首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cochliobolus heterostrophus, a heterothallic Ascomycete, has a single mating type locus with two alternate forms called MAT-1 and MAT-2. MAT-1 was cloned by complementing a MAT-2 strain using a cosmid library from a MAT-1 strain and screening for a homothallic transformant. The cosmid recovered from this transformant was able to re-transform a MAT-2 strain to homothallism and MAT identity was proven by restriction fragment length polymorphism and conventional genetic mapping. All homothallic transformants could mate with either MAT-1 or MAT-2 strains, although the number of ascospores produced by self matings or crosses to MAT-2 strains was low. Progeny of selfed homothallic transformants were themselves homothallic. MAT-2 was cloned by probing a cosmid library from a MAT-2 strain with a fragment of insert DNA from the MAT-1 cosmid. A 1.5 kb subclone of either MAT-containing cosmid was sufficient to confer mating function in transformants. Examination of the DNA sequence of these subclones revealed that MAT-1 and MAT-2 contain 1297 by and 1171 bp, respectively, of completely dissimilar DNA flanked by DNA common to both mating types. Putative introns were found (one in each MAT gene) which, when spliced out, would yield open reading frames (ORFs) that occupied approximately 90% of the dissimilar DNA sequences. Translation of the MAT-1 ORF revealed similarity to the Neurospora crassa MATA, Podospora anserina mat–, and Saccharomyces cerevisiae MAT1 proteins; translation of the MAT-2 ORF revealed similarity to the N. crassa MATa, P. anserina mat+, and Schizosaccharomyces pombe mat-Mc proteins. These gene products are all proven or proposed DNA binding proteins. Those with similarity to MAT-2 are members of the high mobility group.The first three authors contributed equally to the work  相似文献   

2.
To determine the number of proteins required for mating type (MAT) locus-regulated control of mating in Cochliobolus heterostrophus, MAT fragments of various sizes were expressed in MAT deletion strains. As little as 1.5?kb of MAT sequence, encoding a single unique protein in each mating type (MAT-1 and MAT-2), conferred mating ability, although an additional 160?bp of 3 UTR was needed for production of ascospores. No other mating type-specific genes involved in mating identity or fertility were found. Thus, although homologs of the C. heterostrophus MAT-1 and MAT-2 genes exist in the filamentous ascomycetes Neurospora crassa and Podospora anserina, C. heterostrophus does not appear to have mating type-specific homologs of two additional genes required by both N. crassa and P.?anserina for successful sexual reproduction. Three genes were identified in the common DNA flanking the MAT locus: a gene encoding a GTPase-activating protein and an ORF of unknown function lie 5 while a β-glucosidase encoding gene lies found 3. None of these genes appears to be involving in the mating process.  相似文献   

3.
4.
The MATα allele of the yeast mating type locus confers the α mating phenotype and contains two complementation groups, MATα1 and MATα2. The α1–α2 hypothesis proposes that MATα1 is a positive regulator of α-specific genes and that MATα2 is a negative regulator of a-specific genes. According to this hypothesis, matα2 mutants, which are defective in mating and in production of extracellular α-factor, express both a-specific functions (because they lack MATα2 product) and α-specific functions (because they contain MATα1 product). Failure to produce extracellular α-factor results from antagonism between these functions; in particular, because α-factor (an α-specific function) is degraded by an a-specific function. If this view is correct, matα2 mutants should acquire the ability to produce α-factor if they also carry a defect in the gene(s) responsible for α-factor degradation. We have isolated a derivative of a matα2 mutant that produces α-factor and have characterized the suppressor mutation in this strain. (1) This strain carries a mutation (bar1-1) tightly linked to HIS6 (on chromosome IX) that allows matα2 mutants to produce α-factor. (2) It does not allow matα1 mutants to produce α-factor. (3) Haploids of the a mating type bearing the bar1-1 mutation still mate, but are unable to act as a barrier to the diffusion of α-factor. MATa bar1-1 cells display increased sensitivity to α-factor. (4) A mutation (sst1?2) that causes increased sensitivity to α-factor is allelic to bar1-1 and also allows α-factor synthesis by matα2 mutants. The ability of matα2 bar1 double mutants to produce extracellular α-factor indicates that matα2 mutants do produce α-factor but that it is degraded by the Barrier function. These results suggest that BAR1 is normally expressed only in a cells, and is negatively regulated in α cells by the MATα2 product.  相似文献   

5.
To determine the number of proteins required for mating type (MAT) locus-regulated control of mating in Cochliobolus heterostrophus, MAT fragments of various sizes were expressed in MAT deletion strains. As little as 1.5 kb of MAT sequence, encoding a single unique protein in each mating type (MAT-1 and MAT-2), conferred mating ability, although an additional 160 bp of 3 UTR was needed for production of ascospores. No other mating type-specific genes involved in mating identity or fertility were found. Thus, although homologs of the C. heterostrophus MAT-1 and MAT-2 genes exist in the filamentous ascomycetes Neurospora crassa and Podospora anserina, C. heterostrophus does not appear to have mating type-specific homologs of two additional genes required by both N. crassa and P.␣anserina for successful sexual reproduction. Three genes were identified in the common DNA flanking the MAT locus: a gene encoding a GTPase-activating protein and an ORF of unknown function lie 5 while a β-glucosidase encoding gene lies found 3. None of these genes appears to be involving in the mating process. Received: 21 November 1997 / Accepted: 28 April 1998  相似文献   

6.
We have extended the genetic analysis of four mutants carrying defective MATα alleles in order to determine how the mating type locus controls yeast cell types: a, a, and aα. First, we have mapped the defect in the mutant VC73 to the mating type locus by diploid and tetraploid segregation analysis. Second, we have determined that the mutations in these strains define two complementation groups, MATα1 and MATα2. The MATα1 gene is proposed to be a positive regulator of α mating functions. The MATα2 gene product is proposed to have two roles, as a negative regulator of a-specific mating functions and as a regulator of aα cell functions (required for sporulation, for inhibition of mating and other processes). This view of MATα leads to the prediction that matα1?matα2? mutants should have the mating ability of an a cell and that matα1?matα2?/MATα strains should mate as α and be unable to sporulate. Such double mutants have been constructed and behave as predicted. We therefore propose that a-specific mating functions in MATa cells are constitutively expressed due to the absence of the MATα2 gene product and that α-specific mating functions are not expressed due to the absence of the MATα1 gene product.  相似文献   

7.
The alleles of the yeast mating type locus, MATα and MATa, determine the yeast cell types, a,α, and a/α. It has been proposed that the MATα2 product negatively regulates expression of unlinked a-specific genes, and that the MATα1 product positively regulates expression of unlinked α-specific genes. The behavior of mutants defective in MATα2, which are deficient in mating and in production of α-factor, can thus be attributed to antagonism between a-specific and α-specific functions expressed simultaneously in matα2? strains. If this view is correct, then elimination by mutation of the specific functions required to mate as α may allow matα2 mutants to mate as a. In order to test this possibility, we examined the interactions between matα2 mutations and various unlinked mutations that cause α cells but not a cells to be mating defective (α-specific STE mutations). Three α-specific mutations (ste3, ste13 and kex2) were found to be non-allelic. Furthermore, although matα2 mutants mate weakly as a, matα2, ste3 double mutants, but not matα2 ste13 or matα2 kex2 double mutants, mate efficiently as a. The ability of matα2 ste3 strains to mate as a supports the view that matα2 mutants express a-specific mating functions, and suggests that a mating functions are expressed constitutively in MATa cells. The mating behaviour of the matα2 ste3 double mutant is consistent with the proposal that STE3 is positively regulated by the MATα1 product.  相似文献   

8.
9.
Mating type (MAT)-specific fragments of the two idiomorphs ofGibberella fujikuroi (anamorph,Fusarium moniliforme) were obtained by PCR amplification using primers to conserved regions ofMAT homologs from other fungal species and used to assign mating type by molecular criteria rather than the arbitrary historical designation. Mating type—strains of mating populations A-E and a mating type+strain of mating population F carry an α-box motif and should therefore be designatedMAT-1. Mating type+strains of mating populations A-E and a mating type—strain of mating population F carry an HMG-box motif and should be designatedMAT-2. Thus, assessment of mating type ofG. fujikurol strains can be easily achieved usingMAT-specific primers.  相似文献   

10.
Summary The mating type gene MA TA of the dimorphic yeast Yarrowia lipolytica was cloned. The strategy used was based on the presumed function of this gene in the induction of sporulation. A diploid strain homozygous for the mating type B was transformed with an integrative gene bank from an A wild-type strain. A sporulating transformant was isolated, which contained a plasmid with an 11.6 kb insert. This sequence was rescued from the chromosomal DNA of the transformant and deletion mapping was performed to localize the MAT insert. The MAT gene conferred both sporulating and non-mating phenotypes on a B/B diploid. A LEU2 sequence targeted to this locus segregated like a mating type-linked gene. The A strain did not contain silent copies of the MAT gene.  相似文献   

11.
The mating type locus (MAT) determines the three yeast cell types, a, α, and a/α. It has been proposed that alleles of this locus, MATa and MATα, encode regulators that control expression of unlinked genes necessary for mating and sporulation. Specifically, the α1 product of MATα is proposed to be a positive regulator of α-specific genes. To test this view, we have assayed RNA production from the α-specific STE3 gene in the three cell types and in mutants defective in MATα. The STE3 gene was cloned by screening a yeast genomic clone bank for plasmids that complement the mating defect of ste3 mutants. Using the cloned STE3 gene as a probe, we find that a cells produce STE3 RNA, whereas a and a/a cells do not. Furthermore, matα 1 mutants do not produce STE3 RNA, whereas matα 2 mutants do. These results show that the STE3 gene, required for mating only by α cells, is expressed only in α cells. They show also that production of RNA from the STE3 gene requires the α1 product of MATα. Thus α1 positively regulates at least one α-specific gene by increasing the level of that gene's RNA product.  相似文献   

12.
The mating-type locus of Podospora anserina controls fusion of sexual cells as well as subsequent stages of development of the fruiting bodies. The two alleles at the locus are defined by specific DNA regions comprising 3.8 kb for mat+ and 4.7 kb for mat?, which have identical flanking sequences. Here we present the characterization of several mutants that have lost mat+-specific sequences. One mutant was obtained fortuitously and the other two were constructed by gene replacement. The mutants are deficient in mating with strains of either mat genotype but are still able to differentiate sexual reproductive structures. The loss of the mating type does not lead to any discernible phenotype during vegetative growth: in particular it does not change the life span of the strain. The mutants can recover mating ability if they are transformed with DNA containing the complete mat+ or mat? information. The transformants behave in crosses as do the reference mat+ or mat? strains, thus indicating that the transgenic mat+ and mat? are fully functional even when they have integrated at ectopic sites.  相似文献   

13.
14.
15.
Interconversion of Yeast Cell Types by Transposable Genes   总被引:8,自引:2,他引:6       下载免费PDF全文
Amar J. S. Klar 《Genetics》1980,95(3):631-648
The a and α cell types of budding yeast Saccharomyces cerevisiae are controlled by alternate alleles of the mating-type locus (MAT), MATa and MATα. The cell types can be interconverted by switching alleles of MAT. The loci HMRa and HMLα, which are loosely linked to MAT, are involved in mating-type switching. Experimental evidence for their role in MAT interconversion is presented. As a result of switching, the homothallic and heterothallic strains containing the amber and ochre mutations within the HMRa locus yield corresponding amber and ochre mutant mata loci. Similarly, the hmlα mutant strain generates matα mutant alleles. That is, specific mutations from HMRa and HMLα are transmitted to MAT. A replica of the mating-type coding information originating from these loci is transposed to MAT, where it replaces the existing information. Furthermore, "Hawthorne deletions" in strains containing hmra-amber/ochre result in production of mata-amber/ochre alleles. Therefore, genetic information for MATa resides at HMRa. The switches occur in a defined set of clonally related cells. Thus, the efficient interconversion of yeast cell types is mediated by an unidirectional transfer of genetic information between nonallelic sites in a nonrandom and programmed fashion. The results are inconsistent with the "flip-flop" models, but satisfy a key prediction of the general controlling element and the specific cassette models proposed for mating-type interchange.  相似文献   

16.
All sexually fertile strains in the Gibberella fujikuroi species complex are heterothallic, with individual mating types conferred by the broadly conserved ascomycete idiomorphs MAT-1 and MAT-2. We sequenced both alleles from all eight mating populations, developed a multiplex PCR technique to distinguish these idiomorphs, and tested it with representative strains from all eight biological species and 22 additional species or phylogenetic lineages from this species complex. In most cases, either an ~800-bp fragment from MAT-2 or an ~200-bp fragment from MAT-1 is amplified. The amplified fragments cosegregate with mating type, as defined by sexual cross-fertility, in a cross of Fusarium moniliforme (Fusarium verticillioides). Neither of the primer pairs amplify fragments from Fusarium species such as Fusarium graminearum, Fusarium pseudograminearum, and Fusarium culmorum, which have, or are expected to have, Gibberella sexual stages but are thought to be relatively distant from the species in the G. fujikuroi species complex. Our results suggest that MAT allele sequences are useful indicators of phylogenetic relatedness in these and other Fusarium species.  相似文献   

17.
The MAT A locus of Yarrowia lipolytica, which was on the basis of its ability to induce sporulation in a diploid B/B strain, represses the mating capacity of this strain. The gene functions required for induction of sporulation and repression of conjugation could be separated by subcloning. Sequence analysis revealed two ORFs in the MAT A locus. One of them (MAT A1) codes for a protein of 119 amino acids which is required to induce sporulation. The other (MAT A2) codes for a protein of 291 amino acids that is able to repress conjugation. Both genes are oriented divergently from a central promoter region, which possesses putative TATA and CAAT boxes for both genes. The product of MAT A1 shows no homology to any known protein and seems to represent a new class of mating-type genes. MAT A2 contains a HMG box with homology to other mating-type genes. Both MAT A1 and MAT A2 are mating-type specific. In cells of both mating types, the regions flanking the MAT A locus contain sequences with homology to either S. cerevisiae SLA2 and ORF YBB9, respectively. From hybridization and subcloning data we estimate that the MAT A region is approximately 2?kb long and is present only once in the genome.  相似文献   

18.
Both ultraviolet (UV) and ionizing radiation were observed to stimulate mitotic, ectopic recombination between his3 recombinational substrates, generating reciprocal translocations in Saccharomyces cervisiae (yeast). The stimulation was greatest in diploid strains competent for sporulation and depends upon both the ploidy of the strain and heterozygosity at the MAT locus. The difference in levels of stimulation between MATa/MATα diploid and MATα haploid strains increases when cells are exposed to higher levels of UV radiation (sevenfold at 150 J/m2), whereas when cells are exposed to higher levels of ionizing radiation (23.4 krad), only a twofold difference is observed. When the MATα gene was introduced by DNA transformation into a MATa/matα::LEU2 + diploid, the levels of radiation-induced ectopic recombination approach those obtained in a strain that is heterozygous at MAT. Conversely, when the MATA gene was introduced by DNA transformation into a MATα haploid, no enhanced stimulation of ectopic recombination was observed when cells were irradiated with ionizing radiation but a threefold enhancement was observed when cells were irradiated with UV The increase in radiation-stimulated ectopic recombination resulting from heterozygosity at MAT correlated with greater spontaneous ectopic recombination and higher levels of viability after irradiation. We suggest that MAT functions that have been previously shown to control the level of mitotic, allelic recombination (homolog recombination) also control the level of mitotic, radiation-stimulated ectopic recombination between short dispersed repetitive sequences on non-homologous chromosomes.  相似文献   

19.
Homothallic Didymella zeae-maydis undergoes sexual reproduction by selfing. Sequence analysis of the mating type (MAT) locus from this fungus revealed that MAT carries both MAT1-1-1 and MAT1-2-1 genes found in heterothallic Dothideomycetes, separated by ~1.0 kb of noncoding DNA. To understand the mechanistic basis of homothallism in D. zeae-maydis, each of the MAT genes was deleted and the effects on selfing and on ability to cross in a heterothallic manner were determined. The strain carrying an intact MAT1-1-1 but defective MAT1-2-1 gene (MAT1-1-1MAT1-2-1) was self-sterile, however strains carrying an intact MAT1-2-1 but defective MAT1-1-1 gene (ΔMAT1-1-1;MAT1-2-1), when selfed, showed delayed production of a few ascospores. Attempts to cross the two MAT deletion strains yielded fewer ΔMAT1-1-1;MAT1-2-1 than MAT1-1-1MAT1-2-1 progeny and very few ascospores overall compared to WT selfs. This study demonstrates that, as in the other homothallic Dothideomycetes, both MAT genes are required for full fertility, but that, in contrast to other cases, the presence of a single MAT1-2-1 gene can induce homothallism, albeit inefficiently, in D. zeae-maydis.  相似文献   

20.
An arg-2 mutant of Neurospora crassa was transformed to prototrophy with a pBR322-N. crassa genomic DNA library. Repeated attempts to recover the integrated transforming DNA or segments thereof by digestion, ligation, and transformation of Escherichia coli, with selection for the plasmid marker ampicillin resistance, were unsuccessful. Analyses of a N. crassa transformant demonstrated that the introduced DNA was heavily methylated at cytosine residues. This methylation was shown to be responsible for our inability to recover transformants in standard strains of E. coli; transformants were readily obtained in a strain which is deficient in the two methylcytosine restriction systems. Restriction of methylated DNA in E. coli may explain the general failure to recover vector or transforming sequences from N. crassa transformants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号