首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
In order to assess the importance of morphogenesis on the induction of promoter markers for storage and Lea programmes, advantage was taken of the emb mutations producing embryos arrested at a wide range of developmental stages in Arabidopsis. These embryos are viable during their stage of developmental arrest and continue to divide further, but apparently without further differentiation into the main organs and tissues of the normal embryos. Eight independent emb mutants arrested in their development prior to the cotyledon stage were selected. These emb embryos lack the normal morphology of the wild-type embryos when the synthesis of storage and Lea proteins are normally initiated. The 2S1-uidA chimeric gene, representative of the maturation programme and the Em 1-uidA chimeric gene, representative of the desiccation programme were introduced by crosses into the emb background. In the eight emb lines, the expression of the GUS reporter gene directed by the 2S1 and Em 1 promoters was observed in the aborted seeds irrespective of their stage of developmental arrest. The time of induction of the expression of both promoters was the same in the arrested embryos as compared with the normal embryos within the same silique. Thus, the activation of these two promoters is triggered by the same signal and can occur in the absence of morphogenesis. However, in the absence of normal organ formation, the expression of the reporter gene under the control of the 2S1 and Em 1 promoters was evident throughout the whole seed tissues. In normal seed development, the hormone abscisic acid (ABA) activates the promoters of the 2S1 and Em 1 genes. One of the important members of the signal transduction pathway of ABA is the ABI3 protein. It has been shown previously that this protein is a prerequisite for the induction of Em 1 by ABA in seeds. A good correlation with the expression of the ABI3 promoter and the 2S1 and Em 1 promoters was found in emb seeds tissues. This observation suggests that the promoters of the 2S1 and the Em 1 genes are expressed in the mutant seeds not at a basal level, but are probably induced by ABA, as in normal seed development.  相似文献   

4.
5.
Late embryogenesis abundant (lea) genes are a large and diverse group of genes highly expressed during late stages of seed development. Five major groups of LEA proteins have been described. Two Em genes (group I lea genes) are present in the genome of Arabidopsis thaliana L., AtEm1 and AtEm6. Both genes encode for very similar proteins which differ basically in the number of repetitions of a highly hydrophilic amino acid motif. The spatial patterns of expression of the two Arabidopsis Em genes have been studied using in situ hybridization and transgenic plants transformed with the promoters of the genes fused to the beta-glucuronidase reporter gene (uidA). In the embryo, AtEm1 is preferentially expressed in the pro-vascular tissues and in meristems. In contrast, AtEm6 is expressed throughout the embryo. The activity of both promoters disappears rapidly after germination, but is ABA-inducible in roots of young seedlings, although in different cells: the AtEm1 promoter is active in the internal tissues (vasculature and pericycle) whereas the AtEm6 promoter is active in the external tissues (cortex, epidermis and root hairs). The AtEm1 promoter, but not AtEm6, is also active in mature pollen grains and collapsed nectaries of young siliques. These data indicate that the two Em proteins could carry out at least slightly different functions and that the expression of AtEm1 and AtEm6 is controlled at, at least, three different levels: temporal, spatial and hormonal (ABA).  相似文献   

6.
An Arabidopsis homolog of the abscisic acid (ABA)-inducible cotton D19 and wheat Em genes was cloned and its expression assayed at two developmental stages in wild-type, ABA-deficient (aba) and three ABA-insensitive (abi) lines of Arabidopsis thaliana. Expression of this gene was reduced slightly in seeds of aba mutants and approximately ten-fold in abi3 mutants, but seed expression was not decreased in either abi1 or abi2 monogenic mutants. In contrast, the abi1 and abi2 mutants showed a very slight reduction of ABA inducibility in 8-day-old plants, while the responses of aba and abi3 mutants were comparable to that of wild type. Although previous studies have shown that none of the abi mutations show completely stage-specific effects, the results reported here indicate that the importance of each of the ABI loci in regulating this single gene is stage-dependent. Furthermore, the fact that none of the abi mutations show more than minor effects on exogenous ABA inducibility of the Arabidopsis D19/Em homolog in young plants suggests that an additional ABA signalling pathway may be operating during vegetative growth.  相似文献   

7.
8.
To gain more insight into ABA signaling mechanisms, we conducted genetic screens searching for mutants with altered ABA response in germination and post-germination growth. We isolated seven putative ABA-hypersensitive Arabidopsis mutants and named them ABA-hypersensitive germination (ahg). These mutants exhibited diminished germination or growth ability on medium supplemented with ABA. We further studied four of them: ahg1, ahg2, ahg3 and ahg4. Mapping suggested that they were new ABA-hypersensitive loci. Characterization showed that all of them had enhanced sensitivity to salinity and high osmotic stress in germinating seeds, whereas they each had distinct sugar responses. RT-PCR experiments showed that the expression patterns of the ABA-inducible genes RAB18, AtEm1, AtEm6 and ABI5 in germinating seeds were affected by these four ahg mutations, whereas those of ABI3 and ABI4 were not. ahg4 displayed slightly increased mRNA levels of several ABA-inducible genes upon ABA treatment. By contrast, ahg1 had no clear ABA-hypersensitive phenotypes in adult plants despite its strong phenotype in germination. These results suggest that ahg1, ahg2, ahg3 and ahg4 are novel ABA-hypersensitive mutants representing distinct components in the ABA response.  相似文献   

9.
10.
11.
12.
13.
14.
We have isolated five cDNA clones (osk15) for protein kinases from rice which are related to SNF1 protein kinase of Saccharomyces cerevisiae. Based on the sequence homology, these cDNAs can be classified into two groups, group 1 (osk1) and group 2 (osk25). The products of these genes were demonstrated to be functional SNF1-related protein kinases by in vitro and in vivo experiments. Recombinant proteins expressed from both groups of genes were fully active as protein kinases and could phosphorylate SAMS peptide, a substrate specific for the SNF1/AMPK family, as well as themselves (autophosphorylation). Moreover, expression of osk3 cDNA in yeast snf1 mutants restored SNF1 function. Northern blot analyses showed differential expression of these two gene groups; group 1 is expressed uniformly in growing tissues (young roots, young shoots, flowers, and immature seeds), whereas group 2 is strongly expressed in immature seeds. SNF1-related protein kinases have been reported from different plant species, such as rye, barley, Arabidopsis, tobacco, and potato, while the type of gene strongly expressed in immature seeds is known only in cereals such as rye, barley, and, from our findings, in rice. Expression levels of the group 2 genes were further analyzed in seeds during seed maturation. Expression is transiently increased in the early stages of seed maturation and then decreases. The expression peak precedes those of the sbe1 and waxy genes, which are involved in starch synthesis in rice. Taken together, these findings suggest that group 2 OSK genes play important roles in the early stages of endosperm development in rice seeds.  相似文献   

15.
16.
We report an examination of the structural requirements of the abscisic acid (ABA) recognition response in wheat dormant seed embryos using optically pure isomers of ABA analogs. These compounds include permutations to the ABA structure with either an acetylene or a trans bond at C-4 C-5, and either a single or double bond at the C-2′ C-3′ double bond. (R)-ABA and the three isomers with the same configuration at C-1′ as natural ABA were found to be effective germination inhibitors. The biologically active ABA analogs exhibited differential effects on ABA-responsive gene expression. All the ABA analogs that inhibited germination induced two ABA-responsive genes, wheat group 3 lea and dhn (rab). However, (R)-ABA and (S)-dihydroABA were less effective in inducing the ABA-responsive gene Em within the time that embryonic germination was inhibited.  相似文献   

17.
18.
Stimulation of α-amylase activity was observed in Porteresia coarctata immature seeds (20-day-old) when de-embryonated prewashed half seeds were incubated in media containing gibberellic acid (GA3, 10?5M). No such activity was observed in mature seeds even when GA3 concentration was increased up to five fold. ABA suppressed the GA3 enhanced α-amylase synthesis up to nearly 70% in the immature seeds. Absence of this enzyme activity in mature seeds may be due to high levels of ABA. The immature aleurone showed a 23 kD polypeptide induced by ABA.  相似文献   

19.
An Arabidopsis homolog of the abscisic acid (ABA)-inducible cotton D19 and wheat Em genes was cloned and its expression assayed at two developmental stages in wild-type, ABA-deficient (aba) and three ABA-insensitive (abi) lines of Arabidopsis thaliana. Expression of this gene was reduced slightly in seeds of aba mutants and approximately ten-fold in abi3 mutants, but seed expression was not decreased in either abi1 or abi2 monogenic mutants. In contrast, the abi1 and abi2 mutants showed a very slight reduction of ABA inducibility in 8-day-old plants, while the responses of aba and abi3 mutants were comparable to that of wild type. Although previous studies have shown that none of the abi mutations show completely stage-specific effects, the results reported here indicate that the importance of each of the ABI loci in regulating this single gene is stage-dependent. Furthermore, the fact that none of the abi mutations show more than minor effects on exogenous ABA inducibility of the Arabidopsis D19/Em homolog in young plants suggests that an additional ABA signalling pathway may be operating during vegetative growth.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号