首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Drosophila Tumorous-lethal (Tum-l) mutation acts as an activated oncogene, causing hematopoietic neoplasms, overproliferation, and premature differentiation. Tum-l is a dominant mutation in the hopscotch (hop) locus, which is required for cell division and for proper embryonic segmentation. The Tum-l temperature-sensitive period for melanotic tumor formation includes most of larval and pupal development.  相似文献   

2.
3.
Drosophila melanogaster larvae are attacked by virulent strains of parasitoid wasps. Females of Leptopilina heterotoma produce virus-like particles (VLPs) that efficiently destroy lamellocytes, a major larval immune effector cell type. We report here that L. victoriae, a closely related wasp species, also produces VLPs that trigger immune suppression responses in fly hosts. We compare the ability of immune suppression of the two parasitoids using a mutant host strain hopscotchTumorous-lethal (hopTum-l). hopTum-l larvae have two defects of hematopoietic origin: overproliferation of hemocytes and constitutive encapsulation of self-tissue by lamellocytes. The encapsulation phenotype is suppressed weakly by L. victoriae and strongly by L. heterotoma. In vitro studies on hopTum-l lamellocytes show that VLP-containing fluid from either wasp species induces lamellocyte lysis, but with different kinetics.Previously undocumented precursors of L. victoriae VLPs are synthesized in the long gland and are first visible within canals connecting secretory cells to the long gland lumen. VLP assembly occurs in the lumen. VLPs show multiple electron-dense projections surrounding a central core. Maturing particles appear segmented, singly or in arrays, embedded in the reservoir matrix. In sections, mature particles are pentagonal or hexagonal; the polygon vertices extending into spikes. Our results suggest that L. victoriae is likely to promote immune suppression by an active mechanism that is mediated by VLPs, similar to that used by L. heterotoma.  相似文献   

4.
D Scott  M Fox  B W Fox 《Mutation research》1975,29(2):201-202
Mutagenesis was studied in repair- and recombination-deficient strains of Haemophilus influenzae after treatment with N-nitrosocarbaryl (NC). Three different strains of H. influenzae carrying mutations affecting excision-repair of UV-induced pyrimidine dimers exhibited normal repair of premutational lesions (as detected by decreased mutation yield resulting from post-treatment DNA synthesis delay) and normal nonreplicative mutation fixation. This indicates that neither of these phenomena are caused by the same repair mechanism that removes UV-induced pyrimidine dimers from the DNA.The recombination-deficient mutant rec1 is apparently deficient in the replication-dependent mode of NC-induced mutation fixation. This conclusion is based on the following results: (1) NC-induced mutagenesis is lower in the rec1 strain than in rec+ cells. (2) Repair of premutational lesions (which depends on the existence of replication-dependent mutation fixation for its detection) was not detected in the rec1 strain. (3) When nonreplicative mutation fixation and final mutation frequency were measured in the same experiment, about 14 to 13 of the final mutation yield could be accounted for by nonreplicative mutation fixation in the rec+ strain, whereas all of the mutation could be accounted for in the rec1 strain by the nonreplicative mutation fixation. (4) When mutation fixation in strain dna9 rec1 was followed at the permissive (36°) and nonpermissive (41°) temperatures, it became apparent that in the rec1 strain replication-dependent mutation fixation occurs at early times, but these newly fixed mutations are unstable and disappear at later times, leaving only the mutations fixed by the nonreplicative process.The rec1 strain exhibits normal repair of NC-induced single-strand breaks or alkali-labile bonds in the DNA labeled before treatment, but is slow in joining discontinuities present in DNA synthesized after treatment. The results are consistent with the idea that in NC-treated H. influenzae cells the replication-dependent mode of mutation fixation occurs by error-prone joining of interruptions present in the DNA synthesized after treatment. The possibility still exists, however, that during DNA replication mispairing occurs opposite certain alkylation-induced lesions and that mutations arising during replication of strain rec1 later disappear as a result of degradation of newly synthesized DNA, which is excessive in this strain.  相似文献   

5.
GAEC1 (gene amplified in oesophageal cancer 1) is a transforming oncogene with tumorigenic potential observed in both oesophageal squamous cell carcinoma and colorectal cancer. Nonetheless, there has been a lack of study done on this gene to understand how this gene exert its oncogenic properties in cancer. This study aims to identify novel mutation sites in GAEC1. To do so, seventy-nine matched colorectal cancers were tested for GAEC1 mutation via Sanger sequencing. The mutations noted were investigated for the correlations with the clinicopathological parameters of the patients with the cancer. Additionally, GAEC1 copy number aberration (CNA), mRNA and protein expression were determined with the use of droplet digital (dd) polymerase chain reaction (PCR), real-time PCR and Western blot (confirmed with immunofluorescence analysis). GAEC1 mutation was noted in 8.8% (n?=?7/79) of the cancer tissues including one missense mutation, four loss of heterozygosity (LOH) and two substitutions. These mutations were significantly associated with cancer perforation (p?=?0.021). GAEC1 mutation is frequently associated with increased GAEC1 protein expression. Nevertheless, GAEC1 mRNA and protein are only weakly associated. Taken together, GAEC1 mutation affects GAEC1 expression and is associated with poorer clinical outcomes. This further strengthens the role of GAEC1 as an oncogene.  相似文献   

6.
The MYD88 L265P is a recurrent somatic mutation in neoplastic cells from patients with Waldenström Macroglobulinemia (WM). We identified the MYD88 L265P mutation in three individuals from unrelated families, but its presence did not explain the disease segregation within these WM pedigrees. We observed the mutation in these three individuals at high allele fractions in DNA extracted from EBV-immortalized Lymphoblastoid cell lines established from peripheral blood (LCL), but at much lower allele fractions in DNA extracted directly from peripheral blood, suggesting that this mutation is present in a clonal cell subpopulation rather than of germ-line origin. Furthermore, we observed that the MYD88 L265P mutation is enriched in WM families, detected in 40.5% of patients with familial WM or MGUS (10/22 WM, 5/15 MGUS), compared to 3.5% of patients with familial MM or MGUS (0/72 MM, 4/41 MGUS) (p = 10−7). The mutant allele frequency increased with passages in vitro after immortalization with Epstein-Barr virus (EBV) consistent with the MYD88 L265P described gain-of-function proposed for this mutation. The MYD88 L265P mutation appears to be frequently present in circulating cells in patients with WM, and MGUS, and these cells are amenable to immortalization by EBV.  相似文献   

7.
Very long-chain fatty acids (VLCFAs, chain length >C20) exist in tissues throughout the body and are synthesized by repetition of the fatty acid (FA) elongation cycle composed of four successive enzymatic reactions. In mammals, the TER gene is the only gene encoding trans-2-enoyl-CoA reductase, which catalyzes the fourth reaction in the FA elongation cycle. The TER P182L mutation is the pathogenic mutation for nonsyndromic mental retardation. This mutation substitutes a leucine for a proline residue at amino acid 182 in the TER enzyme. Currently, the mechanism by which the TER P182L mutation causes nonsyndromic mental retardation is unknown. To understand the effect of this mutation on the TER enzyme and VLCFA synthesis, we have biochemically characterized the TER P182L mutant enzyme using yeast and mammalian cells transfected with the TER P182L mutant gene and analyzed the FA elongation cycle in the B-lymphoblastoid cell line with the homozygous TER P182L mutation (TERP182L/P182L B-lymphoblastoid cell line). We have found that TER P182L mutant enzyme exhibits reduced trans-2-enoyl-CoA reductase activity and protein stability, thereby impairing VLCFA synthesis and, in turn, altering the sphingolipid profile (i.e. decreased level of C24 sphingomyelin and C24 ceramide) in the TERP182L/P182L B-lymphoblastoid cell line. We have also found that in addition to the TER enzyme-catalyzed fourth reaction, the third reaction in the FA elongation cycle is affected by the TER P182L mutation. These findings provide new insight into the biochemical defects associated with this genetic mutation.  相似文献   

8.
Sex-lethal, male-specific allele #1 (SxlM#1, 1–19.2) is a dominant, X-linked mutation that is lethal to males. It has no effect in females other than to rescue them from the otherwise lethal maternal effect of the autosomal mutation, daughterless. From a study of the effects of SxlM#1 on the development of sexually mosaic flies (gynandromorphs), it was observed that this lethal mutation can cause genetically male (haplo-X) tissue to differentiate as if it were female. With respect to its effect on sexual differentiation, the mutation transformer (tra, 3–45) is epistatic to SxlM#1, though the lethal effects of SxlM#1 are not modified by tra. In addition to its effect on sexual differentiation, SxlM#1 reduces the size of haplo-X imaginal disc and histoblast derivatives in general in a cell autonomous fashion. The viability of gynandromorphs with SxlM#1 tissue is very low, and the surviving mosaics have relatively little haplo-X tissue, suggesting that there is no single localized “lethal focus” for this mutation. The relationship between Sxl and daughterless is discussed, as well as the possible involvement of the Sxl locus in X-chromosome dosage compensation.  相似文献   

9.
A temperature-sensitive DNA synthesis mutant of Haemophilus influenzae (strain dna9) was treated with the N-nitroso compound N-nitrosocarbaryl, then incubated at the permissive (36°) and nonpermissive (41°) temperatures. At various times lysates were made and used to transform a second culture to novobiocin resistance (a measure of the extent of mutation fixation). At the permissive temperature mutation fixation continued approximately linearly during at least half of the first round of DNA replication after treatment with N-nitrosocarbaryl. In the absence of DNA replication (41°), most but not all of the mutation fixation was eliminated. The nonreplicative type of mutation fixation was greater after treatment with a higher concentration of N-nitrosocarbaryl. The data indicate that premutational lesions occur over the entire chromosome and that the bulk of the mutation fixation requires DNA replication, but that a process independent of replication, quite possibly an erro-prone repair system, also is responsible for part of the mutation fixation in cells exposed to alkylating agents.When strain dna9 was treated with N-nitrosocarbaryl and then incubated at 41° for some time (stopping DNA replication and the bulk of the mutation fixation) before being grown at 36°, a large decrease in the final frequency was seen. This suggests that a repair mechanism still functional in the absence of DNA replication is capable of removing premutational lesions from H. influenzae DNA.  相似文献   

10.

Background

Mutation of BRAF is a predominant event in cancers with poor prognosis such as melanoma and colorectal cancer. BRAF mutation leads to a constitutive activation of mitogen activated protein kinase pathway which is essential for cell proliferation and tumor progression. Despite tremendous efforts made to target BRAF for cancer treatment, the correlation between BRAF mutation and patient survival is still a matter of controversy.

Methods/Principal Findings

Clinical studies on the correlation between BRAF mutation and patient survival were retrieved from MEDLINE and EMBASE databases between June 2002 and December 2011. One hundred twenty relevant full text studies were categorized based on study design and cancer type. Publication bias was evaluated for each category and pooled hazard ratio (HR) with 95% confidence interval (CI) was calculated using random or fixed effect meta-analysis based on the percentage of heterogeneity. Twenty six studies on colorectal cancer (11,773 patients) and four studies on melanoma (674 patients) were included in our final meta-analysis. The average prevalence of BRAF mutation was 9.6% in colorectal cancer, and 47.8% in melanoma reports. We found that BRAF mutation increases the risk of mortality in colorectal cancer patients for more than two times; HR = 2.25 (95% CI, 1.82–2.83). In addition, we revealed that BRAF mutation also increases the risk of mortality in melanoma patients by 1.7 times (95% CI, 1.37–2.12).

Conclusions

We revealed that BRAF mutation is an absolute risk factor for patient survival in colorectal cancer and melanoma.  相似文献   

11.
A missense mutation in C. elegans RAD-54, a homolog of RAD54 that operates in the homologous recombination (HR) pathway, was found to decrease ATPase activity in vitro. The hypomorphic mutation caused hypersensitivity of C. elegans germ cells to double-strand DNA breaks (DSBs). Although the formation of RAD-51 foci at DSBs was normal in both the mutant and knockdown worms, their subsequent dissipation was slow. The rad-54-deficient phenotypes were greatly aggravated when combined with an xpf-1 mutation, suggesting a conservative role of single-strand annealing (SSA) for DSB repair in HR-defective worms. The phenotypes of doubly-deficient rad-54;xpf-1 worms were partially suppressed by a mutation of lig-4, a nonhomologous end-joining (NHEJ) factor. In summary, RAD-54 is required for the dissociation of RAD-51 from DSB sites in C. elegans germ cells. Also, NHEJ and SSA exert negative and positive effects, respectively, on genome stability when HR is defective.  相似文献   

12.
Two megalencephaly (MEG) syndromes, megalencephaly-capillary malformation (MCAP) and megalencephaly-polymicrogyriapolydactyly-hydrocephalus (MPPH), have recently been defined on the basis of physical and neuroimaging features. Subsequently, exome sequencing of ten MEG cases identified de-novo postzygotic mutations in PIK3CA which cause MCAP and de-novo mutations in AKT and PIK3R2 which cause MPPH. Here we present findings from exome sequencing three unrelated megalencephaly patients which identified a causal PIK3CA mutation in two cases and a causal PIK3R2 mutation in the third case. However, our patient with the PIK3R2 mutation which is considered to cause MPPH has a marked bifrontal band heterotopia which is a feature of MCAP. Furthermore, one of our patients with a PIK3CA mutation lacks syndactyly/polydactyly which is a characteristic of MCAP. These findings suggest that the overlap between MCAP and MPPH may be greater than the available studies suggest. In addition, the PIK3CA mutation in one of our patients could not be detected using standard exome analysis because the mutation was observed at a low frequency consistent with somatic mosaicism. We have therefore investigated several alternative methods of exome analysis and demonstrate that alteration of the initial allele frequency spectrum (AFS), used as a prior for variant calling in samtools, had the greatest power to detect variants with low mutant allele frequencies in our 3 MEG exomes and in simulated data. We therefore recommend non-default settings of the AFS in combination with stringent quality control when searching for causal mutation(s) that could have low levels of mutant reads due to post-zygotic mutation.  相似文献   

13.

Background

The Notch signaling pathway is crucial in T-cell development, Notch1 mutations are frequently present in T-cell acute lymphoblastic leukemia (T-ALL). To investigate the feature of Notch1 mutation and its corresponding expression level in Chinese patients with T-ALL, detection of mutation and the expression level of Notch1 gene was preformed using RT-PCR, sequencing and real-time PCR respectively.

Results

Two Notch1 point mutations (V1578E and L1593P) located on HD-N domain were identified in three cases out of 13 T-ALL patients. The mutation on 4733 position (V1578E) found in two cases was a novel mutation. The overexpression of Notch1 was detected in all samples with T-ALL, moreover, significantly higher expression of Notch1 was detected in the T-ALL with Notch1 mutation group compared with T-ALL with WT Notch1 group (p = 0.0192).

Conclusions

Higher expression of Notch1 was associated with Notch1 mutation, more novel mutation of this gene might be identified in different populations and its contribution to the molecular pathogenesis of T-ALL is needed further research.  相似文献   

14.

Background

Abnormal activation of PI3K/AKT/mTOR (PAM) pathway, caused by PIK3CA mutation, KRAS mutation, PTEN loss, or AKT1 mutation, is one of the most frequent signaling abnormalities in breast carcinoma. However, distribution and frequencies of mutations in PAM pathway are unclear in breast cancer patients from the mainland of China and the correlation between these mutations and breast cancer outcome remains to be identified.

Methods

A total of 288 patients with invasive ductal breast cancer were recruited in this study. Mutations in PIK3CA (exons 4, 9 and 20), KRAS (exon 2) and AKT1 (exon 3) were detected using Sanger sequencing. PTEN loss was measured by immunohistochemistry assay. Correlations between these genetic aberrations and clinicopathological features were analyzed.

Results

The frequencies of PIK3CA mutation, KRAS mutation, AKT1 mutation and PTEN loss were 15.6%, 1.8%, 4.4% and 35.3%, respectively. However, except for PTEN loss, which was tied to estrogen receptor (ER) status, these alterations were not associated with other clinicopathological features. Survival analysis demonstrated that PIK3CA mutation, PTEN loss and PAM pathway activation were not associated with disease-free survival (DFS). Subgroup analysis of patients with ER positive tumors revealed that PIK3CA mutation more strongly reduced DFS compared to wild-type PIK3CA (76.2% vs. 54.2%; P = 0.011). PIK3CA mutation was also an independent factor for bad prognosis in ER positive patients.

Conclusions

AKT1, KRAS and PIK3CA mutations and PTEN loss all exist in women with breast cancer in the mainland China. PIK3CA mutation may contribute to the poor outcome of ER positive breast carcinomas, providing evidence for the combination of PI3K/AKT/mTOR inhibitors and endocrine therapy.  相似文献   

15.
mRNA in the yeast Saccharomyces cerevisiae is primarily degraded through a pathway that is stimulated by removal of the mRNA cap structure. Here we report that a mutation in the SPB8 (YJL124c) gene, initially identified as a suppressor mutation of a poly(A)-binding protein (PAB1) gene deletion, stabilizes the mRNA cap structure. Specifically, we find that the spb8-2 mutation results in the accumulation of capped, poly(A)-deficient mRNAs. The presence of this mutation also allows for the detection of mRNA species trimmed from the 3′ end. These data show that this Sm-like protein family member is involved in the process of mRNA decapping, and they provide an example of 3′-5′ mRNA degradation intermediates in yeast.  相似文献   

16.
《Translational oncology》2020,13(2):300-307
Inactivation of the adenomatous polyposis coli (APC) gene is the initiating event in familial adenomatous polyposis (FAP) patients. Up to 90% of FAP patients show intestinal tumors and other extracolonic malignancies including hepatoblastomas, desmoid tumors, and brain cancer. APC mutation mice (ApcMin/+ mice) develop benign polyps in the intestinal tract. It has been reported that small numbers of ApcMin/+ mice develop breast carcinomas. Here, we found that approximately 1.6% of ApcMin/+ mice suffered skin neoplasm. The results demonstrated that these skin tumors are not derived from intestinal adenomas. Sequencing of skin tumors of ApcMin/+ mice and ApcMin/+ mice skin. The data showed that somatic mutations and gene expression levels changed greatly in skin tumors compared to control. Similarly, APC mutation accounts for 27% in the patients of nonmelanoma skin carcinomas in cancer database, and two above genes mutation coexist was observed in all patients. Furthermore, using gene mutation reagent (DMBA)–treated ApcMin/+ mice skin, the skin epithelium and glandular begin hyperplasia in ApcMin/+ mice. These findings revealed that the somatic mutation hit on the germline mutation increase the tumor incidence, suggesting that the somatic mutation should be avoided if the germline mutation exists in one body.  相似文献   

17.
Mutations in KRAS oncogene are recognized biomarkers that predict lack of response to anti- epidermal growth factor receptor (EGFR) antibody therapies. However, some patients with KRAS wild-type tumors still do not respond, so other downstream mutations in BRAF, PIK3CA and NRAS should be investigated. Herein we used direct sequencing to analyze mutation status for 676 patients in KRAS (codons 12, 13 and 61), BRAF (exon 11 and exon 15), PIK3CA (exon 9 and exon 20) and NRAS (codons12, 13 and 61). Clinicopathological characteristics associations were analyzed together with overall survival (OS) of metastatic colorectal cancer patients (mCRC). We found 35.9% (242/674) tumors harbored a KRAS mutation, 6.96% (47/675) harbored a BRAF mutation, 9.9% (62/625) harbored a PIK3CA mutation and 4.19% (26/621) harbored a NRAS mutation. KRAS mutation coexisted with BRAF, PIK3CA and NRAS mutation, PIK3CA exon9 mutation appeared more frequently in KRAS mutant tumors (P = 0.027) while NRAS mutation almost existed in KRAS wild-types (P<0.001). Female patients and older group harbored a higher KRAS mutation (P = 0.018 and P = 0.031, respectively); BRAF (V600E) mutation showed a higher frequency in colon cancer and poor differentiation tumors (P = 0.020 and P = 0.030, respectively); proximal tumors appeared a higher PIK3CA mutation (P<0.001) and distant metastatic tumors shared a higher NRAS mutation (P = 0.010). However, in this study no significant result was found between OS and gene mutation in mCRC group. To our knowledge, the first large-scale retrospective study on comprehensive genetic profile which associated with anti-EGFR MoAbs treatment selection in East Asian CRC population, appeared a specific genotype distribution picture, and the results provided a better understanding between clinicopathological characteristics and gene mutations in CRC patients.  相似文献   

18.
Tryptophan auxotroph trp-28 is anomalous since preliminary mapping and suppression studies indicate the presence of a single amber nonsense mutation either late in trpE or early in trpD, but enzymological tests indicate the complete inactivation of both genes in this strain. Since the trpE and trpD genes are contiguous and encode the two subunits of a multifunctional enzyme complex, it was of interest to learn the mechanism of action of this apparent pleiotropic nonsense mutation. Our study has revealed that the phenotype of this strain derives not from a single mutation, but from the presence and interaction of multiple mutations. Besides the recognized amber mutation (designated trpD28), this strain carries two additional, conditionally expressed missense mutations (designated trpE1651 and trpD1652). The trpD28 amber codon maps in the promoter-proximal region 1 of trpD and eliminates the glutamine amidotransferase activity of the bifunctional trpD polypeptide. The trpD1652 mutation maps in the promoter-distal region 2 of trpD and severely reduces (but does not eliminate) the phosphoribosyl transferase activity of the trpD polypeptide. The trpE1651 mutation maps in the anterior part of trpE and causes a rapid loss of activity of the trpE polypeptide, but only when it exists as an uncomplexed subunit. The existence of the two missense mutations escaped prior notice in standard recombinational tests since the nature of each mutation is such that neither is detectable by the nutritional screens normally used in such tests unless an unsuppressed chainterminating mutation, such as trpD28, is also present.  相似文献   

19.
DNA mismatch repair in Escherichia coli has been shown to be involved in two distinct processes: mutation avoidance, which removes potential mutations arising as replication errors, and antirecombination which prevents recombination between related, but not identical (homeologous), DNA sequences. We show that cells with the mutSΔ800 mutation (which removes the C-terminal 53 amino acids of MutS) on a multicopy plasmid are proficient for mutation avoidance. In interspecies genetic crosses, however, recipients with the mutSΔ800 mutation show increased recombination by up to 280-fold relative to mutS+. The MutSΔ800 protein binds to O6-methylguanine mismatches but not to intrastrand platinated GG cross-links, explaining why dam bacteria with the mutSΔ800 mutation are resistant to cisplatin, but not MNNG, toxicity. The results indicate that the C-terminal end of MutS is necessary for antirecombination and cisplatin sensitization, but less significant for mutation avoidance. The inability of MutSΔ800 to form tetramers may indicate that these are the active form of MutS.  相似文献   

20.

Background

Hirschsprung''s disease (HSCR) is a congenital disorder associated with the lack of intramural ganglion cells in the myenteric and sub-mucosal plexuses along varying segments of the gastrointestinal tract. The RET gene is the major gene implicated in this gastrointestinal disease. A highly recurrent mutation in RET (RETR114H) has recently been identified in ∼6–7% of the Chinese HSCR patients which, to date, has not been found in Caucasian patients or controls nor in Chinese controls. Due to the high frequency of RETR114H in this population, we sought to investigate whether this mutation may be a founder HSCR mutation in the Chinese population.

Methodology and Principal Findings

To test whether all RETR114 were originated from a single mutational event, we predicted the approximate age of RETR114H by applying a Bayesian method to RET SNPs genotyped in 430 Chinese HSCR patients (of whom 25 individuals had the mutation) to be between 4–23 generations old depending on growth rate. We reasoned that if RETR114H was a founder mutation then those with the mutation would share a haplotype on which the mutation resides. Including SNPs spanning 509.31 kb across RET from a recently obtained 500 K genome-wide dataset for a subset of 181 patients (14 RETR114H patients), we applied haplotype estimation methods to determine whether there were any segments shared between patients with RETR114H that are not present in those without the mutation or controls. Analysis yielded a 250.2 kb (51 SNP) shared segment over the RET gene (and downstream) in only those patients with the mutation with no similar segments found among other patients.

Conclusions

This suggests that RETR114H is a founder mutation for HSCR in the Chinese population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号