treatment than in the wild type, which are, however, repaired during incubation of the Rsf- cells after the treatment. No changes in UV-induced DNA breakdown or in host-cell reactivation of bacteriophage T1 have been detected in the mutant. The complete restoration of the wild type characters in Rsf+ revertants of these mutants proves that their complex phenotype is due to a single pleiotropic mutation. The integration of the wild type F factor into the chromosome of a derivative of a pleiotropic mutant retaining a portion of a previously integrated sex factor results in the complete restoration of the wild phenotype, which implies that the Rsf- mutation is located in the episomal DNA. These results show that some products specified by the F factor are necessary for the maintaince of the wild phenotype of Hfr cells. Possible mechanisms of this phenomenon are discussed.  相似文献   

15.
16.
Summary Mutants of Escherichia coli completely deficient in RNase H activity were isolated by inserting transposon Tn3 into the structural gene for RNase H, rnh, and its promoter. These rnh - mutants exhibited the following phenotypes; (1) the mutants grew fairly normally, (2) rnh - cells could be transformed with ColE1 derivative plasmids, pBR322 and pML21, though the plasmids were relatively unstable, under non selective conditions, (3) rnh - mutations partially suppressed the temperature-sensitive phenotype of plasmid pSC301, a DNA replication initiation mutant derived from pSC101, (4) rnh - mutations suppressed the temperature-sensitive growth character of dnaA ts mutant, (5) rnh - cells showed continued DNA synthesis in the presence of chloramphenicol (stable DNA replication). Based on these findings we propose a model for a role of RNase H in the initiation of chromosomal DNA replication. We suggest that two types of RNA primers for initiation of DNA replication are synthesized in a dnaA/oriC-dependent and-independent manner and that only the dnaA/oriC-dependent primer is involved in the normal DNA replication since the dnaA/oriC independent primer is selectively degraded by RNase H.Abbreviations APr ampicillin-resistant - kb kilobase pair(s) - NEM N-ethyl maleimide - Ts temperature-sensitive  相似文献   

17.
18.
Summary A technique is presented by which mutations can be introduced into the Escherichia coli chromosome by gene replacement between the chromosome and a plasmid carrying the mutant gene. The segregational instability of plasmids in E. coli is used with high efficiency to isolate E. coli mutants. The method should be applicable to construction of mutants for any E. coli chromosomal gene provided it is dispensable, and for any E. coli strain provided it is capable of homologous recombination. The use of the method was demonstrated by constructing E. coli mutants for the glycogen branching enzyme gene (glgB) and the -galactosidase gene (lacZ). The results show that recombination occurs via a reciprocal mechanism indicating that the method should, in a slightly modified form, also be useful in transferring chromosomal mutations onto multicopy plasmids in vivo.  相似文献   

19.
The RecA protein is a central homologous recombination enzyme in the bacterial cell. Forming a right-handed filament on ssDNA, RecA provides for a homology search between two DNA molecules and homologous strand exchange. RecA protects the cell from ionizing radiation and UV light and is capable of completing recombination during normal cell growth. Several mutant and natural RecA forms have a higher recombination potential in vitro and in vivo as compared with the wild-type Escherichia coli RecA, causing hyperrecombination. Recombinational hyperactivity of RecA depends to a great extent on the filamentation dynamics and DNA transferase properties, which may depend not only on specific amino acid substitutions in RecA, but also by defects in cell enzymatic machinery, including RecO, RecR, RecF, RecX, DinI, SSB, and PsiB. The functions of these proteins are currently known at the molecular level, while their roles in hyperrecombination are still incompletely understood. An increase in recombination in vivo is not always advantageous for the cell and is therefore limited by various mechanisms. In addition to the limitations imposed by cell enzymatic machinery, genomic rearrangements aimed at inhibiting the expression of hyperactive RecA are fixed through cell generations via selection against hyperrecombination. The mechanisms regulating hyperactive RecA forms in several model systems are considered.  相似文献   

20.
The endoribonuclease RNase E of Escherichia coli is an essential enzyme that plays a major role in all aspects of RNA metabolism. In contrast, its paralog, RNase G, seems to have more limited functions. It is involved in the maturation of the 5′ terminus of 16S rRNA, the processing of a few tRNAs, and the initiation of decay of a limited number of mRNAs but is not required for cell viability and cannot substitute for RNase E under normal physiological conditions. Here we show that neither the native nor N-terminal extended form of RNase G can restore the growth defect associated with either the rne-1 or rneΔ1018 alleles even when expressed at very high protein levels. In contrast, two distinct spontaneously derived single amino acid substitutions within the predicted RNase H domain of RNase G, generating the rng-219 and rng-248 alleles, result in complementation of the growth defect associated with various RNase E mutants, suggesting that this region of the two proteins may help distinguish their in vivo biological activities. Analysis of rneΔ1018/rng-219 and rneΔ1018/rng-248 double mutants has provided interesting insights into the distinct roles of RNase E and RNase G in mRNA decay and tRNA processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号