首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Positively charged amino acids are known efficiently to block protein secretion in Escherichia coli, when placed within a short distance downstream of a signal sequence. It is not known whether the same applies to protein secretion in eukaryotic cells, though statistical studies of signal sequences of prokaryotic and eukaryotic secretory proteins have suggested that the situation may be different in this case. Here, we show that identical charge mutations in a model protein have different effects on membrane translocation in E. coli and in mammalian microsomes, and that the charge block effect is much more pronounced in the prokaryotic system. This finding has implications not only for our understanding of the mechanisms of protein secretion, but also points to a potential problem in the expression of eukaryotic secretory proteins in bacteria.  相似文献   

2.
Alloproteins, proteins that contain unnatural amino acids, have immense potential in biotechnology and medicine. Although various approaches for alloprotein production exist, there is no satisfactory method to produce large quantities of alloproteins containing unnatural amino acids in specific positions. The tyrosine analogue azatyrosine, l-beta-(5-hydroxy-2-pyridyl)-alanine, can convert the ras-transformed phenotype to normal phenotype, presumably by its incorporation into cellular proteins. This provided the stimulus for isolation of a mutant tyrosyl-tRNA synthetase (TyrRS) capable of charging azatyrosine to tRNA. A plasmid library of randomly mutated Escherichia coli tyrS (encoding TyrRS) was made by polymerase chain reaction techniques. The desired TyrRS mutants were selected by screening for in vivo azatyrosine incorporation of E. coli cells transformed with the mutant tyrS plasmids. One of the clones thus isolated, R-6-A-7, showed a 17-fold higher in vivo activity for azatyrosine incorporation than wild-type TyrRS. The mutant tyrS gene contained a single point mutation resulting in replacement of phenylalanine by serine at position 130 in the protein. Structural modeling revealed that position 130 is located close to Asp(182), which directly interacts with tyrosyladenylate. Kinetic analysis of aminoacyl-tRNA formation by the wild-type and mutated F130S TyrRS enzymes showed that the specificity for azatyrosine, measured by the ratios of k(cat)/K(m) for tyrosine and the analogue, increased from 17 to 36 as a result of the F130S mutation. Thus, the high discrimination against azatyrosine is significantly reduced in the mutant enzyme. These results suggest that utilization of F130S TyrRS for in vivo protein biosynthesis may lead to efficient production of azatyrosine-containing alloproteins.  相似文献   

3.
Abstract Introduction of positively charged amino acids immediately downstream of the signal sequence in prokaryotic precursor proteins is known to affect the export process. However, it is not clear whether different positively charged amino acids affect the export process similarly. To investigate this, the glutamate at position +2 of outer membrane protein PhoE was substituted by arginine, lysine of histidine. Pulse-chase experiments revealed that the Lys and Arg residues at position +2 caused a reduced processing rate, and that the effect was markedly more severe in the case of the Arg residue. Trypsin accessibility experiments revealed that the accumulated precursors were present in the cytoplasm. Since the degree of the inhibitory effect corresponded to the p K r a of the different positively charged amino acids, this suggests that the positively charged residues must be deprotonated during the secretory process.  相似文献   

4.
In the accompanying paper [Adams, H., Scotti, P.A., de Cock, H., Luirink, J. & Tommassen, J. (2002) Eur. J. Biochem.269, 5564-5571], we showed that the precursor of outer-membrane protein PhoE of Escherichia coli with a Gly to Leu substitution at position -10 in the signal sequence (G-10L) is targeted to the SecYEG translocon via the signal-recognition particle (SRP) route, instead of via the SecB pathway. Here, we studied the fate of the mutant precursor in a prlA4 mutant strain. prlA mutations, located in the secY gene, have been isolated as suppressors that restore the export of precursors with defective signal sequences. Remarkably, the G-10L mutant precursor, which is normally exported in a wild-type strain, accumulated strongly in a prlA4 mutant strain. In vitro cross-linking experiments revealed that the precursor is correctly targeted to the prlA4 mutant translocon. However, translocation across the cytoplasmic membrane was defective, as appeared from proteinase K-accessibility experiments in pulse-labeled cells. Furthermore, the mutant precursor was found to accumulate when expressed in a secY40 mutant, which is defective in the insertion of integral-membrane proteins but not in protein translocation. Together, these data suggest that SecB and SRP substrates are differently processed at the SecYEG translocon.  相似文献   

5.
The distal part of the long tail fibers of the Escherichia coli phage T4 consists of a dimer of protein 37. A fragment of the corresponding gene, encoding 253 amino acids, was inserted into several different sites within the cloned gene for the 325-residue outer membrane protein OmpA. In plasmid pTU T4-5 the fragment was inserted once and in pTU T4-10 tandemly twice between the codons for residues 153 and 154 of the OmpA protein. In pTU T4-22 two fragments were present, in tandem, between the codons for residues 45 and 46 of this protein. In pIN T4-6 one fragment was inserted into the ompA gene immediately following the part encoding the signal sequence. The corresponding mature proteins consist, in this order, of 605, 860, 835, and 279 amino acid residues. All precursor proteins were processed and translocated across the plasma membrane. Hence, not only can the OmpA protein serve as a vehicle for export of a nonsecretory protein, but the signal sequence alone can also mediate export of such a protein. Export of the pro-OmpA protein depends on the SecA protein. Export of the tail fiber fragment expressed from pIN T4-6 remained SecA dependent. Thus, the secA pathway in this case is chosen by the signal peptide. It is proposed that a signal peptide can mediate translocation of nonsecretory proteins as long as they are export-compatible. The inability of a signal sequence to mediate export of some proteins appears to be due to export incompatibility of the protein rather than to the absence of information, within the mature part of the polypeptide, which would be required for translocation.  相似文献   

6.
Factors affecting the efficiency of protein synthesis were analyzed in Escherichia coli. For this purpose the lacZ gene was fused to produce polypeptides from a dimer (molecular weight 229,957) to a hexamer (molecular weight 684,924) of beta-galactosidase. From pulse-chase experiments it was found that only 45% of the ribosomes which reached to the end of the first monomer were able to complete the second monomer unit. Similarly, for every addition of a monomer unit to synthesize the multimers from the trimer to the hexamer approximately half of the ribosomes failed to complete the synthesis of the added unit. Furthermore, the stability of the polypeptides decreased as their sizes increased. As a result, the overall efficiency of the production of the beta-galactosidase polymers dropped by a factor of approximately 3 on a weight basis for each addition of a monomer unit.  相似文献   

7.
The tsx protein is known to be a specific diffusion pathway for nucleosides. The ability of this protein to facilitate the transport of molecules other than nucleosides was examined in strains lacking detectable amounts of porin (ompB mutants). The tsx protein was shown to promote serine, glycine, and phenylalanine transport and to have no effect on either glucose or arginine transport.  相似文献   

8.
To determine whether a functional amino terminal signal sequence can be active at an internal position, a hybrid gene was constructed in which the entire coding region of bovine preprolactin cDNA was inserted into chimpanzee alpha-globin cDNA 109 codons downstream from the initiation codon of globin. When RNA synthesized in vitro from this plasmid (pSPGP1) was translated in the rabbit reticulocyte cell-free system, a 32-kD protein was produced that was both prolactin and globin immunoreactive. When microsomal membranes were present during translation (but not when added posttranslationally), a 26-kD and a 14-kD product were also observed. By immunoreactivity and electrophoretic mobility, the 26-kD protein was identical to mature prolactin, and the 14-kD protein appeared to be the globin domain with the prolactin signal sequence attached at its carboxy terminus. From (a) posttranslational proteolysis in the presence and absence of detergent, (b) sedimentation of vesicles in the presence and absence of sodium carbonate pH 11.5, and (c) N-linked glycosylation of the globin-immunoreactive fragment after insertion of an Asn-X-Ser N-linked glycosylation site into the globin coding region of pSPGP1, it appears that all of the 26-kD and some of the 14-kD products, but none of the 32-kD precursor, have been translocated to the lumen of the membrane vesicles. Thus, when engineered to an internal position, the prolactin signal sequence is able to translocate both flanking protein domains. These data have implications for the understanding of translocation of proteins across the membrane of the endoplasmic reticulum.  相似文献   

9.
Recombinant human hemoglobin rHb1.1 has been genetically engineered with the replacement of the wild-type valine residues at all N-termini with methionine, an Asn 108 Lys substitution on the beta globins, and a fusion of the two alpha globins with a glycine linker. When rHb1.1 was expressed in Escherichia coli, methylation of the N-terminal methionine of the alpha globin was discovered. Another mutant has been engineered with the alpha globin gene coding for N-terminal methionine followed by an insertion of alanine. Characterization of expressed hemoglobin from this variant revealed a methylated N-terminal alanine that occurred through two posttranslational events: initial excision of the N-terminal methionine, followed by methylation of alanine as the newly generated N-terminus. No methylation was observed for variants expressed with wild-type valine at the N-terminus of the alpha globin. The methylation of N-terminal amino acids was attributed to a specific protein sequence that can trigger methylation of proteins expressed in E. coli. Here we demonstrate that proline at position 4 in the protein sequence of alpha globin seems an essential part of that signaling. Although N-terminal methylation has been observed previously for native E. coli proteins with similar N-terminal sequences, methylation of the recombinant globins has allowed further delineation of the recognition sequence, and indicates that methylation of heterologous proteins can occur in E. coli.  相似文献   

10.
The translocation into Escherichia coli cytoplasmic membrane vesicles of a protein containing an uncleavable signal peptide was studied. The signal peptide cleavage site of the ompF-lpp chimeric protein, a model secretory protein, was changed from Ala-Ala to Phe-Pro through oligonucleotide-directed site-specific mutagenesis of the ompF-lpp gene on a plasmid. The mutant protein was no longer processed by the signal peptidase. When proteinase K treatment was adopted as a probe for protein translocation into inverted membrane vesicles, the mutant protein exhibited rapid and almost complete translocation, most likely due to the lack of premature cleavage of the signal peptide before the translocation. This result also indicates that cleavage of the signal peptide is not required for translocation of the mature domain of the protein. The establishment of an efficient system made it possible to perform precise and quantitative analysis of the translocation process. The translocation was time-dependent, vesicle-dependent, and required ATP and NADH. Translocation into membrane vesicles was also observed with the uncleavable precursor protein purified by means of immunoaffinity chromatography, although the efficiency was appreciably low. The translocation required only ATP and NADH. Addition of the cytosolic fraction did not enhance the translocation.  相似文献   

11.
The motA and motB gene products of Escherichia coli are integral membrane proteins necessary for flagellar rotation. We determined the DNA sequence of the region containing the motA gene and its promoter. Within this sequence, there is an open reading frame of 885 nucleotides, which with high probability (98% confidence level) meets criteria for a coding sequence. The 295-residue amino acid translation product had a molecular weight of 31,974, in good agreement with the value determined experimentally by gel electrophoresis. The amino acid sequence, which was quite hydrophobic, was subjected to a theoretical analysis designed to predict membrane-spanning alpha-helical segments of integral membrane proteins; four such hydrophobic helices were predicted by this treatment. Additional amphipathic helices may also be present. A remarkable feature of the sequence is the existence of two segments of high uncompensated charge density, one positive and the other negative. Possible organization of the protein in the membrane is discussed. Asymmetry in the amino acid composition of translated DNA sequences was used to distinguish between two possible initiation codons. The use of this method as a criterion for authentication of coding regions is described briefly in an Appendix.  相似文献   

12.
13.
We have previously reported that the DsbA signal sequence promotes efficient, cotranslational translocation of the cytoplasmic protein thioredoxin-1 via the bacterial signal recognition particle (SRP) pathway. However, two commonly used signal sequences, those of PhoA and MalE, which promote export by a posttranslational mechanism, do not export thioredoxin. We proposed that this difference in efficiency of export was due to the rapid folding of thioredoxin in the cytoplasm; cotranslational export by the DsbA signal sequence avoids the problem of cytoplasmic folding (C. F. Schierle, M. Berkmen, D. Huber, C. Kumamoto, D. Boyd, and J. Beckwith, J. Bacteriol. 185:5706-5713, 2003). Here, we use thioredoxin as a reporter to distinguish SRP-dependent from non-SRP-dependent cleavable signal sequences. We screened signal sequences exhibiting a range of hydrophobicity values based on a method that estimates hydrophobicity. Successive iterations of screening and refining the method defined a threshold hydrophobicity required for SRP recognition. While all of the SRP-dependent signal sequences identified were above this threshold, there were also a few signal sequences above the threshold that did not utilize the SRP pathway. These results suggest that a simple measure of the hydrophobicity of a signal sequence is an important but not a sufficient indicator for SRP recognition. In addition, by fusing a number of both classes of signal sequences to DsbA, we found that DsbA utilizes an SRP-dependent signal sequence to achieve efficient export to the periplasm. Our results suggest that those proteins found to be exported by SRP-dependent signal sequences may require this mode of export because of their tendency to fold rapidly in the cytoplasm.  相似文献   

14.
To test the importance of N-terminal pre-sequences in translocation of different classes of membrane proteins, we exchanged the normal signal sequence of an Escherichia coli outer membrane protein, OmpF, for the pre-sequence of the inner membrane protein, DacA. The DacA-OmpF hybrid was efficiently assembled into the outer membrane in a functionally active form. Thus the pre-sequence of DacA, despite its relatively low hydrophobicity compared with that of OmpF, contains all the essential information necessary to initiate the translocation of OmpF to the outer membrane. Since processing of DacA was also shown to be dependent upon SecA we conclude that the initiation of translocation of this inner membrane polypeptide across the envelope occurs by the same mechanism as outer membrane and periplasmic proteins. The N-terminal 11 amino acids of mature OmpF, which in the hybrid are replaced by the N-terminal nine amino acids of DacA, carry no essential assembly signals since the hybrid protein is apparently assembled with equal efficiency to OmpF.  相似文献   

15.
The prlA/secY gene, which codes for an integral membrane protein component of the Escherichia coli protein export machinery, is the locus of the strongest suppressors of signal sequence mutations. We demonstrate that two exported proteins of E.coli, maltose-binding protein and alkaline phosphatase, each lacking its entire signal sequence, are exported to the periplasm in several prlA mutants. The export efficiency can be substantial; in a strain carrying the prlA4 allele, 30% of signal-sequenceless alkaline phosphatase is exported to the periplasm. Other components of the E.coli export machinery, including SecA, are required for this export. SecB is required for the export of signal-sequenceless alkaline phosphatase even though the normal export of alkaline phosphatase does not require this chaperonin. Our findings indicate that signal sequences confer speed and efficiency upon the export process, but that they are not always essential for export. Entry into the export pathway may involve components that so overlap in function that the absence of a signal sequence can be compensated for, or there may exist one or more means of entry that do not require signal sequences at all.  相似文献   

16.
In the protozoan Stylonychia lemnae 10 different histone H3 genes were discovered by polymerase chain reaction (PCR) amplification and sequence analysis. One of them is interrupted by a short intron sequence. These genes code for nine divergent histone H3 proteins. The genetic distances between some of these variants are very high. Most of the substitutions, as well as insertions/deletions, were found in the amino-terminal region. One variant shows an extremely elongated and altered N-terminus, which did not allow an unambiguous alignment with other histone H3 variants in this region. Hybridization experiments using the different H3 genes as probes indicate that even more histone H3 variants must exist in this species.  相似文献   

17.
Misactivation of amino acids by aminoacyl-tRNA synthetases can lead to significant errors in protein synthesis that are prevented by editing reactions. As an example, discrete sites in isoleucyl-tRNA synthetase for amino acid activation and editing are about 25 A apart. The details of how misactivated valine is translocated from one site to the other are unknown. Here, we present a kinetic study in which a fluorescent probe is used to monitor translocation of misactivated valine from the active site to the editing site. Isoleucine-specific tRNA, and not other tRNAs, is essential for translocation of misactivated valine. Misactivation and translocation occur on the same enzyme molecule, with translocation being rate limiting for editing. These results illustrate a remarkable capacity for a specific tRNA to enhance amino acid fine structure recognition by triggering a unimolecular translocation event.  相似文献   

18.
J K Ngsee  M Smith 《Gene》1990,86(2):251-255
A plasmid-encoded gene for a hybrid pre-protein containing most of the bovine prolactin signal peptide (SpPRL) fused to the mature sequence of yeast invertase (IVT) was expressed and the product was processed and secreted by yeast. However, the level of IVT activity was reduced about six-fold when compared to that obtained with the wild type (wt) invertase signal peptide (SpIVT). When the 5'-untranslated sequence of the hybrid mRNA was truncated by 29 nucleotides, a 2.5-fold increase in secreted IVT was observed. Replacement of the PRL codons with preferred yeast codons did not result in any improvement in the production of secreted IVT. An increase in IVT activity to the level observed with the wt SpIVT was obtained by replacement of the Gly residue located between the N terminus and the central lipophilic region of the SpPRL by Ala. Since this amino acid replacement results in a higher probability of the SpPRL assuming an alpha-helical conformation, it suggests that the secondary structure of this region is important in recognition by the yeast secretory apparatus.  相似文献   

19.
Escherichia coli strains harboring malE signal sequence point mutations accumulate export-defective precursor maltose-binding protein (MBP) in the cytoplasm. Beginning with these mutants, a number of spontaneous intragenic revertants have been obtained in which export of the MBP to the periplasm is either partially or totally restored. With a single exception, each of the reversion mutations resulted in an increase in the overall hydrophobicity of the signal peptide hydrophobic core by one of five different mechanisms. In some revertants, MBP export was achieved at a rate comparable to the wild type MBP; in other cases, the rate of MBP export was significantly slower than wild type. The results indicate that the overall hydrophobicity of the signal peptide, rather than the absolute length of its uninterrupted hydrophobic core, is a major determinant of MBP export competency. An alteration at residue 19 of the mature MBP also has been identified that provides fairly efficient suppression of the export defect in the adjacent signal peptide, further suggesting that important export information may reside in this region of the precursor protein.  相似文献   

20.
We studied whether information required for export is present within the mature form of the Escherichia coli 325-residue outer membrane protein OmpA. We had previously analyzed overlapping internal deletions in the ompA gene, and the results allowed us to conclude that if such information exists it must be present repeatedly within the membrane part of the protein encompassing amino acid residues 1 to 177 (R. Freudl, H. Schwarz, M. Klose, N. R. Movva, and U. Henning, EMBO J. 4:3593-3598, 1985). A deletion which removed the codons for amino acid residues 1 to 229 of the OmpA protein was constructed. In this construct the signal sequence was fused to the periplasmic part of the protein. The resulting protein, designated Pro-OmpA delta 1-229, was processed, and the mature 95-residue protein accumulated in the periplasm. Hence, information required for export does not exist within the OmpA protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号