首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we report the development of a simple and efficient system for genetic transformation of the medicinal fungus Ganoderma lucidum. Various parameters were optimized to obtain successful Agrobacterium tumefaciens-mediated transformation. Co-cultivation of bacteria and protoplast at a ratio of 1,000:1 at 25°C in medium containing 0.2 mM acetosyringone was found to be the optimum condition for high efficiency transformation. Four plasmids, each carrying a different promoter driving the expression of an antibiotic resistance marker, were tested. The construct carrying the Ganoderma lucidum glyceraldehyde-3-phosphate dehydrogenase (GPD) promoter showed good transformation efficiency, whereas constructs with the GPD promoter from ascomycetes were ineffective. Our analysis showed that over 70% of the transformants tested remained mitotically stable even after five successive rounds of subculturing. We were able to detect the expression of EGFP and GUS reporter genes in the Ganoderma lucidum transformants by fluorescence imaging and histochemical staining assays respectively. Our results demonstrate a new transgenic approach that will facilitate Ganoderma lucidum research.  相似文献   

2.
Here, we report for the first time, the optimized conditions for microprojectile bombardment-mediated genetic transformation in Vassourinha (Scoparia dulcis L.), a Plantaginaceae medicinal plant species. Transformation was achieved by bombardment of axenic leaf segments with Binary vector pBI121 harbouring β-glucuronidase gene (GUS) as a reporter and neomycin phosphotransferase II gene (npt II) as a selectable marker. The influence of physical parameters viz., acceleration pressure, flight distance, gap width & macroprojectile travel distance of particle gun on frequency of transient GUS and stable (survival of putative transformants) expressions have been investigated. Biolistic delivery of the pBI121 yielded the best (80.0 %) transient expression of GUS gene bombarded at a flight distance of 6 cm and rupture disc pressure/acceleration pressure of 650 psi. Highest stable expression of 52.0 % was noticed in putative transformants on RMBI-K medium. Integration of GUS and npt II genes in the nuclear genome was confirmed through primer specific PCR. DNA blot analysis showed more than one transgene copy in the transformed plantlet genomes. The present study may be used for metabolic engineering and production of biopharmaceuticals by transplastomic technology in this valuable medicinal plant.  相似文献   

3.
4.
5.
6.
Plant transformation by particle bombardment of embryogenic pollen   总被引:8,自引:0,他引:8  
Summary Direct delivery of DNA into embryogenic pollen was used to produce transgenic plants in tobacco. A plasmid bearing the ß-glucuronidase (GUS) marker gene in fusion with the 35S-promoter was introduced by microprojectile bombardment into mid-binucleate pollen of Nicotiana tabacum that had been induced to form embryos by a starvation treatment. In cytochemical expression assays, 5 out of 104 pollen grains were GUS+. Visual selection by staining with a non-lethal substrate for GUS was used to manually isolate transformed embryos. From the initial population of embryogenic GUS+ pollen, 1–5% developed into multicellular structures and 0.02% formed regenerable embryos. Two haploid transformants were regenerated. GUS expression was detected in different parts of the plants, and Southern analysis confirmed stable integration of the foreign DNA. Diploidisation was induced by injection of colchicine into the stem near adventitious buds. Offspring from selfings and backcrosses of one transformant were tested for GUS expression and by Southern blots. All F1-plants were transgenic, in accordance with Mendelian inheritance.Abbreviations GUS ß-glucuronidase - CaMV Cauliflower Mosaic Virus - MCS multicellular structure - NPTII neomycin phosphotransferase - PEG polyethylene glycol - X-gluc 5-bromo-4-chloro-3-indolyl glucuronide - DAPI 4,6-diamidino-2-phenylindole - Tris Tris(hydroxymethyl)aminomethane hydrochloride - EDTA ethylenedinitrilo tetraacetic acid, disodium salt dihydrate  相似文献   

7.
A genomic clone, Pis G363, containing the Brassica napus stigma-expressed gene Pis 63-2 was isolated and sequenced. The coding region of Pis G363 does not possess introns and shows 82% identity to the nucleotide sequence of a gene from Arabidopsis BAC clone T01B08. A 2-kb promoter fragment from Pis G363 was fused to the coding sequence of the marker enzyme β-glucuronidase (GUS) and introduced into tobacco via Agrobacterium-mediated transformation. The promoter fragment directed expression of the GUS gene in the stigma of transgenic tobacco. Some transformants also showed relatively low GUS activity in the pollen. Received: 25 May 1998 / Revision received: 30 July 1998 / Accepted: 21 August 1998  相似文献   

8.
We have developed a new procedure for transforming a model legume, Lotus japonicus, that yields transformed plants from transverse cotyledon segments without contamination from the presence of non-transformants that survived the antibiotic selection. L. japonicus was transformed with the HPT gene as a selectable marker and the GUS reporter gene, both of which were driven by cauliflower mosaic virus 35S promoter. The efficacy of selection with hygromycin was tested using the assay of GUS activity in putative transformants. The integration of the GUS gene was also confirmed by polymerase chain reaction analysis of the genomic DNA. The integrated T-DNA was stable and inherited as a dominant trait. This procedure may have potential effectiveness and application in large-scale transformation for insertional mutagenesis or gene tagging.  相似文献   

9.
AnAgrobacterium-mediated gene transfer system with recovery of putative transformants was developed for cotton (Gossypium hirsutum L.) cv. Cocker-312. Two-month-old hypocotyl-derived embryogenic calli were infected through agroinfiltration for 10 min at 27 psi in a suspension ofAgrobacterium tumefaciens strain GV3101 carrying tDNA with theGUS gene, encoding β-glucuronidase (GUS), and the neomycin phosphotransferase II (nptII) gene as a kanamycin-resistant plant-selectable marker. Six days after the histochemicalGUS assay was done, 46.6% and 20%GUS activity was noted with the vacuum-infiltration and commonAgrobacterium-mediated transformation methods, respectively. The transformed embryogenic calli were cultured on selection medium (100 mg/L and 50 mg/L kanamycin for 2 wk and 10 wk, respectively) for 3 mo. The putative transgenic plants were developed via somatic embryogenesis (25 mg/L kanamycin). In 4 independent experiments, up to 28.23% transformation efficiency was achieved. PCR amplification and Southern blot analysis fo the transformants were used to confirm the integration of the transgenes. Thus far, this is the only procedure available for cotton that can successfully be used to generate cotton transformants.  相似文献   

10.
11.
Activity of a maize ubiquitin promoter in transgenic rice   总被引:27,自引:0,他引:27  
We have used the maize ubiquitin 1 promoter, first exon and first intron (UBI) for rice (Oryza sativa L. cv. Taipei 309) transformation experiments and studied its expression in transgenic calli and plants. UBI directed significantly higher levels of transient gene expression than other promoter/intron combinations used for rice transformation. We exploited these high levels of expression to identify stable transformants obtained from callus-derived protoplasts co-transfected with two chimeric genes. The genes consisted of UBI fused to the coding regions of the uidA and bar marker genes (UBI:GUS and UBI:BAR). UBI:GUS expression increased in response to thermal stress in both transfected protoplasts and transgenic rice calli. Histochemical localization of GUS activity revealed that UBI was most active in rapidly dividing cells. This promoter is expressed in many, but not all, rice tissues and undergoes important changes in activity during the development of transgenic rice plants.  相似文献   

12.
The processing of DNA molecules during transformation was characterized in the oomycete Phytophthora infestans. Linear and circular forms of nonreplicating transformation vectors supported similar rates of stable transformation. Remarkably, digestion of plasmids within the selectable marker genes neomycin phosphotransferase (npt) or hygromycin phosphotransferase (hpt) had little effect on the recovery of drug-resistant transformants, and the cleaved sites were shown to be reconstituted in the transformants. An assay for the transient expression of β-glucuronidase (GUS) in protoplasts treated with partial or disrupted GUS genes demonstrated that active genes could be reconstituted through intramolecular and/or intermolecular ligation between compatible ends, while incompatible ends were inefficiently joined. Stable transformation studies also demonstrated that complementing portions of incomplete npt or hpt genes joined through homologous recombination. Based on the indication of efficient ligation between DNA molecules during transformation, an efficient procedure for cotransformation was developed. The frequency of cotransformation between vectors expressing selected genes (npt or hpt) and nonselected sequences (GUS, β-galactosidase, or streptomycin phosphotransferase) approached unity when the plasmids were linearized with the same restriction enzyme before transformation. In contrast, cotransformation between circular plasmids or those cut with different enzymes occurred infrequently (10%). Hybridization analysis of DNA from cotransformants demonstrated that linearized plasmids became colocalized within genomic DNA, while circular plasmids typically inserted at unliked sites.  相似文献   

13.
A detailed study of the expression of the promoter of the HSP18.2 gene from Arabidopsis fused to the bacterial gene for β-glucuronidase (GUS) in transgenic Arabidopsis plants is described. High levels of GUS activity were induced in all organs of transformants except for seeds during heat shock. The optimum temperature for expression of GUS in Arabidopsis was 35°C regardless of the plant growth temperature. Heat shock of 40°C did not induce any detectable levels of GUS activity. Pre-incubation at 35°C was found to have a protective effect on the induction of GUS activity at 40°C. GUS activity was also increased in response to a gradual increase in temperature. Histochemical analysis revealed that basal levels of GUS activity were induced in the vascular tissue of leaves and sepals, as well as at the tips of carpels, at the normal growth temperature. Heat treatment of a limited part of the plant tissue did not appear to cause systemic induction of GUS activity. To extend the analysis of the plant heat-shock response, we attempted to screen mutations in genes involved in the regulation of the induction of heat-shock protein (HSP) genes, using the GUS gene as a selection marker in transgenic Arabidopsis plants, and the results of this analysis are described.  相似文献   

14.
Effects of tissue type and promoter strength on transient GUS expression in the sugarcane (Saccharum spp. hybrids) cultivar NCo 310 were evaluated following microprojectile bombardment of leaf explants. GUS expression was histochemically or fluorometrically measured 48 h after delivery of the uidA gene. High levels of GUS expression were obtained in leaf segments isolated from young, expanding sugarcane leaves cultured for 1, 3, or 6 d prior to bombardment. The promoter derived from the maize ubiquitin 1 gene (Ubi-1) produced significantly more GUS foci and higher GUS activity levels compared to the recombinant Emu, rice actin 1 (Act1), and CaMV 35S promoters. Our transient expression system should facilitate efforts to identify promoters and elements which will regulate desired gene expression patterns in sugarcane and aid in development of an efficient stable transformation system.Abbreviations Act1 rice actin 1 gene - CaMV cauliflower mosaic virus - GUS ß-glucuronidase - Ubi-1 maize ubiquitin 1 gene - uidA GUS gene - X-Glu 5-bromo-4-chloro-3-indoylglucuronide  相似文献   

15.
Artemisinin, an antimalarial endoperoxide sesquiterpene, is synthesized in glandular trichomes of Artemisia annua L. A number of other enzymes of terpene metabolism utilize intermediates of artemisinin biosynthesis, such as isopentenyl and farnesyl diphosphate, and may thereby influence the yield of artemisinin. In order to study the expression of such enzymes, we have cloned the promoter regions of some enzymes and fused them to β-glucuronidase (GUS). In this study, we have investigated the expression of the monoterpene synthase linalool synthase (LIS) using transgenic A. annua carrying the GUS gene under the control of the LIS promoter. The 652 bp promoter region was cloned by the genome walker method. A number of putative cis-acting elements were predicted indicating that the LIS is driven by a complex regulation mechanism. Transgenic plants carrying the promoter-GUS fusion showed specific expression of GUS in T-shaped trichomes (TSTs) but not in glandular secretory trichomes, which is the site for artemisinin biosynthesis. GUS expression was observed at late stage of flower development in styles of florets and in TSTs and guard cells of basal bracts. GUS expression after wounding showed that LIS is involved in plant responsiveness to wounding. Furthermore, the LIS promoter responded to methyl jasmonate (MeJA). These results indicate that the promoter carries a number of cis-acting regulatory elements involved in the tissue-specific expression of LIS and in the response of the plant to wounding and MeJA treatment. Southern blot analysis indicated that the GUS gene was integrated in the A. annua genome as single or multi copies in different transgenic lines. Promoter activity analysis by qPCR showed that both the wild-type and the recombinant promoter are active in the aerial parts of the plant while only the recombinant promoter was active in roots. Due to the expression in TSTs but not in glandular trichomes, it may be concluded that LIS expression will most likely have little or no effect on artemisinin production.  相似文献   

16.
The promoter of an anther tapetum-specific gene,Osg6B, was fused to a-glucuronidase (GUS) gene and introduced into rice byAgrobacterium-mediated gene transfer. Fluorometric and histochemical GUS assay showed that GUS was expressed exclusively within the tapetum of anthers from the uninucleate microspore stage (7 days before anthesis) to the tricellular pollen stage (3 days before anthesis). This is the first demonstration of an anther-specific promoter directing tapetum-specific expression in rice.Abbreviations GUS ßGlucuronidase  相似文献   

17.
An Arabidopsis thaliana mutant, exhibiting anther specific GUS expression, identified from a mutant population of Arabidopsis tagged with a promoterless β-glucuronidase (GUS), carries the T-DNA insertions at two distinct loci. We have been able to segregate the two inserts from each other by backcrossing with wild type plants. The insertion responsible for anther specific GUS expression in segregating population has been identified and confirmed to be in the upstream region of a putative peroxidase gene, AT2G24800. Here we report detailed histochemical and molecular characterization of the mutant Anth85, carrying a single insertion of T-DNA in the peroxidase gene. In Anth85, the GUS expression was observed in the anthers and rosette of the young seedlings. The expression of GUS in the anthers was restricted to the tapetum and microspores. The mutant has no developmental defects and the gene appears to be redundant for normal plant growth. Cloning of upstream region and detailed deletion study of upstream region in transgenic plants is likely to lead to the identification of anther specific promoter elements.  相似文献   

18.
19.
A 1431-bp upstream fragment of Athsp70b was cloned via PCR amplification and expressed in onion epidermis by particle bombardment. Furthermore, the progressive deletions of the Athsp70b upstream fragment linked to the β-glucuronidase (GUS) coding region were performed. Then, a stable GUS expression was analyzed in tobacco BY2 cells and Arabidopsis. Our present results showed that about a 500-bp region upstream ATG of Athsp70b is suitable to confer heat inducibility to the GUS reporter gene in plants and around 116 bp contain nonperfect heat-sensitive element. This promoter responds to heat, salicylic acid, and benzyladenine. GUS staining was mainly observed in the vascular tissues and root tips, implying that Athsp70b is related to water transportation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号