首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 1194 by open reading frame that codes for a 398 amino acid peptide was cloned from a gt11 library of Drosophila melanogaster genomic DNA. The predicted peptide sequence is very similar to three previously characterized protein sequences that are encoded by the ftsZ genes in Escherichia coli, Bacillus subtilis and Rhizobium meliloti. The FtsZ protein has a major role in the initiation of cell division in prokaryotic cells. Using a tetracycline treatment that eradicates bacterial parasites from insects, the ftsZ homologue has been found to be derived from a bacterium that lives within the strain. However, polymerase chain reaction (PCR) amplification of the gene from treated embryos suggests that it is not derived from a gut bacterium. Nevertheless, by amplifying and characterizing part of the 16S rRNA from this bacterium we have been able to demonstrate that it is a member of the genus Wolbachia, a parasitic organism that infects, and disturbs the sexual cycle of various strains of Drosophila simulans. We suggest that this ftsZ homologue is implicated in the cell division of Wolbachia, an organism that fails to grow outside the host organism. Sequence and alignment analysis of this ftsZ homologue show the presence of a potential GTP-binding motif indicating that it may function as a GTPase. The consequences of this function particularly with respect to its role in cell division are discussed.  相似文献   

2.
Rickettsial symbionts of the genus Wolbachia, harboured by many arthropod species, are implicated in feminization, cytoplasmic incompatibility and parthenogenesis phenomena. These symbionts induce thelytokous parthenogenesis in some egg parasitoids of the Trichogramma genus. In our study of these minute wasps, purified Wolbachia from an infected species, T. pretiosum, were transferred by microinjection into in vitro developed pupae of an uninfected species, T. dendrolimi. We believe this to be the first successful transfer of Wolbachia in parasitoids. The presence or absence of Wolbachia was determined using DAPI staining, PCR and ftsZ gene sequencing. An ftsZ gene fragment from microinjected T. dendrolimi was shown to be identical to that of T. pretiosum, confirming that transfer was successful. Wolbachia were still present in the recipient species 26 generations after the transfer, although only partial induction of thelytoky was observed. Therefore, in Trichogramma, density of symbionts or symbiont–host interactions may be involved in the expression of parthenogenesis. The successful transfer of the symbiont within the Trichogrammatidae, a group of insects used in biological control strategies, could increase their agronomic importance by manipulating their reproductive system.  相似文献   

3.
A homologue of the bacterial cell division gene ftsZ was cloned from the filamentous bacterium Streptomyces coelicolor. The gene was located on the physical map of the chromosome at about ‘11 o'clock’ (in the vicinity of glkA, hisA and trpB). Surprisingly, a null mutant in which the 399-codon ftsZ open reading frame was largely deleted was viable, even though the mutant was blocked in septum formation. This indicates that cell division may not be essential for the growth and viability of S. coelicolor. The ftsZ mutant was able to produce aerial hyphae but was unable to produce spores, a finding consistent with the idea that ftsZ is required in order for aerial hyphae to undergo septation into the uninucleoid cells that differentiate into spores.  相似文献   

4.
The horizontal transfer of the bacterium Wolbachia pipientis between invertebrate hosts hinges on the ability of Wolbachia to adapt to new intracellular environments. The experimental transfer of Wolbachia between distantly related host species often results in the loss of infection, presumably due to an inability of Wolbachia to adapt quickly to the new host. To examine the process of adaptation to a novel host, we transferred a life-shortening Wolbachia strain, wMelPop, from the fruit fly Drosophila melanogaster into a cell line derived from the mosquito Aedes albopictus. After long-term serial passage in this cell line, we transferred the mosquito-adapted wMelPop into cell lines derived from two other mosquito species, Aedes aegypti and Anopheles gambiae. After a prolonged period of serial passage in mosquito cell lines, wMelPop was reintroduced into its native host, D. melanogaster, by embryonic microinjection. The cell line-adapted wMelPop strains were characterized by a loss of infectivity when reintroduced into the original host, grew to decreased densities, and had reduced abilities to cause life-shortening infection and cytoplasmic incompatibility compared to the original strain. We interpret these shifts in phenotype as evidence for genetic adaptation to the mosquito intracellular environment. The use of cell lines to preadapt Wolbachia to novel hosts is suggested as a possible strategy to improve the success of transinfection in novel target insect species.  相似文献   

5.
Monochamus alternatus is the longicorn beetle notorious as a vector of the pinewood nematode that causes the pine wilt disease. When two populations of M. alternatus were subjected to diagnostic polymerase chain reaction (PCR) detection of four Wolbachia genes, only the ftsZ gene was detected from one of the populations. The Wolbachia ftsZ gene persisted even after larvae were fed with a tetracycline-containing diet for six weeks. The inheritance of the ftsZ gene was not maternal but biparental, exhibiting a typical Mendelian pattern. The ftsZ gene titres in homozygotic ftsZ+ insects were nearly twice as high as those in heterozygotic ftsZ+ insects. Exhaustive PCR surveys revealed that 31 and 30 of 214 Wolbachia genes examined were detected from the two insect populations, respectively. Many of these Wolbachia genes contained stop codon(s) and/or frame shift(s). Fluorescent in situ hybridization confirmed the location of the Wolbachia genes on an autosome. On the basis of these results, we conclude that a large Wolbachia genomic region has been transferred to and located on an autosome of M. alternatus. The discovery of massive gene transfer from Wolbachia to M. alternatus would provide further insights into the evolution and fate of laterally transferred endosymbiont genes in multicellular host organisms.  相似文献   

6.
《Journal of Asia》2021,24(4):1164-1169
Wolbachia, a symbiotic bacterium found in a broad range of insects, manipulates host reproduction. In addition to reproductive alterations, Wolbachia may also modify the immune system of host insects to protect them from additional pathogenic infection. We hypothesized that Wolbachia exerts protective effects by activating antimicrobial peptide (AMP) genes. To test this hypothesis, we established immunocompetent cell lines derived from the silkworm, Bombyx mori, which were transinfected with two Wolbachia strains, wKue and wCauB, originating from lepidopteran insects and quantified the expression of four AMP genes, cecropin B, defensin B, attacin, and lebocin 3. The expression was measured in wKue-infected, wCauB-infected, and uninfected cells, before and after treatment with peptidoglycan (PGN) that mimicked a bacterial infection. A two-way ANOVA for each gene showed that both Wolbachia infection and PGN treatment significantly increased the gene expression and their interaction. When treated with PGN, wKue- and wCauB-infected cells showed higher expression of the four AMP genes than those in uninfected cells, suggesting that Wolbachia infection increased the ability of host cells to produce AMPs in response to immune stimulation with PGN. These observations suggest that the two Wolbachia strains have immune priming effects and may protect the host insects from a secondary infection.  相似文献   

7.
Wolbachia are intracellular bacteria mostly found in a diverse range of arthropods and filarial nematodes. They have been classified into seven distinct ‘supergroups’ and other lineages on the basis of molecular phylogenetics. The arthropod-infecting Wolbachia are usually regarded as reproductive parasites because they manipulate their host species’ sexing system to enhance their own spread, and this has led to their investigation as potential agents of genetic control in medical entomology. We report 12 partial Wolbachia gene sequences from: aspC, aspS, dnaA, fbpA, ftsZ, GroEL, hcpA, IDA, rpoB, rpe, TopI and wsp as well as a single ftsZ pseudogene sequence, which have all been PCR-amplified from Simulium squamosum (Diptera: Simuliidae). To our knowledge this is the first such report from Simuliidae. Uninterrupted open-reading frame sequences were obtained from all 12 genes, covering ∼6.2 kb of unique DNA sequence. Phylogenetic analyses with the different coding genes gave consistent results suggesting that the Wolbachia sequences obtained here do not derive from any of the known Wolbachia supergroups or lineages. Consistent with a unique genetic status for the S. squamosumWolbachia, the hypervariable regions of the Wolbachia-specific wsp gene were distinct from all previous records in both sequence and length. As well as potential implications for newly emerging Wolbachia-based disease control methods, the results may be relevant to some problems experienced in the laboratory colonisation of Simulium damnosum sensu lato and why it is such a diverse species complex.  相似文献   

8.
Wolbachia is an endosymbiotic bacterium widely present in arthropods and animal-parasitic nematodes. Despite previous efforts, it has never been identified in plant-parasitic nematodes. Random sequencing of genes expressed by the burrowing nematode Radopholus similis resulted in several sequences with similarity to Wolbachia genes. The presence of a Wolbachia-like endosymbiont in this plant-parasitic nematode was investigated using both morphological and molecular approaches. Transmission electron microscopy, fluorescent immunolocalisation and staining with DAPI confirmed the presence of the endosymbiont within the reproductive tract of female adults.16S rDNA, ftsZ and groEL gene sequences showed that the endosymbiont of R. similis is distantly related to the known Wolbachia supergroups. Finally, based on our initial success in finding sequences of this endosymbiont by screening an expressed sequence tag (EST) dataset, all nematode ESTs were mined for Wolbachia-like sequences. Although the retained sequences belonged to six different nematode species, R. similis was the only plant-parasitic nematode with traces of Wolbachia. Based on our phylogenetic study and the current literature we designate the endosymbiont of R. similis to a new supergroup (supergroup I) rather than considering it as a new species. Although its role remains unknown, the endosymbiont was found in all individuals tested, pointing towards an essential function of the bacteria.  相似文献   

9.
The ftsZ gene was cloned from the chromosomal DNA of Brevibacterium lactofermentum by the polymerase chain reaction (PCR) using two oligonucleotides designed from two conserved regions found in most of the previously cloned and sequenced ftsZ genes from other microorganisms. ftsZ is a single-copy gene in corynebacteria and is located downstream from ftsQ and murC, indicating linkage between genes involved in peptidoglycan synthesis (mur genes) and genes involved in cell division (fts genes). The organisation of the cluster is similar to that in Streptomyces and different from those of Escherichia coli or Bacillus subtilis because ftsA is not located upstream of ftsZ. The gene was expressed in E. coli using the T7 expression system; the calculated molecular weight of the expressed protein was 50?kDa. Expression of the B. lactofermentum ftsZ gene in E. coli inhibited cell division and led to filamentation. The ftsZ gene of this organism does not complement ftsZ mutations or deletions in E. coli, when cloned on low or high-copy-number vectors.  相似文献   

10.
11.
Maternally transmitted bacteria of the genus Wolbachia are obligate, intracellular symbionts that are frequently found in insects and cause a diverse array of reproductive manipulations, including cytoplasmic incompatibility, male killing, parthenogenesis, and feminization. Despite the existence of a broad range of scientific interest, many aspects of Wolbachia research have been limited to laboratories with insect-rearing facilities. The inability to culture these bacteria outside of the invertebrate host has also led to the existing bias of Wolbachia research toward infections that occur in host insects that are easily reared. Here, we demonstrate that Wolbachia infections can be simply established, stably maintained, and cryogenically stored in vitro using standard tissue culture techniques. We have examined Wolbachia host range by introducing different Wolbachia types into a single tissue culture. The results show that an Aedes albopictus (Diptera: Culicidae) cell line can support five different Wolbachia infection types derived from Drosophila simulans (Diptera: Drosophilidae), Culex pipiens (Culicidae), and Cadra cautella (Lepidoptera: Phycitidae). These bacterial types include infection types that have been assigned to two of the major Wolbachia clades. As an additional examination of Wolbachia host cell range, we demonstrated that a Wolbachia strain from D. simulans could be established in host insect cell lines derived from A. albopictus, Spodoptera frugiperda (Lepidoptera: Noctuidae), and Drosophila melanogaster. These results will facilitate the development of a Wolbachia stock center, permitting novel approaches for the study of Wolbachia infections and encouraging Wolbachia research in additional laboratories.  相似文献   

12.
13.
Wolbachia bacteria are common intracellular symbionts of arthropods and have been extensively studied in Drosophila. Most research focuses on two Old Word hosts, Drosophila melanogaster and Drosophila simulans, and does not take into account that some of the Wolbachia associations in these species may have evolved only after their fast global expansion and after the exposure to Wolbachia of previously isolated habitats. Here we looked at Wolbachia of Neotropical Drosophila species. Seventy-one lines of 16 Neotropical Drosophila species sampled in different regions and at different time points were analyzed. Wolbachia is absent in lines of Drosophila willistoni collected before the 1970s, but more recent samples are infected with a strain designated wWil. Wolbachia is absent in all other species of the willistoni group. Polymorphic wWil-related strains were detected in some saltans group species, with D. septentriosaltans being coinfected with at least four variants. Based on wsp and ftsZ sequence data, wWil of D. willistoni is identical to wAu, a strain isolated from D. simulans, but can be discriminated when using a polymorphic minisatellite marker. In contrast to wAu, which infects both germ line and somatic tissues of D. simulans, wWil is found exclusively in the primordial germ line cells of D. willistoni embryos. We report on a pool of closely related Wolbachia strains in Neotropical Drosophila species as a potential source for the wAu strain in D. simulans. Possible evolutionary scenarios reconstructing the infection history of wAu-like Wolbachia in Neotropical Drosophila species and the Old World species D. simulans are discussed.  相似文献   

14.
Buchnera aphidicola, the endosymbiont of the aphid Schizaphis graminum, contains the gene ftsZ, which codes for a protein involved in the initiation of septum formation during cell division. With immunological techniques, this protein has been detected in cell-free extracts of the endosymbiont. Nucleotide sequence determination of a 6.4-kilobase B. aphidicola DNA fragment has indicated that, as in E. coli, ftsZ is adjacent to genes coding for other cell division proteins as well as genes involved in murein synthesis (murC–ddlB–ftsA–ftsZ). Although B. aphidicola ftsZ is expressed in E. coli, it cannot complement E. coli ftsZ mutants. High levels of B. aphidicola FtsZ results in the formation of long filamentous E. coli cells, suggesting that this protein interferes with cell division. The presence of FtsZ indicates that in this, as well as in many other previously described properties, B. aphidicola resembles free-living bacteria. Received: 22 July 1997 / Accepted: 28 July 1997  相似文献   

15.
The use of antibiotics targeting the obligate bacterial endosymbiont Wolbachia of filarial parasites has been validated as an approach for controlling filarial infection in animals and humans. Availability of genomic sequences for the Wolbachia (wBm) present in the human filarial parasite Brugia malayi has enabled genome-wide searching for new potential drug targets. In the present study, we investigated the cell division machinery of wBm and determined that it possesses the essential cell division gene ftsZ which was expressed in all developmental stages of B. malayi examined. FtsZ is a GTPase thereby making the protein an attractive Wolbachia drug target. We described the molecular characterization and catalytic properties of Wolbachia FtsZ. We also demonstrated that the GTPase activity was inhibited by the natural product, berberine, and small molecule inhibitors identified from a high-throughput screen. Furthermore, berberine was also effective in reducing motility and reproduction in B. malayi parasites in vitro. Our results should facilitate the discovery of selective inhibitors of FtsZ as a novel anti-symbiotic approach for controlling filarial infection.

Note

The nucleotide sequences reported in this paper are available in GenBank™ Data Bank under the accession number wAlB-FtsZ (JN616286).  相似文献   

16.
Wolbachia pipientis is an obligately intracellular bacterium infecting a number of arthropod and nematode species. At the body level, Wolbachia infection may cause parthenogenesis, feminization of genetic males, male killing, or cytoplasmic incompatibility; it may also be asymptomatic. Of special interest is DNA transfer from Wolbachia to the host insect genome, which was discovered recently. At the cellular level, the effects caused by Wolbachia have been studied more poorly. Only one of the known insect cell lines has been obtained from an insect species (the mosquito Aedes albopictus) infected by Wolbachia. In this study, a continuous cell line Dm2008Wb1 has been obtained from embryos of Drosophila melanogaster infected under natural conditions. Wolbachia both persists in a primary cell culture and is retained upon its transformation into a continuous culture. The presence of this bacterium in cells in a free form is evidenced by the fact that tetracycline treatment can cure the cells of Wolbachia and by successful transfer of Wolbachia to another cell line (S2), where it has not been detected before.  相似文献   

17.
Wolbachia are cytoplasmically inherited alpha-proteobacteria well known for inducing a variety of reproductive abnormalities in the diverse arthropod hosts they infect. Despite their obligate intracellular lifestyle which usually protects bacteria from phage infection, Wolbachia harbor a widespread temperate phage called WO. Evidences of horizontal phage transfers indicate that this phage could promote genetic exchanges between strains leading to evolutionary changes in the genomes of Wolbachia, and could be involved in the phenotypes these bacteria induced. In this study, we report the survey of Wolbachia and WO phage infections in 20 populations of the Uzifly Exorista sorbillans, a tachinid endoparasite of silkworm Bombyx mori, collected from different geographic regions of India. Previous studies demonstrated that Wolbachia is associated with positive reproductive fitness effects in this species. Polymerase chain reaction using the ftsZ gene encoding for a Wolbachia cell division protein and the orf7 capsid protein gene of the phage showed that all flies checked were infected by Wolbachia and its phage WO. Phylogenetic analyses based on the Wolbachia surface protein gene revealed 100% of double infections by the arthropod supergroups A and B. These results can serve as a valuable basis for understanding the evolution of Wolbachia bacteria and may provide information about the dynamics of Wolbachia–host associations. This knowledge could be exploited for the use of Wolbachia for effective control strategies of the Uzifly, a serious menace of the silkworm B. mori.  相似文献   

18.
The ftsZ gene was cloned from the chromosomal DNA of Brevibacterium lactofermentum by the polymerase chain reaction (PCR) using two oligonucleotides designed from two conserved regions found in most of the previously cloned and sequenced ftsZ genes from other microorganisms. ftsZ is a single-copy gene in corynebacteria and is located downstream from ftsQ and murC, indicating linkage between genes involved in peptidoglycan synthesis (mur genes) and genes involved in cell division (fts genes). The organisation of the cluster is similar to that in Streptomyces and different from those of Escherichia coli or Bacillus subtilis because ftsA is not located upstream of ftsZ. The gene was expressed in E. coli using the T7 expression system; the calculated molecular weight of the expressed protein was 50 kDa. Expression of the B. lactofermentum ftsZ gene in E. coli inhibited cell division and led to filamentation. The ftsZ gene of this organism does not complement ftsZ mutations or deletions in E. coli, when cloned on low or high-copy-number vectors. Received: 14 January 1998 / Accepted: 31 March 1998  相似文献   

19.
In this paper, the possibility of using a mutation of ftsZ as a pseudo-spore mutant is investigated. ftsZ, which is essential for cell division and sporulation of Bacillus subtilis, was placed under the spac promoter, which is inducible with isopropyl thiogalactose (IPTG). Cell growth of the ftsZ mutant and its β-galactosidase activity under the aprE promoter were compared with the wild type. In the presence of 1 mM IPTG, cell growth of the ftsZ mutant was almost the same as that of the wild type and its sporulation frequency was slightly lower than that of the wild type. However, under uninduced conditions, cell growth of ftsZ mutant was severely impaired. When induced with 0.2 mM IPTG, the ftsZ mutant showed about 13 times higher β-galactosidase activity than the wild type. When the ftsZ mutant was used for secretory production of subtilisin, only three times higher extracellular subtilisin activity was measured, compared with the wild type. By real-time PCR investigation, it was revealed that the ftsZ mutant intracellular mRNA level for subtilisin was more than 16 times higher, compared with the wild type. However, it appears that the secretion pathway is somewhat damaged in the ftsZ mutant. These results suggest that the cell division mutant can also be used like a sporulation mutant to produce recombinant proteins, with a precise control of cell growth and induction.  相似文献   

20.
To determine biologically important effects of the cytoplasmic endosymbiont Wolbachia, two substrains of the same Drosophila melanogaster strain have been studied, one of them infected with Wolbachia and the other treated with tetracycline to eliminate the bacterium. Females of D. melanogaster infected with Wolbachia are more resistant to the fungus Blauveria bassiana (an insect pathogen) than uninfected females; infected females also exhibited changes in oviposition substrate preference. Males infected with the bacterium are more competitive than uninfected males. The possible role of Wolbachia in the formation of alternative ecological strategies of D. melanogaster is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号