首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The co mutation of Arabidopsis thaliana causes a late-flowering phenotype that is insensitive to day-ength. The mutation was mapped previously to the upper arm of chromosome 5, approximately 1.6 cM from the chalcone synthase gene (CHS). We were provided with five yeast artificial chromosome (YAC) libraries and used these to perform a chromosome walk from CHS to the CO gene. In this paper we report the isolation of 1700 kb of contiguous Arabidopsis DNA, which represents approximately 1%–2% of the genome, inserted in YACs. This required the detailed analysis of 67 YACs, from which 87 end probes were isolated and examined in hybridisation experiments. This analysis showed that approximately 40% of the YACs presented problems in chromosome walking experiments because they contained repetitive sequence at one of their termini, were chimaeric or because part of the plant DNA was deleted. DNA fragments isolated from YACs were used as restriction fragment length polymorphism (RFLP) markers to localize CO to a 300 kb region within the cloned DNA. We compare the physical distance between CHS and CO with the genetic distance and find that in this region 1 cM is equivalent to approximately 200 kb.  相似文献   

2.
Genomic libraries of rice,Oryza sativa L. cv. Nipponbare, in yeast artificial chromosomes were prepared for construction of a rice physical map. High-molecular-weight genomic DNA was extracted from cultured suspension cells embedded in agarose plugs. After size fractionation of theEco RI- andNot I-digested DNA fragments, they were ligated with pYAC4 and pYAC55, respectively, and used to transformSaccharomyces cerevisiae AB1380. A total of 6932 clones were obtained containing on average ca. 350 kb DNA. The YAC library was estimated to contain six haploid genome equivalents. The YACs were examined for their chimerism by mapping both ends on an RFLP linkage map. Most YACs withEco RI fragments below 400 kb were intact colinear clones. About 40% of clones were chimeric. Genetic mapping of end clones from large size YACs revealed that the physical distance corresponding to 1 cM genetic distance varies from 120 to 1000 kb, depending on the chromosome region. To select and order YAC clones for making contig maps, high-density colony hybridization using ECL was applied. With several probes, at least one and at most ten YAC clones could be selected in this library. The library size and clone insert size indicate that this YAC library is suitable for physical map construction and map-based cloning.  相似文献   

3.
Ripening represents a complex developmental process unique to plants. We are using tomato fruit ripening mutants as tools to understand the regulatory components that control and coordinate the physiological and biochemical changes which collectively confer the ripe phenotype. We have genetically characterized two loci which result in significant inhibition of the ripening process in tomato,ripening-inhibitor (rin), andnon-ripening (nor), as a first step toward isolating genes likely to encode key regulators of this developmental process. A combination of pooled-sample mapping as well as classical restriction fragment length polymorphism (RFLP) analysis has permitted the construction of high-density genetic maps for the regions of chromosomes 5 and 10 spanning therin andnor loci, respectively. To assess the feasibility of initiating a chromosome walk, physical mapping of high molecular weight genomic DNA has been employed to estimate the relationship between physical distance (in kb) and genetic distance (in cM) around the targeted loci. Based on this analysis, the relationship in the region spanning therin locus is estimated to be 200–300 kb/cM, while thenor locus region ratio is approximately 200 kb/1 cM. Using RFLP markers tightly linked torin andnor, chromosome walks have been initiated to both loci in a yeast artificial chromosome (YAC) library of tomato genomic DNA. We have isolated and characterized several YAC clones linked to each of the targeted ripening loci and present genetic evidence that at least one YAC clone contains thenot locus.  相似文献   

4.
A detailed map of part of the short arm of chromosome 1 proximal to the Cf-4/Cf-9 gene cluster was generated by using an F2 population of 314 plants obtained from the cross between the remotely related species Lycopersicon esculentum and L. peruvianum. Six markers that cosegregate in an L. esculentum×L. pennellii F2 population showed high recombination frequencies in the present interspecific population, spanning an interval of approximately 13?cM. Physical distances between RFLP markers were estimated by pulsed field gel electrophoresis of high-molecular-weight DNA and by identifying YACs that recognized more than one RFLP marker. In this region 1?cM corresponded to 55–110?kb. In comparsion with the value of 730?kb per cM averaged over the entire genome, this reflects the remarkably high recombination frequencies in this region in the hybrid L. esculentum×L. peruvianum progeny population. The present data underline the fact that recombination is not a process that occurs randomly over the entire genome, but can vary dramatically in intensity between chromosomal regions and among populations.  相似文献   

5.
We present here a detailed physical map encompassing over 600 kb of mouse Chromosome (Chr) 17 in the region of plasminogen, D17Rp17e, and quaking. This region is cloned in yeast artificial chromosomes (YACs). We have identified several CpG islands within this region from pulsed field gel mapping of mouse genomic DNA and YAC DNA. Five new DNA probes have been generated. One, D17Leh514, is a minimum of about 90 kb distal to plasminogen. Four, D17Leh513, D17Leh512, D17Leh511, and D17Leh510, are proximal to D17Rp17e, the closest previously described genetic marker to quakingviable and quakinglethal-1 mutations. We have genetically mapped D17Leh511 to within 0.15 cM of these mutations. The genetic distance to D17Rp17e from D17Leh511 is also 0.15 cM; the physical distance of less than 360 kb (minimum 200 kb) is consistent with an approximation of 2 Mbp per cM.  相似文献   

6.
A map-based cloning technique for crop plants is being developed using tomato as a model system. The target gene jointless is a recessive mutation that completely suppresses the formation of flower and fruit pedicel abscission zones. Previously, the jointless locus was mapped to a 3 cM interval between the two molecular markers TG523 and RPD158. Physical mapping of the jointless region by pulsed-field gel electrophoresis demonstrated that TG523 and RPD158 reside on a 600 kb SmaI fragment. In this study, TG523 was used as a probe to screen a tomato yeast artificial chromosome (YAC) library. Six tomato YAC (TY) clones were isolated, ranging from 220 to 380 kb in size. Genetic mapping of YAC ends demonstrated that this set of overlapping YACs encompasses the jointless locus. Two YAC ends, TY159L (L indicates left end) and TY143R (R indicates right end), cosegregate with the jointless locus. Only one of the six YACs (TY142) contained single-copy DNA sequences at both ends that could be mapped. The two ends of TY142 were mapped to either side of the jointless locus, indicating that TY142 contains a contiguous 285 kb tomato DNA fragment that probably includes the jointless locus. Physical mapping of the TY142 clone revealed that TY159L and TY143R reside on a 55 kb SalI fragment. Southern blot hybridization analysis of the DNAs of tomato lines nearly isogenic for the jointless mutation has allowed localization of the target locus to a region of less than 50 kb within the TY142 clone.Communicated by H. Saedler  相似文献   

7.
E Heard  P Avner    R Rothstein 《Nucleic acids research》1994,22(10):1830-1837
Two mouse YACs, PA-2 and PA-3, contain the Xist gene and are 460 kb and 3.3 Mb long respectively. While PA-2 is non-chimeric, PA-3 contains a substantial proportion of non-contiguous DNA. As a prerequisite to functional studies of the role of this region in X inactivation, we have created a deletion series of YACs that are spaced at approximately 50 kb intervals and were able to eliminate the unwanted chimeric sequences in YAC PA-3. For this purpose, we have constructed mouse B1 fragmentation vectors based on those described for human Alu fragmentation. Having created this series of YAC deletion derivatives, we were able to eliminate efficiently the 10-15% aberrant YACs that arise during the course of a fragmentation experiment by assessing their marker content. The overlap and the opposite orientation of the two YAC inserts permitted the creation of deletions on both sides of the 500 kb region around Xist. The use of this series of YACs in a biological assay will help us define the extent of the sequences necessary to bring about X chromosome inactivation.  相似文献   

8.
A cross between two different races (race 7xrace 25) of the soybean root and stem rot pathogen Phytophthora sojae was analyzed to characterize the genomic region flanking two cosegregating avirulence genes, Avr4 and Avr6. Both genes cosegregated in the ratio of 82:17 (avirulent:virulent) in an F(2) population, suggestive of a single locus controlling both phenotypes. A chromosome walk was commenced from RAPD marker OPE7.1C, 2.0cM distant from the Avr4/6 locus. Three overlapping cosmids were isolated which included genetic markers that flank the Avr4/6 locus. The chromosome walk spanned a physical distance of 67kb which represented a genetic map distance of 22.3cM, an average recombination frequency of 3.0kb/cM and 11.7-fold greater than the predicted average recombination frequency of 35.3kb/cM for the entire P. sojae genome. Six genes (cDNA clones) expressed from the Avr4/6 genomic region encompassed by the cosmid contig were identified. Single nucleotide polymorphisms and restriction fragment length polymorphisms showed these six genes were closely linked to the Avr4/6 locus. Physical mapping of the cDNA clones within the cosmid contig made it possible to deduce the precise linkage order of the cDNAs. None of the six cDNA clones appear to be candidates for Avr4/6. We conclude that two of these cDNA clones flank a physical region of approximately 24kb and 4.3cM that appears to include the Avr4/6 locus.  相似文献   

9.
A map-based cloning scheme is being used to isolate the jointless (j) gene of tomato. The jointless locus is defined by a single recessive mutation that completely suppresses the formation of the fruit and flower pedicel and peduncle abscission zone. jointless was mapped in an F2 population of an interspecific cross between Lycopersicon esculentum and Lycopersicon pennellii to a 7.1 cM interval between two restriction fragment length polymorphism (RFLP) markers TG523 and TG194. Isogenic DNA pools were then constructed from a subset of the mapping population and screened with 800 random decamers for random amplification of polymorphic DNA (RAPD) polymorphisms. Five new RAPD markers were isolated and mapped to chromosome 11, two of which were mapped within the targeted interval. One marker, RPD158, was mapped 1.5 cM to the opposite side of jointless relative to TG523 and thus narrowed the interval between the closest flanking markers to 3.0 cM. Physical mapping by pulse-field gel electrophoresis using TG523 and RPD158 as probes demonstrated that both markers hybridize to a common 600 kb SmaI restriction fragment. This provided an estimate of 200 kb/cM for the relationship between physical and genetic distances in the region of chromosome 11 containing the j locus. The combined results provide evidence for the feasibility of the next step toward isolation of the jointless gene by map-based cloning — a chromosome walk or jump to jointless.  相似文献   

10.
Fine-scale molecular mapping has been conducted using 183 recombinants between the markers lutescens ( lu; 17.6 cM) and transparent testa glabra ( ttg; 35.5 cM) on the top arm of Arabidopsis thaliana chromosome 5. This region contains a number of genes involved in floral development including Ms1 , a gene required for the post-meiotic development of pollen. In homozygous ms1 mutant plants, pollen development is aborted soon after microspore release, regardless of environmental conditions. The ms1 mutation is located at 29.8 ± 0.8 cM on chromosome 5. Markers have been identified which co-segregate with ms1 and should lie within 39 kb of the gene. The fine-scale map of the lu-ms1-ttg region that has been generated is significantly different from the published integrated map and provides substantially more accurate and higher marker density than the current recombinant inbred map for this region. Using clones derived from four yeast artificial chromosome libraries, a contig has been established between the RFLP markers 4111 and 4556, which encompasses the ms1 gene. This covers a genetic distance of 8.9 cM which corresponds to a physical distance of approximately 1.44 Mb, representing about 1.5–2.0% of the Arabidopsis genome. In this region, 1 cM represents a physical distance of approximately 160 kb.  相似文献   

11.
Variants of the pulsed-field gel electrophoresis technique were used in conjunction with two-dimensional DNA gel electrophoresis (2-DDGE) to determine the ratio of physical to genetic distance in two genetically defined intervals on barley chromosome 1H.2-DDGE analysis demonstrated that two loci that define a 0.3 cM interval, as determined by hybridization with BCD249, reside on a single 450-kbMluI fragment. This result indicates a maximum ratio of physical to genetic distance in this interval of 1500 kb/cM as compared to 3.7–4.2 Mb/cM for the barley genome as a whole. High molecular weight (HMW) DNA restricted withNotI and probed sequentially with MWG068 and BCD249 yield diffuse bands at approximately 2.8 Mb and 3.0 Mb in the C.I. 16151 and C.I. 16155 parental lines, respectively. These results suggest the maximum ratio of physical to genetic distance in the interval defined by these probes is 7.8 Mb/cM. unique HMW DNA restriction fragment length polymorphisms (RFLP) were attributed to the presence of recombination breakpoints. Data from the recombination breakpoint analysis were used to estimate a ratio of physical to genetic distance of 2.5 Mb/cM in theXbcd249.2-Xmwg068 interval and 0.465 Mb/cM in theXbcd249.1-Xbcd249.2 interval. Both physical linkage and recombination breakpoint analysis indicate theXbcd249.1-Xbcd249.2 interval is approximately five-fold smaller, physically, than theXbcd249.2-Xmwg068 interval.  相似文献   

12.
We constructed a rice Bacterial Artificial Chromosome (BAC) library from green leaf protoplasts of the cultivar Shimokita harboring the rice blast resistance gene Pi-ta. The average insert size of 155 kb and the library size of seven genome equivalents make it one of the most comprehensive BAC libraries available, and larger than many plant YAC libraries. The library clones were plated on seven high density membranes of microplate size, enabling efficient colony identification in colony hybridization experiments. Seven percent of clones carried chloroplast DNA. By probing with markers close to the blast resistance genes Pi-ta 2 (closely linked to Pi-ta) and Pi-b, respectively located in the centromeric region of chromosome 12 and near the telomeric end of chromosome 2, on average 2.2?±?1.3 and 8.0?±?2.6 BAC clones/marker were isolated. Differences in chromosomal structures may contribute to this wide variation in yield. A contig of about 800 kb, consisting of 19 clones, was constructed in the Pi-ta 2 region. This region had a high frequency of repetitive sequences. To circumvent this difficulty, we devised a “two-step walking” method. The contig spanned a 300 kb region between markers located at 0 cM and 0.3 cM from Pi-ta 2 . The ratio of physical to genetic distances (>?1,000 kb/cM) was more than three times larger than the average of rice (300 kb/cM). The low recombination rate and high frequency of repetitive sequences may also be related to the near centromeric character of this region. Fluorescent in situ hybridization (FISH) with a BAC clone from the Pi-b region yielded very clear signals on the long arm of chromosome 2, while a clone from the Pi-ta 2 region showed various cross-hybridizing signals near the centromeric regions of all chromosomes.  相似文献   

13.
Ripening represents a complex developmental process unique to plants. We are using tomato fruit ripening mutants as tools to understand the regulatory components that control and coordinate the physiological and biochemical changes which collectively confer the ripe phenotype. We have genetically characterized two loci which result in significant inhibition of the ripening process in tomato,ripening-inhibitor (rin), andnon-ripening (nor), as a first step toward isolating genes likely to encode key regulators of this developmental process. A combination of pooled-sample mapping as well as classical restriction fragment length polymorphism (RFLP) analysis has permitted the construction of high-density genetic maps for the regions of chromosomes 5 and 10 spanning therin andnor loci, respectively. To assess the feasibility of initiating a chromosome walk, physical mapping of high molecular weight genomic DNA has been employed to estimate the relationship between physical distance (in kb) and genetic distance (in cM) around the targeted loci. Based on this analysis, the relationship in the region spanning therin locus is estimated to be 200–300 kb/cM, while thenor locus region ratio is approximately 200 kb/1 cM. Using RFLP markers tightly linked torin andnor, chromosome walks have been initiated to both loci in a yeast artificial chromosome (YAC) library of tomato genomic DNA. We have isolated and characterized several YAC clones linked to each of the targeted ripening loci and present genetic evidence that at least one YAC clone contains thenot locus.  相似文献   

14.
Physical Mapping of Rice Chromosomes 4 and 7 Using YAC Clones   总被引:1,自引:0,他引:1  
Physical maps of rice chromosomes 4 and 7 were constructed bylanding yeast artificial chromosomes (YACs) along our high-densitymolecular linkage map. Using 114 DNA markers, 258 individualYACs were located on chromosome 4. Sixty-two out of 258 YACscarried two or more DNA marker positions and formed 16 contigswhich covered a total length of 17.1 cM. The other YACs werearranged to 23 positions. On chromosome 7, 203 individual YACswere landed on 109 DNA markers. Sixty-four out of 203 YACs formed15 contigs which covered a total length of 21.8 cM and 139 YACswere localized to 26 positions. Chromosomes 4 and 7 were coveredwith minimum tiling paths of 45 and 48 YACs, respectively. Takingthe average size of YAC insert DNA to be 350 kb and the entiregenome size to be 430 Mb, about 16–18 Mb of each chromosomeor an estimated 50% of their total lengths have been coveredwith YACs. Physical maps of these 2 chromosomes should be ofgreat help in identifying useful trait genes and unravelinggenetic and biological characteristics in rice.  相似文献   

15.
We have constructed an EcoRI-based YAC (yeast artificial chromosome) library from barley (Hordeum vulgare L. cv. Franka) using the vector pYAC4. The library consists of approximately 18 000 recombinant YACs with insert sizes ranging between 100 and 1000 kb (average of 160 kb) corresponding to 50% of the barley genome. Size fractionation after ligation resulted in an increased average insert size (av. 370 kb) but also in a substantial decrease in cloning efficiency. Less than 1% of the colonies showed homology to a plastome-specific probe; approximately 50% of the colonies displayed a signal with a dispersed, highly repetitive barley-specific probe. Using a primer combination deduced from the sequence of a member of the small Hor1 gene family coding for the C-hordein storage proteins, the library was screened by polymerase chain reaction and subsequently by the colony hybridization technique. A single YAC, designated Y66C11, with a 120 kb insert was isolated. This DNA fragment represents a coherent stretch from the terminal part of the Hor1 gene region as judged from the correspondence of the restriction patterns between Y66C11 DNA and barley DNA after hybridization with the Hor1-specific probe. Restriction with the isoschizomeric enzymes HpaII/MspI suggests a high degree of methylation of the Hor1 region in mesophyll cells but not in YAC-derived (yeast) DNA.  相似文献   

16.
Summary In order to isolate a DNA fragment able to complement a sporulation-deficient mutation in Saccharomyces cerevisiae, a simple screening procedure was devised which was based on the difference in osmotic sensitivity between protoplasts and spores. A plasmid (pHT7) containing a 13 kb DNA insert that complemented the spoT7 mutation was isolated from a yeast genomic library prepared in the vector YEp13. Gene spoT7 was linked to rna1 at 1.2 cM and to mak27 at 7.2 cM on the right arm of chromosome XIII. Mapping of the cloned gene following integration into the chromosome showed that the cloned gene was allelic to spoT7 and that a part of the RNA1 gene was also cloned into the same fragment. Gene spoT7 was localized on a 5 kb DNA fragment by further subcloning.Abbreviations kb kilobase pairs - cM centiMorgans  相似文献   

17.
We describe the construction of a yeast artificial chromosome (YAC) library from the Arabidopsis thaliana genome. Randomly sheared high molecular weight source DNA was extracted from frozen, ground leaf tissue and blunt-end-ligated to the vector pYAC3. By size-fractionating the ligation products, we achieved an average clone size of 150 kb. Approximately 6% of the YACs contained inserts from the chloroplast genome. We screened clones equivalent to greater than four A. thaliana haploid nuclear genomes and isolated YACs homologous to five single-copy-sequence probes. The library should be useful chromosome walking and genome mapping experiments. In addition, the approach used for its construction should be applicable to other higher plant species.  相似文献   

18.
Cnr (Colourless non-ripening) is a dominant pleiotropic ripening mutation of tomato (Lycopersicon esculentum) which has previously been mapped to the proximal region of tomato chromosome 2. We describe the fine mapping of the Cnr locus using both linkage analysis and fluorescence in situ hybridisation (FISH). Restriction fragment length polymorphism (RFLP)-, amplified restriction fragment polymorphism (AFLP)-, and cleaved amplified polymorphic sequence (CAPS)-based markers, linked to the Cnr locus were mapped onto the long arm of chromosome 2. Detailed linkage analysis indicated that the Cnr locus was likely to lie further away from the top of the long arm than previously thought. This was confirmed by FISH, which was applied to tomato pachytene chromosomes in order to gain an insight into the organisation of hetero- and euchromatin and its relationship to the physical and genetic distances in the Cnr region. Three molecular markers linked to Cnr were unambiguously located by FISH to the long arm of chromosome 2 using individual BAC probes containing these single-copy sequences. The physical order of the markers coincided with that established by genetic analysis. The two AFLP markers most-closely linked to the Cnr locus were located in the euchromatic region 2.7-cM apart. The physical distance between these markers was measured on the pachytene spreads and estimated to be approximately 900 kb, suggesting a bp:cM relationship in this region of chromosome 2 of about 330 kb/cM. This is less than half the average value of 750 kb/cM for the tomato genome. The relationship between genetic and physical distances on chromosome 2 is discussed. Received: 11 January 2001 / Accepted: 30 April 2001  相似文献   

19.
Two diploid (2n=18) sugar beet (Beta vulgaris L.) lines which carry monogenic traits for nematode (Heterodera schachtii Schm.) resistance located on translocations from the wild beet species Beta procumbens were investigated. Short interspersed repetitive DNA elements exclusively hybridizing with wild beet DNA were found to be dispersed around the translocations. The banding pattern as revealed by genomic Southern hybridization was highly conserved among translocation lines of different origins indicating that the translocations are not affected by recombination events with sugar beet chromosomes. Physical mapping revealed that the entire translocation is represented by a single Sal I fragment 300 kb in size. A representative YAC (yeast artifical chromosome) library consisting of approximately 13,000 recombinant clones (2.2 genome equivalents) with insert sizes ranging between 50 and 450 kb and an average of 130kb has been constructed from the resistant line A906001. Three recombinant YACs were isolated from this library using the wild beet-specific repetitive elements as probes for screening. Colinearity between YAC inserts and donor DNA was confirmed by DNA fingerprinting utilizing these repetitive probes. The YACs were arranged into two contigs with a total size of 215 kb; these represent a minimum of 72% of the translocation.  相似文献   

20.
Pollen development requires both sporophytic and gametophytic gene expression. We are using a map-based cloning technique to isolate sporophytic genes which, when mutant, cause pollen abortion and a male sterile (ms) phenotype in tomato (Lycopersicon esculentum). We have genetically characterized onems locus (ms14) using RFLP analysis and identified flanking markers. High-resolution genomic physical mapping indicates that thems14 locus is located in a ~300 kb region. We have identified a YAC clone with an insert size of ~610 kb that contains thems14-linked markers, reflects the organization of the physical map and therefore most probably contains thems14 gene. In addition, we present evidence that the relationship between physical and genetic distance in this chromosomal region changes abruptly from ~105–140 kb/cM to less than 24 kb/cM, and suggest that the TG393-TG104 region is a hotspot for recombination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号