首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
cDNA species encoding precursor polypeptides of the chlorophyll a/b/c light-harvesting complex (LHC) of Mantoniella squamata were cloned and sequenced. The precursor polypeptides have molecular weights of 24.2 kDa and are related to the major chlorophyll a/b polypeptides of higher plants. Southern analysis showed that their genes belong to the nuclear encoded Lhc multigene family; the investigated genes most probably do not contain introns. The chlorophyll a/b/c polypeptides contain two highly conserved regions common to all LHC polypeptides and three hydrophobic -helices, which span the thylakoid membrane. The first membrane-spanning helix, however, is not detected by predictive methods: its atypical hydrophilic domains may bind the chlorophyll c molecules within the hydrophobic membrane environment. Homology to LHC 11 of higher plants and green algae is specifically evident in the C-terminal region comprising helix III and the preceding stroma-exposed domain. The N-terminal region of 29 amino acids resembles the structure of a transit sequence, which shows only minor similarities to those of LHC II sequences. Strikingly, the mature light-harvesting polypeptides of M. squamata lack an N-terminal domain of 30 amino acids, which, in higher plants, contains the phosphorylation site of LHC 11 and simultaneously mediates membrane stacking. Therefore, the chlorophyll a/b/c polypeptides of M. squamata do not exhibit any light-dependent preference for photosystem I or 11. The lack of this domain also indicates that the attractive forces between stacked thylakoids are weak.This study is dedicated to Prof. Dr. W Rüdiger on the occasion of his 60th birthday  相似文献   

2.
The major light-harvesting complex (LHC) of the prasinophycean alga Mantoniella squamata is unique compared to other chlorophyll (Chl) a/b-binding LHC with respect to the primary protein structure and the pigmentation. Although the presence of Chl a, Chl b, a Chl c-type pigment and the xanthophylls neoxanthin, violaxanthin and prasinoxanthin was clearly determined, several carotenoids remained unidentified or were described controversially. We re-analysed the carotenoid composition and identified a new set of xanthophylls present in the LHC: uriolide, micromonol, micromonal and dihydrolutein. Additionally, one hydrophobic component was detected, presumably a xanthophyll. The pigment analysis in combination with quantitative protein determinations revealed a pigment-protein stoichiometry of 6 Chl a, 6 Chl b, 2 Chl c* and about 2 prasinoxanthin molecules per polypeptide. The other xanthophylls were present in sub-stoichiometric amounts. A comparison of results from LHC isolated either by sucrose density centrifugation or SDS-polyacryl gel electrophoresis revealed a decline in the amount of prasinoxanthin and a loss of violaxanthin using the latter preparation procedure, while the stoichiometric ratios of the other 6 xanthophylls remained constant. The fact that 8 different xanthophylls were found in the LHC of M. squamata can be explained best in terms of an oligomeric, presumably trimeric LHC organisation with subunits of heterogeneous pigmentation. Especially, the very stable assembly of most of the minor xanthophylls led to the assumption that these components play an important role in stabilisation and probably also in trunerisation of the LHC in vivo. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
The primary structure of the Chla/b/c-binding protein from Mantoniella squamata is determined. This is the first report that protein sequencing reveals one modified amino acid resulting in a LHCP-specific TFA-cleavage site. The comparison of the sequence of Mantoniella with other Chla/b-and Chla/c-binding proteins shows that the modified amino acid is located in a region which is highly conserved in all these proteins. The alignment also reveals that the LHCP of Mantoniella is related to the Chla/b-binding proteins. Finally, possible Chl-binding regions are discussed.Abbreviations a.m.u. atomic mass unit - LHC light-harvesting complex - LHC II major LHC of Photosystem II - LHCP light-harvesting chlorophyll-binding protein - LSIMS liquid secondary ion mass spectrometry - TFA trifluoroacetic acid  相似文献   

4.
《BBA》1987,892(1):23-29
The prasinophycean alga Mantoniella squamata contains besides chlorophyll a and b a third chlorophyll c-like pigment in its light-harvesting antenna. This third chlorophyll was purified by reverse phase and polyethylene chromatography in order to identify its chemical structure. The absorption and fluorescence spectra were measured not only from the doubly purified pigment, but also from its Mg-free derivates. The spectra were compared with those of authentic chlorophyll c and of Mg-2,4-desethyl-2,4-divinylpheoporphyrin a5 monomethyl ester which was isolated from Rhodobacter capsulata. The results show that the pigment from Mantoniella agrees best with chlorophyll c1. In order to clarify the spectral data, chlorophyll c1 and c2, the pigment from Mantoniella and Mg-2,4-desethyl-2,4-divinylpheoporphyrin a5 monomethyl ester were resolved by polyethylene chromatography. The chromatographic analysis clearly shows that the pigment from Mantoniella comigrates with chlorophyll c1 and not with the bacterial pigment or chlorophyll c2. Mantoniella is the first organism which has been demonstrated to contain chlorophyll a, b and c.  相似文献   

5.
S Hobe  S Prytulla  W Kühlbrandt    H Paulsen 《The EMBO journal》1994,13(15):3423-3429
The major light-harvesting complex (LHCII) of photosystem II, the most abundant chlorophyll-containing complex in higher plants, is organized in trimers. In this paper we show that the trimerization of LHCII occurs spontaneously and is dependent on the presence of lipids. LHCII monomers were reconstituted from the purified apoprotein (LHCP), overexpressed in Escherichia coli, and pigments, purified from chloroplast membranes. These synthetic LHCII monomers trimerize in vitro in the presence of a lipid fraction isolated from pea thylakoids. The reconstituted LHCII trimers are very similar to native LHCII trimers in that they are stable in the presence of mild detergents and can be isolated by partially denaturing gel electrophoresis or by centrifugation in sucrose density gradients. Moreover, both native and reconstituted LHCII trimers exhibit signals in circular dichroism in the visible range that are not seen in native or reconstituted LHCII monomers, indicating that trimer formation either establishes additional pigment-pigment interactions or alters pre-existing interactions. Reconstituted LHCII trimers readily form two-dimensional crystals that appear to be identical to crystals of the native complex.  相似文献   

6.
《The Journal of cell biology》1983,96(5):1414-1424
Membrane crystals of the light-harvesting chlorophyll a/b protein complex from pea chloroplasts were investigated using electron microscopy and image analysis. The membrane crystals formed upon precipitation of the detergent-solubilized complex with mono- and divalent cations in the presence of small amounts of Triton X-100. The crystalline fraction contained two polypeptides of 25,000 and 27,000 mol wt. Freeze-dried and freeze-etched specimens showed a periodic honeycomb structure on the surface of membrane crystals. Double replicas of freeze-fractured sheets showed a hexagonal lattice of particles on both fracture faces. Image analysis of negatively stained membrane crystals suggested that they had threefold rather than sixfold symmetry in projection. A projection map at 20-A resolution revealed two triangular structural units of opposite handedness per crystallographic unit cell. The structural units appeared to be inserted bidirectionally into the membrane, alternating in orientation perpendicular to the membrane plane.  相似文献   

7.
The major light-harvesting complex (LHCIIb) of photosystem II can be reconstituted in vitro from its recombinant apoprotein in the presence of a mixture of carotenoids and chlorophylls a and b. By varying the chlorophyll a/b ratio in the reconstitution mixture, the relative amounts of chlorophyll a and chlorophyll b bound to LHCIIb can be changed. We have analyzed the chlorophyll stoichiometry in recombinant wild type and mutant LHCIIb reconstituted at different chlorophyll a/b ratios in order to assess relative affinities of the chlorophyll-binding sites. This approach reveals five sites that exclusively bind chlorophyll b. Another site exhibits a slight preference of chlorophyll b over chlorophyll a. The remaining six sites are filled preferentially with chlorophyll a but also tolerate chlorophyll b when this is offered at a large excess. Three of these chlorophyll a-affine sites could be assigned to distinct positions defined by the three-dimensional LHCIIb structure. Exclusive chlorophyll b sites complemented by chlorophyll a sites that are selective only to a certain extent are consistent with the observation that chlorophyll b but not chlorophyll a is essential for reconstituting stable LHCIIb. These data offer an explanation why a rather constant chlorophyll a/b ratio is observed in native LHCIIb despite the apparent promiscuity of some binding sites.  相似文献   

8.
We have found that treatment of the photosynthetic membranes of green plants, or thylakoids, with the nonionic detergent Triton X-114 at a 10:1 ratio has three effects: (a) photosystem I and coupling factor are solubilized, so that the membranes retain only photosystem II (PS II) and its associated light-harvesting apparatus (LHC-II); (b) LHC-II is crystallized, and so is removed from its normal association with PS II; and (c) LHC-II crystallization causes a characteristic red shift in the 77 degrees K fluorescence from LHC-II. Treatment of thylakoids with the same detergent at a 20:1 ratio results in an equivalent loss of photosystem I and coupling factor, with LHC-II and PS II being retained by the membranes. However, no LHC-II crystals are formed, nor is there a shift in fluorescence. Thus, isolation of a membrane protein is not required for its crystallization, but the conditions of detergent treatment are critical. Membranes with crystallized LHC-II retain tetrameric particles on their surface but have no recognizable stromal fracture face. We have proposed a model to explain these results: LHC-II is normally found within the stromal half of the membrane bilayer and is reoriented during the crystallization process. This reorientation causes the specific fluorescence changes associated with crystallization. Tetrameric particles, which are not changed in any way by the crystallization process, do not consist of LHC-II complexes. PS II appears to be the only other major complex retained by these membranes, which suggests that the tetramers consist of PS II.  相似文献   

9.
Summary Irradiation of the principal photosystem II light-harvesting chlorophyll-protein antenna complex, LHC II, with high light intensities brings about a pronounced quenching of the chlorophyll fluorescence. Illumination of isolated thylakoids with high light intensities generates the formation of quenching centres within LHC II in vivo, as demonstrated by fluorescence excitation spectroscopy. In the isolated complex it is demonstrated that the light-induced fluorescence quenching: a) shows a partial, biphasic reversibility in the dark; b) is approximately proportional to the light intensity; c) is almost independent of temperature in the range 0–30°C; d) is substantially insensitive to protein modifying reagents and treatments; e) occurs in the absence of oxygen. A possible physiological importance of the phenomenon is discussed in terms of a mechanism capable of dissipating excess excitation energy within the photosystem II antenna.Abbreviations chla chlorophyll a - chlb chlorophyll b - F0 fluorescence yield with reaction centers open - Fm fluorescence yield with reaction centres closed - Fi fluorescence at the plateau level of the fast induction phase - LHC II light-harvesting chlorophyll a/b protein complex II - PS II photosystem II - PSI photosystem I - Tricine N-[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]glycine  相似文献   

10.
The light-harvesting chlorophyll a/b complex (LHC-II) found in green plants has at least three functions: it absorbs light energy for transfer to the reaction centers, it is involved in keeping the photosynthetic membranes stacked, and it regulates energy distribution between the two photosystems. We have developed a procedure to produce large vesicles consisting almost exclusively of two-dimensional crystalline domains of LHC-II in which LHC-II is biochemically and structurally intact, as shown by SDS-PAGE, response to cations, and 77K fluorescence excitation spectra. The vesicles were examined by cryoelectron microscopy and analyzed, in projection, to a resolution of 17 A. Their surface lattice consists of trimers arranged in interlocking circles; the two-sided plane group is p321 (unit cell dimension, a = 124 A) with two, oppositely facing trimers/unit cell. Individual trimers consist of matter arranged in a ring, around a central cavity, an appearance similar to that obtained in some conditions using negative stain (Li, J., 1985. Proc. Natl. Acad. Sci. USA. 82:386-390). The monomer (approximately 45 x 20 A) is seen as two domains of slightly different size at this resolution. The thickness of single layers is approximately 48 A, measured from edge-on views of the frozen vesicles. Based on these dimensions, the molecular mass of the monomer is approximately 30 kD. Therefore, each monomer appears to be composed of a single polypeptide and its associated pigments.  相似文献   

11.
In order to obtain information on the organization of the pigment molecules in chlorophyll (Chl) a/b/c-containing organisms, we have carried out circular dichroism (CD), linear dichroism (LD) and absorption spectroscopic measurements on intact cells, isolated thylakoids and purified light-harvesting complexes (LHCs) of the prasinophycean alga Mantoniella squamata. The CD spectra of the intact cells and isolated thylakoids were predominated by the excitonic bands of the Chl a/b/c LHC. However, some anomalous bands indicated the existence of chiral macrodomains, which could be correlated with the multilayered membrane system in the intact cells. In the red, the thylakoid membranes and the LHC exhibited a well-discernible CD band originating from Chl c, but otherwise the CD spectra were similar to that of non-aggregated LHC II, the main Chl a/b LHC in higher plants. In the Soret region, however, an unusually intense (+) 441 nm band was observed, which was accompanied by negative bands between 465 and 510 nm. It is proposed that these bands originate from intense excitonic interactions between Chl a and carotenoid molecules. LD measurements revealed that the Q(Y) dipoles of Chl a in Mantoniella thylakoids are preferentially oriented in the plane of the membrane, with orientation angles tilting out more at shorter than at longer wavelengths (9 degrees at 677 nm, 20 degrees at 670 nm and 26 degrees at 662 nm); the Q(Y) dipole of Chl c was found to be oriented at 29 degrees with respect to the membrane plane. These data and the LD spectrum of the LHC, apart from the presence of Chl c, suggest an orientation pattern of dipoles similar to those of higher plant thylakoids and LHC II. However, the tendency of the Q(Y) dipoles of Chl b to lie preferentially in the plane of the membrane (23 degrees at 653 nm and 30 degrees at 646 nm) is markedly different from the orientation pattern in higher plant membranes and LHC II. Hence, our CD and LD data show that the molecular organization of the Chl a/b/c LHC, despite evident similarities, differs significantly from that of LHC II.  相似文献   

12.
Two forms of three-dimensional crystals of the light-harvesting chlorophyll a/b protein complex from pea have been obtained. Crystals of one form grew as hexagonal plates measuring up to 150 micron across and 2 to 3 micron in thickness. Electron diffraction patterns of thin hexagonal plates showed sharp reflections to a resolution of 3.7 A on a hexagonal reciprocal lattice. The unit cell in projection (a = 127.0 A) and the symmetry of the diffraction pattern (6 mm) suggested that the hexagonal plates were highly ordered stacks of two-dimensional crystals suitable for structure analysis by electron microscopy and image processing. Crystals of a second form grew as dark green octahedra measuring roughly 0.5 mm across. Low-resolution X-ray diffraction patterns suggested a large cubic unit cell (a = 390 A). SDS/polyacrylamide gel electrophoresis of single octahedral crystals showed the same polypeptide composition as the starting solution, one major band at 24,000 apparent molecular weight and two satellite bands of 23,000 and 23,500 apparent molecular weight.  相似文献   

13.
A collection of 17 monoclonal antibodies elicited against the light-harvesting chlorophyll a/b protein complex which serves photosystem II (LHC-II) of Pisum sativum shows six classes of binding specificity. Antibodies of two of the classes recognize a single polypeptide (the 28- or the 26- kD polypeptides), thereby suggesting that the two proteins are not derived from a common precursor. Other classes of antibodies cross-react with several polypeptides of LHC-II or with polypeptides of both LHC-II and the light-harvesting chlorophyll a/b polypeptides of photosystem I (LHC-I), indicating that there are structural similarities among the polypeptides of LHC-II and LHC-I. The evidence for protein processing by which the 26-, 25.5-, and 24.5-kD polypeptides are derived from a common precursor polypeptide is discussed. Binding studies using antibodies specific for individual LHC-II polypeptides were used to quantify the number of antigenic polypeptides in the thylakoid membrane. 27 copies of the 26-kD polypeptide and two copies of the 28-kD polypeptide were found per 400 chlorophylls. In the chlorina f2 mutant of barley, and in intermittent light-treated barley seedlings, the amount of the 26-kD polypeptide in the thylakoid membranes was greatly reduced, while the amount of 28-kD polypeptide was apparently not affected. We propose that stable insertion and assembly of the 28-kD polypeptide, unlike the 26-kD polypeptide, is not regulated by the presence of chlorophyll b.  相似文献   

14.
The light-harvesting chlorophyll a/b complex (LHCIIb) spontaneously assembles from its pigment and protein components in detergent solution. The formation of functional LHCIIb can be detected in time-resolved experiments by monitoring the establishment of excitation energy transfer from protein-bound chlorophyll b to chlorophyll a. To detect the possible initial steps of chlorophyll binding that may not yet give rise to chlorophyll b-to-a energy transfer, we have monitored LHCIIb assembly by measuring excitation energy transfer from a fluorescent dye, covalently bound to the protein, to the chlorophylls. In order to exclude interference of the dye with protein folding or pigment binding, the experiments were repeated with the dye bound to four different positions in the protein. Initial chlorophyll binding occurs at roughly the same rate as the establishment of chlorophyll b-to-a energy transfer, in the range of 10 s. However, under limiting chlorophyll concentrations, the binding of chlorophyll a clearly precedes that of chlorophyll b. The complex containing the apoprotein, carotenoids, and chlorophyll a but no chlorophyll b is biochemically unstable and therefore cannot be isolated. However, chlorophyll a binding into this weak complex is specific, as it does not occur with a C-terminal deletion mutant of Lhcb1 which still contains most chlorophyll-ligating amino acids but is unable to fold and assemble into functional LHCIIb. As a scenario for LHCIIb assembly in the thylakoid, we propose the initial formation of a labile Lhcb1-chlorophyll a-carotenoid complex that then becomes stabilized by the binding (or formation in situ) of chlorophyll b.  相似文献   

15.
The major light-harvesting chlorophyll a/b complex (LHCIIb) of photosystem II in higher plants can be reconstituted with pigments in lipid-detergent micelles. The pigment-protein complexes formed are functional in that they perform efficient internal energy transfer from chlorophyll b to chlorophyll a. LHCIIb formation in vitro, can be monitored by the appearance of energy transfer from chlorophyll b to chlorophyll a in time-resolved fluorescence measurements. LHCIIb is found to form in two apparent kinetic steps with time constants of about 30 and 200 seconds. Here we report on the dependence of the LHCIIb formation kinetics on the composition of the pigment mixture used in the reconstitution. Both kinetic steps slow down when the concentration of either chlorophylls or carotenoids is reduced. This suggests that the slower 200 seconds formation of functional LHCIIb still includes binding of both chlorophylls and carotenoids. LHCIIb formation is accelerated when the chlorophylls in the reconstitution mixture consist predominantly of chlorophyll a although the complexes formed are thermally less stable than those reconstituted with a chlorophyll a:b ratio < or = 1. This indicates that although chlorophyll a binding is more dominant in the observed rate of LHCIIb formation, the occupation of (some) chlorophyll binding sites with chlorophyll b is essential for complex stability. The accelerating effect of various carotenoids (lutein, zeaxanthin, violaxanthin, neoxanthin) on LHCIIb formation correlates with their affinity to two lutein-specific binding sites. We conclude that the occupation of these two carotenoid binding sites but not of the third (neoxanthin-specific) binding site is an essential step in the assembly of LHCIIb in vitro.  相似文献   

16.
17.
18.
Yang C  Horn R  Paulsen H 《Biochemistry》2003,42(15):4527-4533
The major light-harvesting chlorophyll a/b protein (LHCIIb) of higher plants is one of the few membrane proteins that can be refolded in vitro. During folding, the apoprotein is assembled with pigments to form a structurally authentic and functional pigment--protein complex. All reconstitution procedures used so far include solubilization of the apoprotein in sodium dodecyl sulfate (SDS) where the protein adopts approximately half of its alpha-helical folding present in the native structure. This paper shows that this preformed alpha-helix is not a prerequisite for LHCIIb folding in vitro. The apoprotein can also be reconstituted starting from a solution in guanidinium hydrochloride (Gnd) where the protein contains no detectable helical structure. Reconstitution yields are somewhat lower in the Gnd than in the SDS procedure, but the reconstitution products exhibit very similar biochemical and spectroscopic properties. The kinetics of LHCIIb assembly, as assessed by time-resolved fluorescence measurements, are virtually the same in both reconstitution procedures. This demonstrates that the initiation of alpha-helix formation is not a rate-limiting step in LHCIIb apoprotein folding.  相似文献   

19.
In thylakoid membranes isolated from green plants of parsley, pea, and barley, the light-harvesting chlorophyll a/b protein complex (LHCP, mol. weight: 25,000), is a major constituent. Poly(A)RNA isolated from these species was translated in a wheat germ, cell-free system. The in vitro translation products were treated with antibodies raised against the LHCP. This treatment resulted in the precipitation of a precursor protein (mol. weight: 29,000). Poly(A)RNA was also prepared from a cell culture ofPetroselinum that does not develop chloroplasts upon illumination. This poly(A)RNA is capable of stimulating amino acid incorporation in the in vitro translation system, however, it does not direct the synthesis of LHCP.  相似文献   

20.
The precursor for a Lemna light-harvesting chlorophyll a/b protein (pLHCP) has been synthesized in vitro from a single member of the nuclear LHCP multigene family. We report the sequence of this gene. When incubated with Lemna chloroplasts, the pLHCP is imported and processed into several polypeptides, and the mature form is assembled into the light-harvesting complex of photosystem II (LHC II). The accumulation of the processed LHCP is enhanced by the addition to the chloroplasts of a precursor and a co-factor for chlorophyll biosynthesis. Using a model for the arrangement of the mature polypeptide in the thylakoid membrane as a guide, we have created mutations that lie within the mature coding region. We have studied the processing, the integration into thylakoid membranes, and the assembly into light-harvesting complexes of six of these deletions. Four different mutant LHCPs are found as processed proteins in the thylakoid membrane, but only one appears to have an orientation in the membrane that is similar to that of the wild type. No mutant LHCP appears in LHC II. The other two mutant LHCPs cannot be detected within the chloroplasts. We conclude that stable complex formation is not required for the processing and insertion of altered LHCPs into the thylakoid membrane. We discuss the results in light of our model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号