首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Although the general cytotoxicity of selenite is well established, the mechanism by which this compound crosses cellular membranes is still unknown. Here, we show that in Saccharomyces cerevisiae, the transport system used opportunistically by selenite depends on the phosphate concentration in the growth medium. Both the high and low affinity phosphate transporters are involved in selenite uptake. When cells are grown at low Pi concentrations, the high affinity phosphate transporter Pho84p is the major contributor to selenite uptake. When phosphate is abundant, selenite is internalized through the low affinity Pi transporters (Pho87p, Pho90p, and Pho91p). Accordingly, inactivation of the high affinity phosphate transporter Pho84p results in increased resistance to selenite and reduced uptake in low Pi medium, whereas deletion of SPL2, a negative regulator of low affinity phosphate uptake, results in exacerbated sensitivity to selenite. Measurements of the kinetic parameters for selenite and phosphate uptake demonstrate that there is a competition between phosphate and selenite ions for both Pi transport systems. In addition, our results indicate that Pho84p is very selective for phosphate as compared with selenite, whereas the low affinity transporters discriminate less efficiently between the two ions. The properties of phosphate and selenite transport enable us to propose an explanation to the paradoxical increase of selenite toxicity when phosphate concentration in the growth medium is raised above 1 mm.  相似文献   

6.
7.
8.
The organization of the phosphate-specific transport (pst) operon inPseudomonas aeruginosa has been determined. The gene order of thepst operon ispstC, pstA, pstB, phoU, and a well-conserved Pho box sequence (16/18 bases identical) exists in the promoter region. The most striking difference from the knownEscherichia coli pst operon is the lack of thepstS gene encoding a periplasmic phosphate (Pi)-binding protein. Even though the threepst genes were absolutely required for Pi-specific transport, expression of thepst operon at high levels did not increase Pi uptake inP. aeruginosa. DNA sequences for thepstB andphoU genes have been determined previously. The newly identifiedpstC andpstA genes encode possible integral membrane proteins of 677 amino acids (M r 73 844) and 513 amino acids (M r 56 394), respectively. The amino acid sequences of PstC and PstA predict that these proteins contain a long hydrophilic domain not seen in theirE. coli counterparts. A chromosomal deletion of the entirepst operon renderedP. aeruginosa unable to repress Pi taxis under conditions of Pi excess. ThephoU andpstB genes are essential for repressing Pi taxis. However, mutants lacking either PstC or PstA alone were able to repress Pi taxis under conditions of Pi excess.  相似文献   

9.
The nucleotide sequence encoding the crystalline bacterial cell surface (S-layer) protein SbpA of Bacillus sphaericus CCM 2177 was determined by a PCR-based technique using four overlapping fragments. The entire sbpA sequence indicated one open reading frame of 3,804 bp encoding a protein of 1,268 amino acids with a theoretical molecular mass of 132,062 Da and a calculated isoelectric point of 4.69. The N-terminal part of SbpA, which is involved in anchoring the S-layer subunits via a distinct type of secondary cell wall polymer to the rigid cell wall layer, comprises three S-layer-homologous motifs. For screening of amino acid positions located on the outer surface of the square S-layer lattice, the sequence encoding Strep-tag I, showing affinity to streptavidin, was linked to the 5′ end of the sequence encoding the recombinant S-layer protein (rSbpA) or a C-terminally truncated form (rSbpA31-1068). The deletion of 200 C-terminal amino acids did not interfere with the self-assembly properties of the S-layer protein but significantly increased the accessibility of Strep-tag I. Thus, the sequence encoding the major birch pollen allergen (Bet v1) was fused via a short linker to the sequence encoding the C-terminally truncated form rSpbA31-1068. Labeling of the square S-layer lattice formed by recrystallization of rSbpA31-1068/Bet v1 on peptidoglycan-containing sacculi with a Bet v1-specific monoclonal mouse antibody demonstrated the functionality of the fused protein sequence and its location on the outer surface of the S-layer lattice. The specific interactions between the N-terminal part of SbpA and the secondary cell wall polymer will be exploited for an oriented binding of the S-layer fusion protein on solid supports to generate regularly structured functional protein lattices.  相似文献   

10.
11.
12.
Antisera from some hamsters bearing adenovirus-induced tumors contain antibodies to an 11,000 Mr adenovirus-induced protein. In adenovirus-infected HeLa cells, this early viral protein was specifically associated with the nuclear matrix fraction. After two-dimensional gel electrophoresis, two forms of the 11,000 Mr protein at pI 5.6 and pI 5.4 were found. Only the pI 5.4 form of this protein was associated with the nuclear matrix fraction. Adenoviruses from groups A, B, C, D and E all produced an early viral protein (10,000 to 12,000 Mr) that reacted with group C antibody to the 11,000 Mr protein. To date, this is the only known early viral protein that is immunologically conserved in all of the human adenovirus groups.The positions of two methionine and seven leucine residues were determined by sequencing the first 35 amino acids from the N terminus of the adenovirus serotype 2 group C 11,000 Mr protein. The positions of these amino acid residues were compared to the adenovirus serotype 2 nucleotide sequence, which uniquely localized the structural gene of the 11,000 Mr protein to region E4, subregion 3 in type 2 adenovirus. A frameshift mutant, which contained a deletion of one base-pair in the structural gene of the 11,000 Mr protein, was isolated and mapped by marker rescue and nucleotide sequence analysis. This mutant failed to produce immunologically detectable 11,000 Mr protein. The mutant had a viable phenotype, producing normal levels of infectious virus in both HeLa cells and WI38 cells in culture. These experiments identify the first adenovirus early region 4 protein detected in virus-infected cells.  相似文献   

13.
14.
15.
In proteobacteria, genes whose expression is modulated in response to the external concentration of inorganic phosphate are often regulated by the PhoB protein which binds to a conserved motif (Pho box) within their promoter regions. Using a position weight matrix algorithm derived from known Pho box sequences, we identified 96 putative Pho regulon members whose promoter regions contained one or more Pho boxs in the Sinorhizobium meliloti genome. Expression of these genes was examined through assays of reporter gene fusions and through comparison with published microarray data. Of 96 genes, 31 were induced and 3 were repressed by Pi starvation in a PhoB dependent manner. Novel Pho regulon members included several genes of unknown function. Comparative analysis across 12 proteobacterial genomes revealed highly conserved Pho regulon members including genes involved in Pi metabolism (pstS, phnC and ppdK). Genes with no obvious association with Pi metabolism were predicted to be Pho regulon members in S.meliloti and multiple organisms. These included smc01605 and smc04317 which are annotated as substrate binding proteins of iron transporters and katA encoding catalase. This data suggests that the Pho regulon overlaps and interacts with several other control circuits, such as the oxidative stress response and iron homeostasis.  相似文献   

16.
Expression of the Pho regulon in Escherichia coli is induced in response to low levels of environmental phosphate (Pi). Under these conditions, the high-affinity PstSCAB2 protein (i.e., with two PstB proteins) is the primary Pi transporter. Expression from the pstSCAB-phoU operon is regulated by the PhoB/PhoR two-component regulatory system. PhoU is a negative regulator of the Pho regulon; however, the mechanism by which PhoU accomplishes this is currently unknown. Genetic studies of phoU have proven to be difficult because deletion of the phoU gene leads to a severe growth defect and creates strong selection for compensatory mutations resulting in confounding data. To overcome the instability of phoU deletions, we employed a promoter-swapping technique that places expression of the phoBR two-component system under control of the Ptac promoter and the lacOID regulatory module. This technique may be generally applicable for controlling expression of other chromosomal genes in E. coli. Here we utilized PphoB::Ptac and PpstS::Ptac strains to characterize phenotypes resulting from various ΔphoU mutations. Our results indicate that PhoU controls the activity of the PstSCAB2 transporter, as well as its abundance within the cell. In addition, we used the PphoB::Ptac ΔphoU strain as a platform to begin characterizing new phoU mutations in plasmids.  相似文献   

17.
In Saccharomyces cerevisiae, the PHO pathway regulates expression of phosphate-responsive genes such as PHO5, which encodes repressible acid phosphatase (rAPase). In this pathway, Pho81p functions as an inhibitor of the cyclin-cyclin-dependent kinase (CDK) complex Pho80p-Pho85p. However, the mechanism regulating the inhibitory activity of Pho81p is poorly understood. Through use of the yeast two-hybrid system, we identified the UbL-UbA protein Ddi1p as a Pho81p-binding protein. Further, Pho81p levels were found to be low under high-phosphate condition and high during phosphate starvation, indicating that Pho81p is regulated by phosphate concentration. However, our results revealed that Ddi1p and its associated protein Rad23p are not involved in the decrease in Pho81p level under high-phosphate condition. Significantly, the Δddi1Δrad23 strain exhibited a remarkable increase in rAPase activity at an intermediate-phosphate concentration of 0.4 mM, suggesting that Ddi1p and Rad23p play a cooperative role as negative regulators in the PHO pathway.  相似文献   

18.
We have identified a phosphate transporter (TcPho91) localized to the bladder of the contractile vacuole complex (CVC) of Trypanosoma cruzi, the etiologic agent of Chagas disease. TcPho91 has 12 transmembrane domains, an N‐terminal regulatory SPX (named after SYG1, Pho81 and XPR1) domain and an anion permease domain. Functional expression in Xenopus laevis oocytes followed by two‐electrode voltage clamp showed that TcPho91 is a low‐affinity transporter with a Km for Pi in the millimolar range, and sodium‐dependency. Epimastigotes overexpressing TcPho91‐green fluorescent protein have significantly higher levels of pyrophosphate (PPi) and short‐chain polyphosphate (polyP), suggesting accumulation of Pi in these cells. Moreover, when overexpressing parasites were maintained in a medium with low Pi, they grew at higher rates than control parasites. Only one allele of TcPho91 in the CL strain encodes for the complete open reading frame, while the other one is truncated encoding for only the N‐terminal domain. Taking advantage of this characteristic, knockdown experiments were performed resulting in cells with reduced growth rate as well as a reduction in PPi and short‐chain polyP levels. Our results indicate that TcPho91 is a phosphate sodium symporter involved in Pi homeostasis in T. cruzi.  相似文献   

19.
The effect of phosphate (P i ) concentration on the growth behavior of Saccharomyces cerevisiae strain CEN.PK113-5D in phosphate-limited batch and chemostat cultures was studied. The range of dilution rates used in the present study was 0.08–0.45 h−1. The batch growth of yeast cells followed Monod relationship, but growth of the cells in phosphate-limited chemostat showed change in growth kinetics with increasing dilution rates. The difference in growth kinetics of the yeast cells in phosphate-limited chemostat for dilution rates below and above approximately 0.2 h−1 has been discussed in terms of the batch growth kinetic data and the change in the metabolic activity of the yeast cells. Immunological detection of a C-terminally myc epitope-tagged Pho84 fusion protein indicated derepressive expression of the Pho84 high-affinity P i transporter in the entire range of dilution rates employed in this study. Phosphate transport activity mediated by Pho84 transporter was highest at very low dilution rates, i.e. 0.08–0.1 h−1, corresponding to conditions in which the amount of synthesized Pho84 was at its maximum.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号