首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A number of observations in the Escherichia coli and Salmonella typhimurium literature could be explained by the hypothesis that a particular purine ribonucleotide precursor can be converted to the corresponding deoxyribonucleotide triphosphate, thereby becoming a base-analogue mutagen. The metabolite in question, AICAR (5-amino-4-carboxamide imidazole riboside 5-phosphate), is also a by-product of histidine biosynthesis, and its (ribo)triphosphate derivative, ZTP, has been detected in E. coli. We constructed E. coli tester strains that had either a normal AICAR pool (pur + his + strains cultivated without purines or histidine) or no AICAR pool (purF hisG mutant strains, lacking the first enzyme of each pathway and cultivated in the presence of adenine and histidine). Using a set of lacZ mutations, each of which can revert to Lac+ only by a specific substitution mutation, we found that no base substitution event occurs at a higher frequency in the presence of an AICAR pool. We conclude that the normal AICAR pool in E. coli is not a significant source of spontaneous base substitution mutagenesis.  相似文献   

2.
Spot 42 RNA of Escherichia coli is not an mRNA.   总被引:1,自引:1,他引:0       下载免费PDF全文
Spot 42 RNA of Escherichia coli, a 109-nucleotide RNA that influences the level of DNA polymerase I, has an AUG triplet preceded by a purine-rich potential ribosome-binding site and is followed by a short (14-triplet) potential open reading frame. Although the RNA bound to ribosomes, it did so inefficiently and nonproductively. When fused to lacZ sequences, spot RNA did not support the synthesis of beta-galactosidase. Also, the biological effects of spot 42 RNA were not altered by mutation of the tyrosine UAU codon to the chain termination UAG. We conclude that the effects of spot 42 RNA are mediated by the RNA itself and not by a spot 42 RNA-encoded peptide.  相似文献   

3.
Environmental mutagen testing in Escherichia coli and phage lambda   总被引:2,自引:0,他引:2  
S Kondo 《Mutation research》1974,26(4):235-241
  相似文献   

4.
The oligonucleotide [5'-32P]pdT8d(-)dTn, containing an apurinic/apyrimidinic (AP) site [d(-)], yields three radioactive products when incubated at alkaline pH: two of them, forming a doublet approximately at the level of pdT8dA when analysed by polyacrylamide-gel electrophoresis, are the result of the beta-elimination reaction, whereas the third is pdT8p resulting from beta delta-elimination. The incubation of [5'-32P]pdT8d(-)dTn, hybridized with poly(dA), with E. coli endonuclease III yields two radioactive products which have the same electrophoretic behaviour as the doublet obtained by alkaline beta-elimination. The oligonucleotide pdT8d(-) is degraded by the 3'-5' exonuclease activity of T4 DNA polymerase as well as pdT8dA, showing that a base-free deoxyribose at the 3' end is not an obstacle for this activity. The radioactive products from [5'-32P]pdT8d(-)dTn cleaved by alkaline beta-elimination or by E. coli endonuclease III are not degraded by the 3'-5' exonuclease activity of T4 DNA polymerase. When DNA containing AP sites labelled with 32P 5' to the base-free deoxyribose labelled with 3H in the 1' and 2' positions is degraded by E. coli endonuclease VI (exonuclease III) and snake venom phosphodiesterase, the two radionuclides are found exclusively in deoxyribose 5-phosphate and the 3H/32P ratio in this sugar phosphate is the same as in the substrate DNA. When DNA containing these doubly-labelled AP sites is degraded by alkaline treatment or with Lys-Trp-Lys, followed by E. coli endonuclease VI (exonuclease III), some 3H is found in a volatile compound (probably 3H2O) whereas the 3H/32P ratio is decreased in the resulting sugar phosphate which has a chromatographic behaviour different from that of deoxyribose 5-phosphate. Treatment of the DNA containing doubly-labelled AP sites with E. coli endonuclease III, then with E. coli endonuclease VI (exonuclease III), also results in the loss of 3H and the formation of a sugar phosphate with a lower 3H/32P ratio that behaves chromatographically as the beta-elimination product digested with E. coli endonuclease VI (exonuclease III). From these data, we conclude that E. coli endonuclease III cleaves the phosphodiester bond 3' to the AP site, but that the cleavage is not a hydrolysis leaving a base-free deoxyribose at the 3' end as it has been so far assumed. The cleavage might be the result of a beta-elimination analogous to the one produced by an alkaline pH or Lys-Trp-Lys. Thus it would seem that E. coli 'endonuclease III' is, after all, not an endonuclease.  相似文献   

5.
Escherichia coli ada ogt mutants, which are totally deficient in O6-methylguanine-DNA methyltransferases, have an increased spontaneous mutation rate. This phenotype is particularly evident in starving cells and suggests the generation of an endogenous DNA alkylating agent under this growth condition. We have found that in wild-type cells, the level of the inducible Ada protein is 20-fold higher in stationary-phase and starving cells than in rapidly growing cells, thus enhancing the defense of these cells against DNA damage. The increased level of Ada in stationary cells is dependent on RpoS, a stationary-phase-specific sigma subunit of RNA polymerase. We have also identified a potential source of the mutagenic agent. Nitrosation of amides and related compounds can generate directly acting methylating agents and can be catalyzed by bacteria] enzymes. E. coli moa mutants, which are defective in the synthesis of a molybdopterin cofactor required by several reductases, are deficient in nitrosation activity. It is reported here that a moa mutant shows reduced generation of a mutagenic methylating agent from methylamine (or methylurea) and nitrite added to agar plates. Moreover, a moa mutation eliminates much of the spontaneous mutagenesis in ada ogt mutants. These observations indicate that the major endogenous mutagen is not S-adenosylmethionine but arises by bacterially catalyzed nitrosation.  相似文献   

6.
Catabolite repression is not involved in the regulation of catalase gene expression. The presence of glucose in minimal salts media and LB medium did not affect the basal levels of catalase but did enhance catalase synthesis following induction with either hydrogen peroxide or ascorbate. The cofactor for catabolite gene activator protein, cAMP, did not affect either the basal levels or the rate or extent of catalase synthesis. Catalase synthesis occurred normally in an adenylate cyclase mutant where β-galactosidase, a catabolite-sensitive enzyme was not synthesized.  相似文献   

7.
AI-3 synthesis is not dependent on luxS in Escherichia coli   总被引:1,自引:0,他引:1       下载免费PDF全文
The quorum-sensing (QS) signal autoinducer-2 (AI-2) has been proposed to promote interspecies signaling in a broad range of bacterial species. AI-2 is spontaneously derived from 4,5-dihydroxy-2,3-pentanedione that, along with homocysteine, is produced by cleavage of S-adenosylhomocysteine (SAH) and S-ribosylhomocysteine by the Pfs and LuxS enzymes. Numerous phenotypes have been attributed to AI-2 QS signaling using luxS mutants. We have previously reported that the luxS mutation also affects the synthesis of the AI-3 autoinducer that activates enterohemorrhagic Escherichia coli virulence genes. Here we show that several species of bacteria synthesize AI-3, suggesting a possible role in interspecies bacterial communication. The luxS mutation leaves the cell with only one pathway, involving oxaloacetate and l-glutamate, for de novo synthesis of homocysteine. The exclusive use of this pathway for homocysteine production appears to alter metabolism in the luxS mutant, leading to decreased levels of AI-3. The addition of aspartate and expression of an aromatic amino acid transporter, as well as a tyrosine-specific transporter, restored AI-3-dependent phenotypes in an luxS mutant. The defect in AI-3 production, but not in AI-2 production, in the luxS mutant was restored by expressing the Pseudomonas aeruginosa S-adenosylhomocysteine hydrolase that synthesizes homocysteine directly from SAH. Furthermore, phenotype microarrays revealed that the luxS mutation caused numerous metabolic deficiencies, while AI-3 signaling had little effect on metabolism. This study examines how AI-3 production is affected by the luxS mutation and explores the roles of the LuxS/AI-2 system in metabolism and QS.  相似文献   

8.
We assign a function for a small protein, YacG encoded by Escherichia coli genome. The NMR structure of YacG shows the presence of an unusual zinc-finger motif. YacG was predicted to be a part of DNA gyrase interactome based on protein-protein interaction network. We demonstrate that YacG inhibits all the catalytic activities of DNA gyrase by preventing its DNA binding. Topoisomerase I and IV activities remain unaltered in the presence of YacG and its action appears to be restricted only to DNA gyrase. The inhibition of the enzyme activity is due to the binding of YacG to carboxyl terminal domain of GyrB. Overexpression of YacG results in growth inhibition and alteration in DNA topology due to uncontrolled inhibition of gyrase.  相似文献   

9.
Adaptive reversion of a lac allele on an F' episome in a strain of Escherichia coli is dependent on the RecA-BCD pathway for recombination and is enhanced by conjugal functions. However, conjugation, i.e., transfer of the episome, whether between distinct populations of cells or between newly divided siblings, does not contribute to the mutational process.  相似文献   

10.
The role of tRNA nucleotidyltransferase in Escherichia coli has been uncertain because all tRNA genes studied in this organism already encode the -C-C-A sequence. Examination of a cca mutant, originally thought to contain 1-2% enzyme activity, indicated that it actually produces an inactive fragment of 40 kd compared to 47 kd for the wild-type enzyme due to a nonsense mutation in its cca gene. To confirm that the residual activity in extracts of this strain is due to another enzyme, and that tRNA nucleotidyltransferase is non-essential, we have interrupted the cca gene in vitro, and transferred this mutant gene to a variety of strains. In all cases mutant strains are viable, although as much as 15% of the tRNA population contains defective 3' termini, and no tRNA nucleotidyltransferase is detectable. Mutant strains grow slowly, but can be restored to more normal growth by a relA mutation or by a decrease in RNase T activity. In the latter case the amount of defective tRNA decreases dramatically. These findings indicate that tRNA nucleotidyltransferase is not essential for E. coli viability, and therefore, that all essential tRNA genes in this organism encode the -C-C-A sequence.  相似文献   

11.
ftsW is an essential cell-division gene in Escherichia coli   总被引:1,自引:0,他引:1  
In the absence of exogenous promoters, plasmid-mediated complementation of the temperature-sensitive ftsW201 allele requires the presence of the full coding sequence of ftsW plus upstream DNA encompassing the C-terminus of mraY and the full coding sequence of murD . We used molecular and genetic techniques to introduce an insertional inactivation into the chromosomal copy of ftsW , in the presence of the plasmid-borne wild-type ftsW gene under the control of PBAD. In the absence of arabinose, the ftsW -null strain is not viable, and a shift from arabinose- to glucose-containing liquid medium resulted in a block in division, followed by cell lysis. Immunofluorescence microscopy revealed that in ftsW -null filaments, the FtsZ ring is absent in 50–60% of filaments, whilst between one and three Z-rings per filament can be detected in the remainder of the population, with the majority of these containing only one Z-ring per filament. We also demonstrated that the expression of only ftsWS (the smaller of two ftsW open reading frames) from PBAD is sufficient for complementation of the ftsW -null allele. We conclude that FtsW is an essential cell-division protein in Escherichia coli , and that it plays a role in the stabilization of the FtsZ ring during cell division.  相似文献   

12.
A 74 kD protein was extracted from Escherichia coli cells and purified under the physiological conditions. The protein is able to catalyze the reactions of endonucleolytic degradation of plasmid DNA. The genetic determinant coding for the 74 KD protein synthesis has been localized between 17 and 27 min on Escherichia coli chromosomal map. The endonuclease previously described as a recF gene dependent "protein Z" (Krivonogov S. V., Novitskaja V. A. Mol. Gen. Genet., 1982, v, 187, p. 302) is shown to be independent of the integrity of Escherichia coli recF gene.  相似文献   

13.
Escherichia coli flavohemoglobin (HMP) is shown to be capable of catalyzing the reduction of several alkylhydroperoxide substrates into their corresponding alcohols using NADH as an electron donor. In particular, HMP possesses a high catalytic activity and a low Km toward cumyl, linoleic acid, and tert-butyl hydroperoxides, whereas it is a less efficient hydrogen peroxide scavenger. An analysis of UV-visible spectra during the stationary state reveals that at variance with classical peroxidases, HMP turns over in the ferrous state. In particular, an iron oxygen adduct intermediate whose spectrum is similar to that reported for the oxo-ferryl derivative in peroxidases (Compound II), has been identified during the catalysis of hydrogen peroxide reduction. This finding suggests that hydroperoxide cleavage occurs upon direct binding of a peroxide oxygen atom to the ferrous heme iron. Competitive inhibition of the alkylhydroperoxide reductase activity by carbon monoxide has also been observed, thus confirming that heme iron is directly involved in the catalytic mechanism of hydroperoxide reduction. The alkylhydroperoxide reductase activity taken together with the unique lipid binding properties of HMP suggests that this protein is most likely involved in the repair of the lipid membrane oxidative damage generated during oxidative/nitrosative stress.  相似文献   

14.
We cloned, expressed, and purified the hdeB gene product, which belongs to the hdeAB acid stress operon. We extracted HdeB from bacteria by the osmotic-shock procedure and purified it to homogeneity by ion-exchange chromatography and hydroxyapatite chromatography. Its identity was confirmed by mass spectrometry analysis. HdeB has a molecular mass of 10 kDa in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, which matches its expected molecular mass. We purified the acid stress chaperone HdeA in parallel in order to compare the two chaperones. The hdeA and hdeB mutants both display reduced viability upon acid stress, and only the HdeA/HdeB expression plasmid can restore their viability to close to the wild-type level, suggesting that both proteins are required for optimal protection of the bacterial periplasm against acid stress. Periplasmic extracts from both mutants aggregate at acidic pH, suggesting that HdeA and HdeB are required for protein solubilization. At pH 2, the aggregation of periplasmic extracts is prevented by the addition of HdeA, as previously reported, but is only slightly reduced by HdeB. At pH 3, however, HdeB is more efficient than HdeA in preventing periplasmic-protein aggregation. The solubilization of several model substrate proteins at acidic pH supports the hypothesis that, in vitro, HdeA plays a major role in protein solubilization at pH 2 and that both proteins are involved in protein solubilization at pH 3. Like HdeA, HdeB exposes hydrophobic surfaces at acidic pH, in accordance with the appearance of its chaperone properties at acidic pH. HdeB, like HdeA, dissociates from dimers at neutral pH into monomers at acidic pHs, but its dissociation is complete at pH 3 whereas that of HdeA is complete at a more acidic pH. Thus, we can conclude that Escherichia coli possesses two acid stress chaperones that prevent periplasmic-protein aggregation at acidic pH.  相似文献   

15.
Rifampicin, but not chloramphenicol or other inhibitors of translation, inhibited EDTA-induced autolysis in Escherichia coli. Inhibition of EDTA-induced autolysis in E. coli was also observed with nalidixic acid and novobiocin, inhibitors of topoisomerase II. Rifampicin or nalidixic acid-resistant mutants of E. coli were resistant to the inhibitory effect of the respective antibiotic on EDTA-induced autolysis. The implications of these studies in regard to our understanding of the regulation of autolysis in E. coli are discussed.  相似文献   

16.
It has been postulated that the N-acyl fatty acid attached to the amino terminus of the major Escherichia coli lipoprotein is derived from the fatty acid at the 1-position of phosphatidylethanolamine (PtdEtn) (Jackowski, S., and Rock, C.O. (1986) J. Biol. Chem. 261, 11328-11333). To ascertain the role of PtdEtn in the conversion of apolipoprotein to the mature lipoprotein, the lipoprotein from E. coli strain AH930 (pss::kan) containing a null mutation in the phosphatidylserine synthase gene (pss) was studied. Pulse labeling with [35S]methionine for 30 s or 5 min revealed the formation of mature lipoprotein in both wild-type (W3110) and mutant (AH930) cells. [3H]Palmitate-labeled lipoproteins from both the mutant and wild-type cells were found to contain nearly identical amounts of alkali-resistant (amide-linked, 41-42%) and alkali-labile (ester-linked, 58-59%) fatty acids. Edman degradation and dansylation of the immuno-affinity-purified [35S]cysteine-labeled lipoprotein showed that the NH2 terminus of the lipoprotein in the mutant was blocked as in the wild type. In vitro assay of apolipoprotein N-acyltransferase using membranes either from the mutant or the wild-type strain as the source of both the enzyme and the acyl donor revealed that both membranes were equally active in the conversion of [35S]methionine-labeled apolipoprotein to lipoprotein. These data strongly suggest that PtdEtn is not essential for the N-acylation of apolipoprotein to form lipoprotein, and other major phospholipids such as phosphatidylglycerol and cardiolipin can serve as the donor of fatty acid in the N-acylation of apolipoprotein.  相似文献   

17.
18.
5-Amino-4-imidazolecarboxamide is a mutagen in E. coli   总被引:1,自引:0,他引:1  
5-Amino-4-imidazolecarboxamide (5A4IC), the base moiety of a common intermediate in de novo purine biosynthesis, was found to be mutagenic in E. coli. Using a series of mutants in the tryptophan synthetase A gene, 5A4IC was observed to cause transition and transversion mutations at similar levels. At 400 micrograms/ml in the growth medium, it stimulates the base substitution GC----AT 4.8-fold; AT----GC 20-fold; AT----CG (2 sites) an average of 6.0-fold; AT----TA 7.8-fold; and GC----CG 6.1-fold. The transversion GC----TA was not tested. In contrast to the base, 5-amino-4-imidazolecarboxamide riboside is not mutagenic at a similar molar concentration.  相似文献   

19.
20.
Abstract Defined deletion mutants of Escherichia coli defective for the synthesis of pyruvate formate-lyase (PFL) or pyruvate dehydrogenase (PDH) were analysed in regards their growth in batch culture and their enzyme levels under fermentative and nitrate respiratory conditions. A pfl mutant proved not to be completely auxotrophic for acetate when grown anaerobically in glucose minimal medium. In contrast, a pfl aceEF double mutant exhibited an absolute requirement for acetate, indicating that PDH is the source of acetyl-CoA in the pfl mutant. Growth of both pfl and aceEF single mutants under nitrate respiratory conditions was essentially indistinguishable from the wild-type. Thus, either PFL or PDH can be used to catabolise pyruvate in nitrate-respiring cells. The activities of PFL and PDH measured after growth with nitrate are commensurate with this proposal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号