首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
The vestigal (vg) gene encodes a nuclear protein which plays a major role in the formation of the wing of Drosophila. Resistance or sensitivity to aminopterin, an inhibitor of the dihydrofolate reductase enzyme in D. melanogaster, seems to be associated with a specific alteration in vg gene function. Wild-type and vg mutant strains selected for growth on increasing concentrations of aminopterin display changes in physiological and biochemical parameters such as viability on normal and aminopterin-containing media, duration of development, wing phenotype, dihydrofolate reductase activity, and cross-resistance to fluorodeoxyuridine (FUdR) and to methotrexate. Our results indicate that the mechanisms of resistance differ in the wild-type and mutant strains. The vg 83b27 mutant, in which the major part of intron 2 of the vg gene is deleted, is associated with a high rate of resistance to FUdR, an inhibitor of thymidylate synthetase. Moreover, vg 83b27/vg BGheterozygotes, which are wild type when grown on normal medium, display a strong vg phenotype when grown on aminopterin. Our results indicate a role for the vestigial locus in mediating resistance to inhibitors of dTMP synthesis.  相似文献   

2.
Summary Vestigial (vg) mutants of Drosophila melanogaster are characterized by atrophied wings. In this paper we show that: (1) aminopterin an inhibitor of dihydrofolate reductase (DHFR) and fluorodeoxyuridine (FUdR), an inhibitor of thymidylate synthetase induce nicks in the wings of wild-type flies and phenocopies of the vg mutant phenotype when vg/+ and vg B/+ flies are reared on these substances (vgB is a deficiency of the vg locus). Only thymidine and thymidylate can rescue the flies from the effect of aminopterin. We propose that the vg phenotype is due to a decrease in the dTMP pool in the wings. (2) Mutant vg strains yield more offspring on medium containing aminopterin than on normal medium. The resistance of vg larvae to the inhibitor seems specific to the gene. This is the first case of aminopterin resistance in living eucaryotes. In contrast sensitivity of the vg larvae to FUdR is observed. (3) An increase in the activity and amount of DHFR is observed in mutant strains as compared with the wild-type flies.Our data suggest that the vg + gene is a regulatory gene acting on the DHFR gene or a structural gene involved in the same metabolic pathway.  相似文献   

3.
4.
5.
Summary The aim of our work was to compare the mechanisms of resistance to aminopterin, inhibitor of the dihydrofolate reductase enzyme, between different Drosophila species and those described for cultured cells. Moreover we compared the systematic species divisions based on morphological traits and those based on a molecular approach. For this purpose, the effect of aminopterin on viability and wing phenotype was studied in different Drosophila species. Dihydrofolate reductase was measured in adult flies. We found an important dihydrofolate reductase activity in the melanogaster sub-group compared to the other species studies. Wing effect was observed only in this sub-group. The effects of aminopterin on the wing phenotype were very similar to the phenotype of rudimentary mutants. Both deplete the pyrimidine pool and it has been shown by the studies of the structural genes of the nucleotide pyrimidine pathway that the wing tissue is very sensitive to every pertubation of this metabolism.The D. ananassae species was found to be fully resistant at the concentrations of the inhibitor tested. No or very little dihydrofolate reductase activity was detected. The binding of the enzyme to the inhibitor was comparable to that found in the Oregon strain of D. melanogaster. The purine and pyrimidine salvage pathways were investigated and the D. ananassae species displayed an important thymidine kinase activity. The D. ananassae flies were sensitive on Sang medium compared to the Oregon flies but were able to use exogenous bases or nucleosides more efficiently. Therefore the mechanism of resistance to aminopterin in Drosophila may be different from those described for methotrexate in mammalian cultured cells, as indicated by the results obtained for D. ananassae.  相似文献   

6.
Summary We have studied the metabolic variability within different wild-type strains of Drosophila melanogaster for resistance to antimetabolites (aminopterin, 8-azaguanine), the target enzymatic activities (dihydrofolate reductase, hypoxanthine guanine phosphoribosyltransferase) and capacity to survive on minimal medium with or without exogenous bases or nucleosides (thymidine, hypoxanthine). No correlation was found between dihydrofolate reductase activity and resistance to aminopterin. The results indicated the importance of salvage pathways in the resistance mechanisms in Drosophila.  相似文献   

7.
8.
Summary The pattern of aldehyde oxidase (AO) activity was determined in wing discs of Drosophila melanogaster larvae homozygous for the mutants apt 73n, Beaded, and vestigial (vg) in order to determine if reduction in field size in the pouch could be related to alterations of the wild-type AO pattern, as suggested by the Kauffman (1978) hypothesis. The pattern in wild-type discs was resolved into six areas for comparison with mutant discs. vg discs developed at 25° C showed restriction of the pattern into a small area on the anterior side of the disc, and comparison of vg and wild-type prepupal wings allowed positive identification of the AO pattern elements which remained. AO patterns in vg wing discs grown at 27°, 29°, and 31° C were progressively more complete and similar to wild-type, reflecting the reduction in cell death in discs grown at higher temperatures. These results show that cell loss during the third instar in vg development at 25° C is responsible for the alteration of the AO pattern, rather than field size reduction, and that determination of the pattern must take place much earlier than the time of its first appearance during the third larval instar, and before cell death in vg discs begins. Thus mutants acting at earlier stages will be necessary for further tests of the Kauffman hypothesis.  相似文献   

9.
Summary We have demonstrated the effect of different media on meiotic recombination in Drosophila melanogaster. Recombination is more frequent when the medium is deprived of bases, nucleosides and nucleotides. We have shown that two inhibitors of thymidylate (dTMP) synthesis —aminopterin inhibiting dihydrofolate reductase (DHFR) and fluorodeoxyuridine (FUdR) inhibiting thymidylate synthetase-result in a significant increase in meiotic recombination in the yellow/white region on the X chromosome of Drosophila melanogaster. Moreover the addition of thymidine to the richest medium significantly lowers normal recombination. Such studies represent a powerful tool for future studies on the mechanism of meiotic recombination.  相似文献   

10.
The rôle of folic acid in wing formation was studied using amino-pterin—a folic acid antagonist. The effects of this antivitamin are acute: larviposition ceases in adults and wing formation is depressed in developing larvae. At lower concentrations graded responses are obtained. Omission of methionine and histidine had no effect on wing formation but thymidine did ameliorate the depression of wing formation by aminopterin.Aminopterin is known to inhibit dihydrofolate reductase—thereby inhibiting tetrahydrofolate production. Tetrahydrofolate is known to be involved in thymidine biosynthesis. The activity of dihydrofolate reductase in presumptive alates was 42 per cent higher than in larvae destined to develop as apterates. The significance of folic acid metabolism in wing formation is discussed.  相似文献   

11.
Summary The mutationsvestigial (vg; recessive) andUltravestigial (vg U; dominant) ofDrosophila melanogaster give rise to identical mutant adult phenotypes in which much of the cases this results from cell death in the presumptive wing margin of the wing disc in the third larval instar, but the process of cell degeneration is quite different in the two mutants. Invg cell death occurs continuously throughout the third larval instar, while invg U it occurs only in the early third instar. Cells fragment and some of the fragments condense, becoming electron dense (apoptosis). Both condensed and ultrastructurally normal cell fragments are extruded to the basal side of thevg disc epithelium. They accumulate under the basal lamina in the wing pouch area until they are phagocytosed by blood cells entering the wing pouch during the six hours following pupariation. Fragments are not extruded from thevg U epithelium but are apparently phagocytosed by neighboring epithelial cells. The basal lamina undergoes mophological changes following pupariation and is phagocytosed by blood cells in both wild-type andvestigial, but investigial the degenerated cell fragments are also engulfed by the same blood cells.  相似文献   

12.
13.
Summary We report the construction of recombinant plasmids containing the dihydrofolate reductase structural gene (fol) from several trimethoprim-resistant mutants of Escherichia coli. Strains carrying some of these plasmids produced approximately 6% of their soluble cell protein as dihydrofolate reductase and are therefore excellent sources of the purified enzyme for inhibitor binding or mechanistic studies. The nucleotide sequence of the fol region from each of the plasmids was determined. A plasmid derived from a Ki mutant which produced a dihydrofolate reductase with lowered affinity for trimethoprim contained a mutation in the structural gene that altered the sequence of the polypeptide in a conserved region which is adjacent to the dihydrofolate binding site. Two other independently-isolated mutants which overproduced dihydrofolate reductase had a mutation in the-35 region of the fol promoter. One of them, strain RS35, was also temperature-sensitve for growth in minimal medium. This phenotype was shown to be the result of an additional mutation in a locus unlinked to fol by P1 transduction. The fol regions from two temperature-independent revertants of strain RS35 were sequenced. One of these had a mutation within the dihydrofolate reductase structural gene which altered some properties of the enzyme. This confirmed some previous enzymological data which suggested that some revertants of strain RS35 had mutations in fol (Sheldon 1977). These results suggest that dihydrofolate reductase interacts physically with some other essential gene product in E. coli.  相似文献   

14.
Aminopterin-resistant cell lines of maize were isolated by two different procedures of callus selection and by plating suspension cultures on drugcontaining medium after mutagen treatment. Efficiencies of different methods of variant selection were compared. Four aminopterin-resistant cell lines were shown to be 10–40 times more resistant than the parental cell line, and they were also resistant to another folate analog, methotrexate. The results suggest that alterations in at least three different cell properties could be responsible for resistance; 1) increased dihydrofolate reductase activity, 2) altered aminopterin sensitivity of dihydrofolate reductase, and 3) reduced drug uptake. One of the resistant cell lines showed more than one alteration, but its resistance proved to be unstable. The results suggest that stable changes which may or may not be of genetic origin and also unstable physiological changes or a combination of both could lead to aminopterin resistance in maize cell cultures.Abbreviations AMPT aminopterin - MTX methotrexate - DHFR dihydrofolate reductase - MNNG N-methyl-N-nitro-N-nitrosoguanidine - EMS ethylmethane sulfonate Research supported by the College of Agriculture and Life Sciences and by the Graduate School, University of Wisconsin Madison, Wis, USA  相似文献   

15.
《Plasmid》1986,15(2):119-131
A set of plasmids conferring resistance to several antibiotics, including the combination of trimethoprim and sulfamethoxazole, has been isolated from Escherichia coli following conjugative cotransfer from a clinical isolate of Shigella flexneri 2a. One of the plasmids, pCN1, was shown by subcloning and DNA sequencing to carry a gene encoding a trimethoprim-insensitive dihydrofolate reductase identical to that found in E. coli transposon 7. This plasmid was also shown to confer resistance to both streptomycin and spectinomycin by production of an adenylyltransferase that inactivated the drugs and the gene encoding this enzyme has also been sequenced. A second plasmid from the set, pCN2, was shown to inactivate streptomycin by a phosphotransferase mechanism and also to confer resistance to sulfonamides. The third plasmid from the set could not be correlated with a drug-resistance phenotype, but does appear to play a crucial role in plasmid mobilization.  相似文献   

16.
Interpretation of the 1H-NMR spectra of Escherichia coli dihydrofolate reductase is complicated by the large number of overlapping resonances due to protonated aromatic amino acids. Deuteration of the aromatic protons of aromatic amino acid residues is one technique useful for simplifying the 1H-NMR spectra. Previous attempts to label the dihydrofolate reductase from over-producing strains of Escherichia coli were not completely successful. This labeling problem was solved by transducing via P1 phage a genetic block into the de novo biosynthetic pathway of aromatic amino acids in a trimethoprim resistant strain of E. coli, MB 3746. A new strain, MB 4065, is a very high level producer of dihydrofolate reductase and requires exogenous aromatic amino acids for growth, therefore allowing efficient labeling of its dihydrofolate reductase with exogenous deuterated aromatic amino acid.  相似文献   

17.
18.
Pediococcus cerevisiae/AMr, resistant to amethopterin, possesses a higher dihydrofolate reductase (5, 6, 7, 8-tetrahydrofolate: NADP+ oxidoreductase, EC 1.5.1.3) activity than the parent, a folate-permeable and thus amethopterin-susceptible strain and than the wild-type. The properties of dihydrofolate reductase from the three strains have been compared. Temperature, pH optima, heat stability, as well amethopterin binding did not reveal significant differences between the enzymes from the susceptible and resistant strains. The enzyme from the wild-type was 10 times more sensitive to inhibition by amethopterin and more susceptible to heat denaturation. The apparent Km values for dihydrofolate in enzymes from the three strains were in the range of 4.8–7.2 μM and for NADPH 6.5–8.0 μM. The amethopterin-resistant strain exhibited cross-resistance to trimethoprim and was about 40-fold more resistant to the latter than the sensitive parent and the wild-type. The resistance to trimethoprim appears to be a direct result of the increased dihydrofolate reductase activity. Inhibition of dihydrofolate reductase activity by this drug was similar in the three strains. 10–20 nmol caused 50% inhibition of 0.02 enzyme unit. Trimethoprim was about 10 000 times less effective inhibitor of dihydrofolate reductase than amethopterin. The cell extract of the AMr strain possessed a folate reductase activity three times higher than that of the sensitive strain. The activities of other folate-related enzymes like thymidylate synthethase and 10-formyltetra-hydrofolate synthetase (formate: tetrahydrofolate ligase (ADP)-forming), EC 6.3.4.3) were similar in the three strains studied.  相似文献   

19.
We have found that mutations in phage T4 genes 41 (five of five) and 61 (three of three) cause resistance to the folate analogue pyrimethamine that inhibits T4 dihydrofolate (FH2) reductase. These genes code for subunits of a T4 primase and are part of a putative T4 replication complex. In contrast to many previously isolated folate analogue-resistant (Far) T4 mutants, these T4 primase mutants do not overproduce FH2 reductase nor do they alter its primary structure. A new mutant with a single lesion in gene 41 was isolated which proved resistant to the folate analogue at 30° and was lethal at 42°. This mutant induced normal levels of FH2 reductase (encoded by the frd gene) and appeared to have normal expression of other T4 genes at 30°. Like other mutations in gene 41, tsP129 reduced phage-induced DNA synthesis to about 15% that of wild-type T4 as measured by thymidine incorporation under restrictive conditions. Double mutants carrying mutations in genes 41 and 61, 41 and frd or 61 and frd showed allele-specific suppression suggesting that the products of these genes interact. We suggest that abnormal interactions between components of the replication complex and a DNA precursor synthesizing complex cause folate analog resistance by allosterically altering the T4 FH2 reductase.  相似文献   

20.
《Developmental biology》1987,119(2):418-432
We report the characterization of loss-of-function alleles of the homoeotic mutation Regulator of postbithorax (Rg-pbx) in Drosophila melanogaster. Rg-pbx is a dominant gain-of-function mutation which shows a transformation of posterior haltere to wing in the adult cuticle. This mutant phenotype mimics that of the bithorax complex lesion postbithorax (pbx). Loss-of-function alleles described here are lethal in the embryonic stage and affect the pattern of segmentation of the embryo. Examination of the terminal phenotype of null and hypomorphic alleles of Rg-pbx has shown that inactivation of the Rg-pbx gene leads to loss of the thoracic segments and the adjacent labial segment of the Drosophila embryo. An effect of the mutations is also seen in the seventh and eighth abdominal segments of embryos. The loss-of-function phenotype is similar to that described for the segmentation mutant hunchback (hb). Complementation tests show that Rg-pbx and hb are allelic. Temperature shift experiments using a temperature-sensitive loss-of-function allele show that the Rg-pbx gene product is required early in embryogenesis. We further report that the dominant Rg-pbx phenotype is sensitive to the gene dosage of another segmentation-controlling gene, fushi tarazu (ftz). Flies carrying a mutant copy of the ftz gene in trans to Rg-pbx show a dramatic enhancement of the penetrance of the homoeotic mutant phenotype. We were also able to demonstrate a suppression of the Rg-pbx phenotype by the addition of a duplication for the ftz+ gene to an Rg-pbx stock. Examination of the phenotype of ftz, Rg-pbx double-mutant embryos did not reveal a clear pattern of epistasis between the genes nor was absolute additivity of phenotype seen. A possible formal relationship between Rg-pbx, ftz, and the postbithorax (pbx) locus is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号