首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two contrasting genome-specific DNA sequences were isolated from Aegilops speltoides (wild goat grass) and Hordeum chilense (wild barley), each representing more than 1 % of the genomes. These repetitive DNA fragments were identified as being genome-specific before cloning by genomic Southern hybridization (using total genomic DNA as a probe), and hence extensive screening of clones was not required. For each fragment, up to six recombinant plasmid clones were screened and about half were genome-specific. Clone pAesKB52 from Ae. speltoides was a 763 by EcoRI fragment, physically organized in simple tandem repeats and shown to localize to sub-telomerec chromosome regions of species with the Triticeae S-genome by in situ hybridization to chromosomes. The sequence data showed an internal duplication of some 280 bp, which presumably occurred before sequence amplification and dispersion, perhaps by unequal crossing-over or reciprocal translocation. In situ hybridization showed that the sequence distribution varied between closely related (S-genome) species. Clone pHcKB6 was a 339 by DraI fragment from H. chilense, also tandemly repeated but more variable; loss of the DraI site resulting in a ladder pattern in Southern blots which had little background smear. In situ hybridization showed that the tandem repeats were present as small clusters dispersed along all chromosome arms except at a few discrete regions including the centromeres and telomeres. The clone hybridized essentially specifically to the H-genome of H. chilense and hence was able to identify the origin of chromosomes in a H. chilense x Secale africanum hybrid by in situ hybridization. It has a high A + T content (66%), small internal duplications, and a 50 by degenerate inverted repeat. We speculate that it has dispersed by retrotransposition in association with other sequences carrying coding domains. The organization and evolution of such sequences are important in understanding long-range genome organization and the types of change that can occur on evolutionary and plant breeding timescales. Genome-specific sequences are also useful as markers for alien chromatin in plant breeding.  相似文献   

2.
Summary A library of random DNA fragment clones of wild barley Hordeum chilense was screened for clones of repeated nucleotide sequences. Five clones were isolated that gave a stronger hybridization signal in colony and dot blot hybridization with total H. chilense DNA in comparison to Triticum aestivum DNA. Clones labelled with biotinylated nucleotides were used as probes to investigate the repeated sequences organization in the H. chilense genome. Tandemly arranged and interspersed sequences have been found, together with homology differences with related sequences present in T. Aestivum, which could allow the differentiation of H. chilense DNA when it is present in wheat. We show that biotin can replace the use of 32P in preparing repeated sequence probes for Southern and DNA dot blot analyses.  相似文献   

3.
The aim of the present work was to study chromosomal polymorphism within cultivated barley (Hordeum vulgare ssp. vulgare) using three-color fluorescence in situ hybridization (FISH). The physical distribution of the most frequently used, highly repetitive DNA sequences (GAA)7 specific for pericentromeric heterochromatic regions, the ribosomal DNA clone pTa71, specific for the 45S rDNA, and the barley-specific telomere-associated sequence HvT01, was investigated to reveal genetic diversity in metaphase spreads of ten barley genotypes with diverse geographical origin, growth habit and row number. A wild relative of barley, Hordeum chilense was also studied in order to compare the polymorphism between and within Hordeum species. Significant differences in the hybridization patterns of all three DNA probes could be detected between the two related species, but only probes pTa71 and HvT01 showed variation in the intensity and/or position of hybridization sites among genotypes of H. vulgare ssp. vulgare. The extent of polymorphism was less than that earlier reported for molecular markers and was restricted to the long chromosome arms, with differences between the chromosomes. 1H and 3H proved to be the most variable chromosomes and 4H and 6H the most conserved.  相似文献   

4.
A knowledge of genome organization is important for understanding how genomes function and evolve, and provide information likely to be useful in plant breeding programmes involving hybridization and genetic manipulation. Molecular techniques, including in situ hybridization, molecular cloning and DNA sequencing, are proving valuable tools to investigate the structure, organization, and diversity of chromosomes in agricultural crops. Heterologous labelled 18 s-5.8 s-25 s (pTa71) and 5 s rDNAs (pTa794) were used for in situ hybridization on Vigna unguiculata (L.) Walp. chromosomes. Hybridization with 18 s-5.8 s-25 s rRNA gene probes occurred at the same chromosomal sites which were positive to the CMA fluorochrome. Silver staining of nucleolar-organizing regions indicated that all the rDNA sites detected using the 18 s-5.8 s-25 s rRNA gene probe possessed active genes. Degenerate telomeric repeats gave hybridization signals at the telomeres of most chromosomes and no intercalary sites were detected at metaphase; the sequences appear to have no preferential distribution in interphase nuclei. A repetitive DraI family from V. unguiculata was cloned (pVuKB1) and characterized. The DraI repeat is 488 nucleotides long, AT rich (74%), and hybridized on all chromosomes in the centromeric areas. The presence of this sequence family was investigated by Southern hybridization in different Vigna species and other Leguminoseae. It was only detected in V. unguiculata, and hence represents a species-specific DNA sequence.  相似文献   

5.
Simple, reliable methods for the identification of alien genetic introgressions are required in plant breeding programmes. The use of genomic dot-blot hybridisation allows the detection of small Hordeum chilense genomic introgressions in the descendants of genetic crosses between wheat and H. chilense addition or substitution lines in wheat when molecular markers are difficult to use. Based on genomic in situ hybridisation, DNA samples from wheat lines carrying putatively H. chilense introgressions were immobilised on a membrane, blocked with wheat genomic DNA and hybridised with biotin-labelled H. chilense genomic DNA as a probe. This dot-blot screening reduced the number of plants necessary to be analysed by molecular markers or in situ hybridisation, saving time and money. The technique was sensitive enough to detect a minimum of 5 ng of total genomic DNA immobilised on the membrane or about 1/420 dilution of H. chilense genomic DNA in the wheat background. The robustness of the technique was verified by in situ hybridisation. In addition, the detection of other wheat relative species such as Hordeum vulgare, Secale cereale and Agropyron cristatum in the wheat background was also reported.  相似文献   

6.
Retrotransposon (RTN)-based markers, such as the inter-retrotransposon amplified polymorphism (IRAP) and the retrotransposon-microsatellite amplified polymorphism (REMAP), are highly informative, multilocus, and reveal insertion polymorphisms among individuals. These markers have been used for evolutionary studies, genetic diversity assessment, DNA fingerprinting, and detection of genetic rearrangements induced by allopolyploidization. The hexaploid tritordeum (HchHchAABB; 2n?=?6x?=?42) is an allopolyploid produced from crosses between wild barley (Hordeum chilense Roem. et Schultz.) (HchHch; 2n?=?2x?=?14) and durum wheat (Triticum turgidum L. conv. durum) (AABB; 2n?=?4x?=?28). With this study, we carried out the DNA fingerprinting of two newly formed hexaploid tritordeum lines (HT22 and HT27) and their respective parents, line H1 of H. chilense and line T81 of durum wheat, based on IRAPs, REMAPs and inter-simple sequence repeats (ISSRs), in order to detect potential rearrangements in tritordeum derived from polyploidization. The amphiploid nature of the HT22 and HT27 individuals was successfully confirmed after fluorescence in situ hybridization (FISH), which was performed on their mitotic chromosome spreads with genomic DNA from H. chilense and 45S ribosomal DNA (rDNA), simultaneously, as probes. Six combinations of LTR (long terminal repeat) primers and seven combinations of one LTR and one SSR (simple sequence repeat) primers successfully produced IRAPs and REMAPs, respectively, in both tritordeum lines, and their respective parents. ISSRs were produced with three SSR primers (8081, 8082, and 8564). The analysis of the presence/absence of bands among the tritordeum lines and the respective parents allowed the detection of polymorphic bands: (1) shared by tritordeum and one of the parents; (2) exclusively amplified in tritordeum; and (3) exclusively present in one of the parents. Once no polymorphism was detected among the individuals of each parental species, the polymorphic bands that fit into the second and third cases probably constituted rearrangements in the newly formed tritordeums that arose in response to allopolyploidization, which resulted from the loss of parental bands or, conversely, from the appearance of novel bands not seen in the parental species. Most of the polymorphic IRAPs in tritordeum were shared with the female parent (H. chilense), while most of the polymorphic REMAPs and ISSRs were common to the male parent (durum wheat), but globally, most of the bands inherited by tritordeum had a wheat origin. In conclusion, these dominant markers were successful for DNA fingerprinting and detection of rearrangements in newly formed tritordeum derived from responses to allopolyploidization.  相似文献   

7.
DNA gel-blot and in situ hybridization with genome-specific repeated sequences have proven to be valuable tools in analyzing genome structure and relationships in species with complex allopolyploid genomes such as hexaploid oat (Avena sativa L., 2n = 6x = 42; AACCDD genome). In this report, we describe a systematic approach for isolating genome-, chromosome-, and region-specific repeated and low-copy DNA sequences from oat that can presumably be applied to any complex genome species. Genome-specific DNA sequences were first identified in a random set of A. sativa genomic DNA cosmid clones by gel-blot hybridization using labeled genomic DNA from different Avena species. Because no repetitive sequences were identified that could distinguish between the A and D gneomes, sequences specific to these two genomes are refereed to as A/D genome specific. A/D or C genome specific DNA subfragments were used as screening probes to identify additional genome-specific cosmid clones in the A. sativa genomic library. We identified clustered and dispersed repetitive DNA elements for the A/D and C genomes that could be used as cytogenetic markers for discrimination of the various oat chromosomes. Some analyzed cosmids appeared to be composed entirely of genome-specific elements, whereas others represented regions with genome- and non-specific repeated sequences with interspersed low-copy DNA sequences. Thus, genome-specific hybridization analysis of restriction digests of random and selected A. sativa cosmids also provides insight into the sequence organization of the oat genome.  相似文献   

8.
9.
Two recombinant DNA clones that are localized to single human chromosomes were isolated from a human repetitive DNA library. Clone pHuR 98, a variant satellite 3 sequence, specifically hybridizes to chromosome position 9qh. Clone pHuR 195, a variant satellite 2 sequence, specifically hybridizes to chromosome position 16qh. These locations were determined by fluorescent in situ hybridization to metaphase chromosomes, and confirmed by DNA hybridizations to human chromosomes sorted by flow cytometry. Pulsed field gel electrophoresis analysis indicated that both sequences exist in the genome as large DNA blocks. In situ hybridization to intact interphase nuclei showed a well-defined, localized organization for both DNA sequences. The ability to tag specific human autosomal chromosomes, both at metaphase and in interphase nuclei, allows novel molecular cytogenetic analyses in numerous basic research and clinical studies.  相似文献   

10.
Fluorescent in situ hybridization (FISH) was used to study the distribution of the Spelt1 and Spelt52 repetitive DNA sequences on chromosomes of ten accessions representing three polyploid wheat species of the Timopheevi group: Triticum araraticum (7), T. timopheevii (2), and T. kiharae (1). Sequences of both families were found mostly in the subtelomeric chromosome regions of the G genome. The total number of Spelt1 sites varied from 8 to 14 in the karyotypes of the species under study; their number, location, and size differed among the seven T. araraticum accessions and were the same in the two T. timopheevii accessions and T. kiharae, an amphidiploid T. timopheevii-Aegilops tauschii hybrid. The Spelt52 tandem repeat was detected in the subtelomeric regions of chromosomes 1-4; its sites did not coincide with the Spelt1 sites. The chromosome distribution and signal intensity of the Spelt52 repeats varied in T. araraticum and were the same in T. timopheevii and T. kiharae. The chromosome distributions of the Spelt1 and Spelt52 repeats were compared for the polyploid wheats of the Timopheevi group and diploid Ae. speltoides, a putative donor of the G genome. The comparison revealed a decrease in hybridization level: both the number of sites per genome and the size of sites were lower. The decrease was assumed to result from repeat elimination during polyploidization and subsequent evolution of wheat and from the founder effect, since the origin of Timopheevi wheats might involve the genotype of Ae. speltoides, which is highly polymorphic for the distribution of Spelt1 and Spelt52 sequences and is similar in the chromosome location of the repeats to modern wheat.  相似文献   

11.
Summary The genomic organization and chromosomal localization of a cloned 0.79-kb highly repeated DNA fragment, H-115, isolated from Aedes albopictus has been examined. The cloned fragment is a part of a larger unit of 1.86 kb that is tandemly repeated in the Ae. albopictus genome. The H-115 family of sequences are located at the intercalary position on chromosome 1 in Ae. albopictus. Similar patterns of in situ and Southern blot hybridization results are obtained in Ae. aegypti, Ae. seatoi, Ae. flavopictus, Ae. polynesiensis, Ae. Alcasidi, and Ae. katherinensis. The H-115 sequences are widely conserved in Culicidae and are found in Haemagogus equinus, Tripteroides bambusa, and Anopheles quadrimaculatus by hybridization under high stringency conditions. The H-115 sequences are also tandemly repeated in Hg. equinus with a monomer unit of 1.86 kb and in Tp. bambusa with a slightly diverged monomer unit of 1.90kb. In Anopheles quadrimaculatus, the H-115 sequences are dispersed throughout the genome. Partial sequence analysis shows that the H-115 insert is 62% AT and contains two perfect inverted repeats and numerous perfect direct repeats. The occurrence of inverted repeats with potential to form intrastrand palindromic structure suggests that the H-115 family of sequences may be involved in chromatin condensation.  相似文献   

12.
We confirmed the occurrence of the insect TTAGG telomeric repeats in the mealybug Planococcus lilacinus, a radiation-resistant coccid, by single primer polymerase chain reaction (PCR) and Southern hybridization. Analysis of Bal31 nuclease-digested DNA by Southern hybridization and chromosomes by FISH suggests that these repeats occur mainly at the ends of the chromosomes. However, sequence analysis of the PCR products of TTAGG-associated sequences from genomic DNA showed their interstitial occurrence and association with certain unrelated low-copy repeats. Because of their shorter length, the interstitial TTAGG sequences were detectable by primed in situ hybridizations but not by FISH. Analysis of chromosomes recovered after irradiation by fluorescent in situ hybridization suggested acquisition of TTAGG repeats at a majority of the healed ends. We also observed mild telomerase activity in unirradiated insects which was further enhanced after irradiation. Taken together, these results suggest that the mealybug has an efficient mechanism of formation of TTAGG repeats at radiation-induced chromosome ends and constitutively active telomerase may be a feature associated with rapid recovery of chromosome ends damaged by ionizing radiation.  相似文献   

13.
A 154-bp PCR product amplified from human female DNA mapped onto the Y chromosome under high-stringency in situ hybridization conditions. The female DNA sequence revealed an 89% homology with the HSDYZ1 sequence. When the same primers were used to amplify male DNA, a 154-bp DNA fragment was also obtained, showing a 98% homology with HSDYZ1. However, although the HSDYZ1 sequence is widely distributed along the long arm of the Y chromosome, both of these particular PCR products are di-regionally localized within this distal block of constitutive heterochromatin. In situ hybridization under lower stringency showed that these 154-bp sequences map both onto the autosomes and the Y chromosome. Overall, this paper shows (i) a new class of DNA sequences shared by the autosomes and the Y chromosome; and (ii) a substructured organization of some DNA repeats within the DYZ1 family that forms a large part of the constitutive heterochromatin of the Y chromosome.  相似文献   

14.
Fluorescence in situ hybridization (FISH) was used to study the distribution of Spelt-1 repetitive DNA sequences on chromosomes of 37 accessions representing eight polyploidy wheat species of the Emmer evolutionary lineage: Triticum dicoccoides Körn, T. dicoccum (Schrank) Schuebel, T. durum Desf., T. polonicum L., T. carthlicum Nevski, T. aethiopicum Jakubz., T. aestivum L., and T. spelta L. Substantial polymorphism in the number, distribution, and the sizes of the Spelt-1 loci was revealed. On the chromosomes of the accessions examined, Spelt-1 tandem repeats were found in seven different positions (per haploid chromosome set). These were “potential hybridization sites”, including the subtelomeric regions of either short or long arms of chromosomes 2A and 6B, the short arm of chromosome 1B, and the long arms of chromosomes 2B and 3B. However, in individual genotypes, only from one to three Spelt-1 loci were revealed. Furthermore, no hybridization with Spelt-1 probe was detected on chromosomes from 12 accessions. Thus, the total number of Spelt-1 sites in karyotypes varied from zero to three, with the average number of 1.16. This was substantially lower than in the species of the Timopheevi section and diploid Aegilops speltoides Tausch, a putative donor of the B genome. The decrease of the content of Spelt-1 sequences in the genomes of the Emmer group wheats in comparison with the species of the Timopheevii group and diploid Ae. speltoides was assumed to result from the repetitive sequences reorganization during polyploidization and the repeat elimination during wheat evolution.  相似文献   

15.
16.
We have used the polymerase chain reaction (PCR) technique to search the Drosophila melanogaster genome for the presence of sequences with homology to mammalian and yeast centromeric DNA. Using primers based on the human CENP-B box present in α-satellite DNA and part of the Saccharomyces cerevisiae CDEIII centromeric sequence, a number of specific DNA fragments were amplified from total genomic DNA. In situ hybridization to polytene and mitotic chromosomes showed these fragments to localise to centromeric and pericentromeric regions. Direct cloning of the amplified fragments into conventional plasmids proved unsuccessful. However, a recombinant P1 clone containing D. melanogaster genomic DNA that supports PCR amplification by the primers was identified. Molecular characterisation of this clone revealed a DNA fragment that localises primarily to the centromere of chromosome 2. Sequence analysis indicated that this fragment contains at least four different repeats, including Rsp, transposable elements, Bari-1 and a new AT-rich repeated sequence that we have designated Porto-1. Detailed fluorescence in situ hybridization analysis shows that Porto-1 is localised very close to the primary constriction of chromosome 2. Sequence analysis suggests that this repeat was specifically amplified by our primers, although limited homology to the CENP-B box or CDEIII elements was found. In situ hybridization to a number of Drosophila species shows Porto-1 to be present only in D. melanogaster. Received: 13 April 1996; in revised form: 25 June 1996 / Accepted: 6 July 1996  相似文献   

17.
Summary We isolated three different repetitive DNA sequences from B. campestris and determined their nucleotide sequences. In order to analyze organization of these repetitive sequences in Brassica, Southern blot hybridization and in situ hybridization with metaphase chromosomes were performed. The sequence cloned in the plasmid pCS1 represented a middle repetitive sequence present only in B. campestris and not detected in closely related B. Oleracea. This sequence was localized at centromeric regions of six specific chromosomes of B. campestris. The second plasmid, pBT4, contained a part of the 25S ribosomal RNA gene, and its copy number was estimated to be 1,590 and 1,300 per haploid genome for B. campestris and B. oleracea, respectively. In situ hybridization with this sequence showed a clear signal at the NOR region found in the second largest chromosome of B. Campestris. The third plasmid, pBT11, contained a 175-bp insert that belongs to a major family of tandem repeats found in all the Brassica species. This sequence was detected at centromeric regions of all the B. campestris chromosomes. Our study indicates that in situ hybridization with various types of repetitive sequences should give important information on the evolution of repetitive DNA in Brassica species.  相似文献   

18.
The structural organization and evolution of two tandemly repeated families, Spelt1 and Spelt52, located in the subtelomeric regions of Aegilops speltoides chromosomes were studied. The Spelt1 family of sequences with a monomer length of 178 bp was characterized by cloning and sequence analysis of polymerase chain reaction (PCR) products. Members of the Spelt1 family revealed sequence similarities exceeding 95\%. This conservation has remained despite divergence of species in Aegilops section Sitopsis and after independent multiple amplification events in the genome of Ae. speltoides. Sequences representing the Spelt52 family were cloned, sequenced and compared with other sequences in databases. The Spelt52 repeat family contains monomers of two types, Spelt52.1 and Spelt52.2. The two monomers share a homologous stretch of 280 bp and have two regions without sequence similarity of 96 bp and 110 bp, respectively. PCR analysis was conducted to 15 lines in Ae. speltoidesTausch., Ae. longissimaSchw.&Mushc.,Ae. sharonensisEig.,Ae. bicornis(Forssk)Jaub.&Sp., andAe. searsii Feld.&Kis. using primers to the homologous and non- homologous regions of Spelt52 family. Intraspecies and interspecies differences in the occurrence and abundance of combinations of Spelt52.1 and Spelt52.2 monomers were detected. The use of primers to telomeric and subtelomeric repeats followed by Southern hybridization, cloning, and sequence analysis demonstrated that Spelt1 and Spelt52 are localized close to each other and to telomeric repeats. The efficiency of a PCR approach for the analysis of telomeric/subtelomeric junction regions of chromosomes is discussed.  相似文献   

19.
《Gene》1997,186(1):7-11
The relationship between a 217-bp AluI fragment (SnAluI-33c) from lake trout (Salvelinus namaycush) which hybridizes to the nucleolar organizer regions (NORs) and the ribosomal RNA genes was examined by Southern analysis and comparative hybridization. Restriction enzymes with recognition sites mapped in the lake trout rDNA cistron were used to digest genomic DNA into fragments of predetermined size. Comparison of the hybridization pattern of SnAluI-33c with those of two rDNA-specific probes placed this fragment within the intergenic spacer region of the rDNA cistron, approximately 3 kb upstream (5′) of the 18S gene. This finding is consistent with in situ hybridization experiments showing hybridization of this fragment to sites of rDNA [Reed, K.M. and Phillips, R.B., Cytogenet. Cell Genet. 70 (1995) 104–107]. Based on cross hybridization and sequence comparisons, homologous sequences are present in other salmonid species.  相似文献   

20.
We characterized the intracellular symbiotic bacteria of the mulberry psyllid Anomoneura mori by performing a molecular phylogenetic analysis combined with in situ hybridization. In its abdomen, the psyllid has a large, yellow, bilobed mycetome (or bacteriome) which consists of many round uninucleated mycetocytes (or bacteriocytes) enclosing syncytial tissue. The mycetocytes and syncytium harbor specific intracellular bacteria, the X-symbionts and Y-symbionts, respectively. Almost the entire length of the bacterial 16S ribosomal DNA (rDNA) was amplified and cloned from the whole DNA of A. mori, and two clones, the A-type and B-type clones, were identified by restriction fragment length polymorphism analysis. In situ hybridization with specific oligonucleotide probes demonstrated that the A-type and B-type 16S rDNAs were derived from the X-symbionts and Y-symbionts, respectively. Molecular phylogenetic analyses of the 16S rDNA sequences showed that these symbionts belong to distinct lineages in the γ subdivision of the Proteobacteria. No 16S rDNA sequences in the databases were closely related to the 16S rDNA sequences of the X- and Y-symbionts. However, the sequences that were relatively closely related to them were the sequences of endosymbionts of other insects. The nucleotide compositions of the 16S rDNAs of the X- and Y-symbionts were highly AT biased, and the sequence of the X-symbiont was the most AT-rich bacterial 16S rDNA sequence reported so far.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号