首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Protoplast fusion experiments between Lycopersicon esculentum or L. peruvianum and Nicotiana tabacum or N. plumbaginifolia were performed to investigate the possibility of producing symmetric and asymmetric somatic hybrids between these genera. These fusions, which involved 1.7 × 108 protoplasts, yielded 35 viable hybrid calli. Plant regeneration was successful with two calli. One of these regenerants flowered, but developed no fruits. Analysis of the nuclear DNA by means of dot blot hybridization with species-specific repetitive DNA probes combined with flow cytometry, revealed that the nuclei of most hybrid calli contained the same absolute amount of Nicotiana DNA as the Nicotiana parent or (much) less, whereas the amount of Lycopersicon DNA per nucleus was 2–5 times that of the parental genotype. Eighteen of the 34 hybrids analyzed possessed Lycopersicon chloroplast DNA (cpDNA), whereas the other 16 had DNA from Nicotiana chloroplasts. The cpDNA type was correlated with the nuclear DNA composition; hybrids with more than 2C Nicotiana nuclear DNA possessed Nicotiana chloroplasts, whereas hybrids with 2C or less Nicotiana nuclear DNA contained Lycopersicon chloroplasts. Mitochondrial DNA (mtDNA) composition was correlated with both nuclear DNA constitution and chloroplast type. Hybrids possessed only or mainly species-specific mtDNA fragments from the parent predominating in the nucleus and often providing the chloroplasts. The data are discussed in relation to somatic incompatibility which could explain the low frequency at which hybrids between Lycopersicon and Nicotiana species are obtained and the limited morphogenetic potential of such hybrids.  相似文献   

2.
Summary Gametosomatic hybrids produced by the fusion of microspore protoplasts of Nicotiana tabacum Km+Sr+ with somatic cell protoplasts of N. rustica were analysed for their organelle composition. For the analysis of mitochondrial (mt)DNA, species-specific patterns were generated by Southern hybridization of restriction endonuclease digests of total DNA and mtDNA with four DNA probes of mitochondrial origin: cytochrome oxidase subunit I, cytochrome oxidase subunit II, 26s rDNA and 5s-18s rDNA. Of the 22 hybrids analyzed, some had parental-type pattern for some probes and novel-type for the others, indicating interaction between mtDNA of the two parent species. For chloroplast (cp)DNA analysis, species-specific patterns were generated by Southern hybridization of restriction endonuclease digests of total DNA with large subunits of ribulose bisphosphate carboxylase and cpDNA as probes. All the hybrids had N. rustica-specific patterns. Hybrids were not resistant to streptomycin, a trait encoded by the chloroplast genome of N. tabacum. In gametosomatic fusions of the two Nicotiana species, mitochondria but not the chloroplasts are transmitted from the parent contributing microspore protoplasts.  相似文献   

3.
Patterns of organelle inheritance were examined among fertile somatic hybrids between allotetraploid Nicotiana tabacum L. (2n=4x=48) and a diploid wild relative N. glutinosa L. (2n=2x=24). Seventy somatic hybrids resistant to methotrexate and kanamycin were recovered following fusion of leaf mesophyll protoplasts of transgenic methotrexate-resistant N. tabacum and kanamycin-resistant N. glutinosa. Evidence for hybridization of nuclear genomes was obtained by analysis of glutamate oxaloacetate transaminase and peroxidase isoenzymes and by restriction fragment length polymorphism (RFLP) analysis using a heterologous nuclear ribosomal DNA probe. Analysis of chloroplast genomes in a population of 41 hybrids revealed a random segregation of chloroplasts since 25 possessed N. glutinosa chloroplasts and 16 possessed N. tabacum chloroplasts. This contrasts with the markedly non-random segregation of plastids in N. tabacum (+)N. rustica and N. tabacum (+) N. debneyi somatic hybrids which we described previously and which were recovered using the same conditions for fusion and selection. The organization of the mitochondrial DNA (mtDNA) in 40 individuals was examined by RFLP analysis with a heterologous cytochrome B gene. Thirty-eight somatic hybrids possessed mitochondrial genomes which were rearranged with respect to the parental genomes, two carried mtDNA similar to N. tabacum, while none had mtDNA identical to N. glutinosa. The somatic hybrids were self-fertile and fertile in backcrosses with the tobacco parent.Contribution No. 1487 Plant Research Centre  相似文献   

4.
The inheritance pattern of chloroplast and mitochondria is a critical determinant in studying plant phylogenetics, biogeography and hybridization. To better understand chloroplast and mitochondrial inheritance patterns in Actinidia (traditionally called kiwifruit), we performed 11 artificial interspecific crosses and studied the ploidy levels, morphology, and sequence polymorphisms of chloroplast DNA (cpDNA) and mitochondrial DNA (mtDNA) of parents and progenies. Sequence analysis showed that the mtDNA haplotypes of F1 hybrids entirely matched those of the female parents, indicating strictly maternal inheritance of Actinidia mtDNA. However, the cpDNA haplotypes of F1 hybrids, which were predominantly derived from the male parent (9 crosses), could also originate from the mother (1 cross) or both parents (1 cross), demonstrating paternal, maternal, and biparental inheritance of Actinidia cpDNA. The inheritance patterns of the cpDNA in Actinidia hybrids differed according to the species and genotypes chosen to be the parents, rather than the ploidy levels of the parent selected. The multiple inheritance modes of Actinidia cpDNA contradicted the strictly paternal inheritance patterns observed in previous studies, and provided new insights into the use of cpDNA markers in studies of phylogenetics, biogeography and introgression in Actinidia and other angiosperms.  相似文献   

5.
The chloroplast (cp) DNA type and mitochondrial (mt) DNA composition of 17 somatic hybrids between a cytoplasmic albino tomato and monoploid potato (A7-hybrids) and 18 somatic hybrids between a nitrate reductase-deficient tomato and monoploid potato (C7-hybrids) were analyzed. Thirteen A7-hybrids and 9 C7-hybrids were triploids (with one potato genome); the other hybrids were tetraploid. As expected, all A7-hybrids contained potato cpDNA. Of the C7-hybrids 7 had tomato cpDNA, 10 had potato cpDNA and 1 hybrid contained both tomato and potato cpDNA. The mtDNA composition of the hybrids was analyzed by hybridization of Southern blots with four mtDNA-specific probes. The mtDNAs in the hybrids had segregated independently from the cpDNAs. Nuclear DNA composition (i.e. one or two potato genomes) did not influence the chloroplast type in the C7-hybrids, nor the mtDNA composition of A7- or C7-hybrids. From the cosegregation of specific mtDNA fragments we inferred that both tomato and potato mtDNAs probably have a coxII gene closely linked to 18S+5S rRNA genes. In tomato, atpA, and in potato, atp6 seems to be linked to these mtDNA genes.  相似文献   

6.
Cytoplasmic male sterility (CMS) is known to be controlled by mitochondrial genome in higher plants including Satsuma mandarin (Citrus unshiu Marc.). Citrus symmetric fusion experiments often produce diploid cybrids possessing nuclear DNA from the mesophyll parent and mitochondrial DNA (mtDNA) from the embryogenic callus parent. Therefore, it is possible to transfer CMS from Satsuma mandarin as callus parent to seedy citrus cultivars as leaf one by somatic cybridization. Herein, symmetric fusion technique was adopted to create cybrids for potential seedlessness by transferring CMS from Citrus unshiu Marc. cv. Guoqing No. 1 (G1) to two traditional Chinese seedy citrus cultivars, ‘Shatian’ pummelo (C. grandis (L) Osbeck) and ‘Bingtang’ orange (C. sinensis (L) Osbeck). Flow cytometry analysis showed that 19 plants recovered from G1 + ‘Bingtang’ orange and 17 of 35 plants regenerated from G1 + ‘Shatian’ pummelo were diploid. The remaining plants from G1 + ‘Shatian’ pummelo were tetraploid. The diploid plants from the two combinations were confirmed as true cybrids by simple sequence repeat (SSR) and cleaved amplified polymorphic sequence (CAPS) analysis, with nuclear DNA from their corresponding leaf parent and mtDNA from their common suspension parent, G1 Satsuma mandarin. The remaining plants from G1 + ‘Shatian’ pummelo were identified as somatic hybrids with mtDNA from G1. The chloroplast simple sequence repeat (cp-SSR) analysis revealed somatic hybrid/cybrid plants from the two combinations in most cases possessed either of their parental chloroplast type, and two plants from G1 +‘Shatian’ pummelo and all embryoids analyzed from G1 + ‘Bingtang’ orange possessed chloroplast DNA (cpDNA) from both parents. These results demonstrated that we succeeded in introducing mtDNA from G1 Satsuma mandarin into the two target seedy citrus cultivars for potential seedlessness through symmetric fusion.  相似文献   

7.
Following protoplast fusion between Nicotiana tabacum (dhfr) and N. megalosiphon (nptII) somatic hybrids were selected on the basis of dual resistance to kanamycin and methotrexate. Despite strong selection for parental nuclear-encoded resistances, only nine N. tabacum (+) N. megalosiphon somatic hybrids were obtained. A preferential loss of the parental N. tabacum nuclear and organelle genome was apparent in some plants in spite of the lack of genomic inactivation by the irradiation or chemical treatment of the parental protoplasts. Only six of the nine hybrids recovered possessed both parental profiles of nuclear RFLPs and isoenzymes. The remaining three hybrids were highly asymmetric with two being identical to N. megalosiphon except for minor morphological differences and rearranged or recombined mitochondrial DNAs (mtDNA), while the other one was distinguishable only by the presence of a rearranged or recombined mtDNA, and was therefore possibly a cybrid. Overall, eight somatic hybrids possessed rearranged or recombined mtDNAs and chloroplast inheritance was non-random since eight possessed N. megalosiphon-type chloroplasts and only one had N. tabacum chloroplasts. In contrast, using the same selection approach, numerous morphologically similar symmetric somatic hybrids with nuclear RFLPs and isozymes of both the parental species were recovered from control fusions between N. tabacum and the more closely related N. sylvestris. In spite of the low frequency of recovery of symmetric N. tabacum (+) N. megalosiphon hybrids in this study, one of these hybrids displayed a significant degree of self-fertility allowing for back-crosses to transfer N. megalosiphon disease-resistance traits to N. tabacum. Plant Research Centre Contribution No. 1579  相似文献   

8.
Intergeneric asymmetric somatic hybrids have been obtained by the fusion of metabolically inactivated protoplasts from embryogenic suspension cultures ofFestuca arundinacea (recipient) and protoplasts from a non-morphogenic cell suspension ofLolium multiflorum (donor) irradiated with 10, 25, 50, 100, 250 and 500 Gy of X-rays. Regenerating calli led to the recovery of genotypically and phenotypically different asymmetric somatic hybridFestulolium plants. The genome composition of the asymmetric somatic hybrid clones was characterized by quantitative dot-blot hybridizations using dispersed repetitive DNA sequences specific to tall fescue and Italian ryegrass. Data from dot-blot hybridizations using two cloned Italian ryegrass-specific sequences as probes showed that irradiation favoured a unidirectional elimination of most or part of the donor chromosomes in asymmetric somatic hybrid clones obtained from fusion experiments using donor protoplasts irradiated at doses 250 Gy. Irradiation of cells of the donor parent with 500 Gy prior to protoplast fusion produced highly asymmetric nuclear hybrids with over 80% elimination of the donor genome as well as clones showing a complete loss of donor chromosomes. Further information on the degree of asymmetry in regenerated hybrid plants was obtained from chromosomal analysis including in situ hybridizations withL. multiflorum-specific repetitive sequences. A Southern blot hybridization analysis using one chloroplast and six mitochondrial-specific probes revealed preferentially recipient-type organelles in asymmetric somatic hybrid clones obtained from fusion experiments with donor protoplasts irradiated with doses higher than 100 Gy. It is concluded that the irradiation of donor cells before fusion at different doses can be used for producing both nuclear hybrids with limited donor DNA elimination or highly asymmetric nuclear hybrid plants in an intergeneric graminaceous combination. For a wide range of radiation doses tested (25–250Gy), the degree of the species-specific genome elimination from the irradiated partner seems not to be dose dependent. A bias towards recipient-type organelles was apparent when extensive donor nuclear genome elimination occurred.Abbreviations cpDNA Chloroplast DNA - 2, 4-D 2,4-dichlorophenoxyacetic acid - FDA fluorescein diacetate - IOA iodoacetamide - mtDNA mitochondrial DNA - RFLP restriction fragment length polymorphism  相似文献   

9.
Novel and potentially useful genetic variation in cytoplasmic genomes can be induced by interspecific somatic hybridization in plants. To evaluate such variability and correlate it with nuclear-cytoplasmic interactions leading to male sterility in Solanum spp., we examined progeny of male-sterile and male-fertile somatic hybrids between Solanum tuberosum (tbr), the common potato, and S. commersonii (cmm), a wild species showing sexual incongruity with tbr, for fertility and organelle DNA composition. Uniform male-fertile and male-sterile progenies were obtained by selfing the male-fertile hybrid and crossing the male-sterile ones, indicating maternal inheritance of the fertility phenotype. The two fusion partners were only slightly differentiated in the plastidial genome. MtDNA polymorphism between the species was greater, although its extent varied with the genomic region investigated. All somatic hybrids had non-parental organelle genomes, with reassorted organelles and/or rearranged mitochondria (i.e., cmm-specific bands for some regions and tbr-specific bands for others). Mitochondria reassorted independently from chloroplasts. Most hybrids showed the cmm cpDNA hybridization pattern, indicating non-random transmission of chloroplasts. Most male-sterile hybrids showed preferential inheritance of tbr mtDNA fragments. The male-fertile somatic hybrid clone had predominantly cmm mtDNA fragments. This result suggests that a tbr-derived region involved in nuclear-cytoplasmic incompatibility and male sterility has been lost by rearrangement; however, no clear correlation between a specific mitochondrial region and male sterility has been found so far. Received: 3 January 1999 / Accepted: 20 February 1999  相似文献   

10.
Summary The chloroplast genomes of three sets of Petunia somatic hybrids were analyzed to examine the relationship between chloroplast DNA (cpDNA) composition and cytoplasmic male sterility (CMS). Chloroplast genomes of somatic hybrid plants were identified either by restriction and electrophoresis of purified cpDNAs or by hybridization of total DNA digests with cloned cpDNA probes that distinguish the parental genomes.The chloroplast genomes of a set of seven somatic hybrids derived from the fusion of Petunia CMS line 2423 and fertile line 3699 were analyzed. All seven plants were fertile, and all exhibited the cpDNA restriction pattern of the sterile cytoplasm. Similarly, four fertile somatic hybrids derived from the fusion of CMS line 3688 and fertile line 3677 were found to contain the CMS chloroplast genome. The cpDNA compositions of four fertile and two sterile somatic hybrids derived from the fusion of CMS line 3688 and fertile line 3704 were determined by restriction analysis of purified cpDNAs; all six plants exhibited the cpDNA restriction pattern of line 3704. Thus the CMS phenotype segregates independently of the chloroplast genome in Petunia somatic hybrids, indicating that CMS in Petunia is not specified by the chloroplast genome.  相似文献   

11.
Chloroplast DNA (cpDNA) and mitochondrial DNA (mtDNA) of malesterile tobacco plants obtained by fusion of Nicotiana tabacumprotoplasts and X-irradiated N. debneyi protoplasts were analyzed.Digestion of cpDNA isolated from ten male sterile lines withfour restriction endonucleases (EcoRI, XhoI, SmaI and HindIII)indicated that these lines possessed either one or the otherparental chloroplast genome. Neither mixture of two types ofcpDNA nor unique restriction fragments were detected in anyof the cases examined. The genetic constitution of chloroplastgenomes identified by restriction analysis of cpDNA showed goodagreement with that based on isoelectric focusing of the largesubunit of the Fraction I protein. The mtDNA from five fusion-derivedmale sterile plants showed banding patterns quite differentfrom each other and from the parental plants. Each plant exhibitednew restriction fragments not found in the parental species.These findings indicate that recombinational events in the mitochondrialgenomes take place rather frequently in the mixed cytoplasmsafter protoplast fusion, whereas the mixed chloroplasts becomesegregated to homogeneity. (Received June 19, 1987; Accepted October 5, 1987)  相似文献   

12.
Summary Somatic hybrid plants were recovered following fusion of leaf mesophyll protoplasts isolated from tomato (Lycopersicon esculentum) cultivar UC82 with protoplasts isolated from suspension cultured cells of L. chilense, LA 1959. Iodoacetate was used to select against the growth of unfused tomato protoplasts. Two somatic hybrids were recovered in a population of 16 regenerants. No tomato regenerants were recovered; all of the non-hybrid regenerants were L. chilense. The L. chilense protoplast regenerants were tetraploid. The hybrid nature of the plants was verified using species-specific restriction fragment length polymorphisms for the nuclear, chloroplast and mitochondrial genomes. The somatic hybrids had inherited the chloroplast DNA of the tomato parent, and portions of the mitochondrial DNA of the L. chilense parent. The somatic hybrids formed flowers and developed seedless fruit.  相似文献   

13.
Summary The organelles of somatic hybrids obtained from symmetric and asymmetric fusions between the Lycopersicon species L. peruvianum and L. esculentum were analyzed by DNA hybridization methods. In the asymmetric fusions the L. peruvianum protoplasts were gamma-irradiated at a dose of 50, 300 and 1,000 Gy. The organelles were characterized using the Petunia chloroplast probe pPCY64 and the mitochondrial EcoRI-SalI fragment of the Pcf gene. In all symmetric and asymmetric hybrid plants, a total of 73 being analyzed, only one of the parental chloroplast genomes was present, except for one hybrid plant which harbored both parental chloroplast genomes. No recombination and/or rearrangement in the chloroplast genome could be identified with the pPCY64 probe. Irradiation of the L. peruvianum protoplasts did not significantly reduce the fraction of asymmetric hybrids with L. peruvianum chloroplasts. A novel mitochondrial restriction pattern was present in 5 out of 24 hybrids tested. In 9 hybrids novel combinations of chloroplasts and mitochondria were found, indicating that both organelle types sorted out independently.  相似文献   

14.
Summary This paper describes the analysis of the elimination of potato DNA from potato-tomato somatic cell hybrids. The hybrids were obtained by fusion of protoplasts of a cytoplasmic albino tomato genotype with leaf mesophyll protoplasts of a potato genotype carrying the -glucuronidase (GUS) gene of Escherichia coli. The potato protoplasts were either isolated from unirradiated plants or from plants irradiated with 50 or 500 Gy of -rays. Green calli were selected as putative fusion products. The hybridity of these calli was confirmed by isoenzyme analysis. All of the green calli tested contained a potato-specific chloroplast DNA restriction fragment, and most of the calli analysed were positive for -glucuronidase activity. In 72 of the hybrid calli we determined the percentage of potato nuclear DNA using species-specific probes. All of the tested green calli contained a considerable amount of potato genomic DNA, irrespective of the dose of irradiation of the potato parent. The limited degree of potato DNA elimination and the absence of true cybrids are discussed.  相似文献   

15.
The ‘donor–recipient’ fusion method was usedto investigate the intraspecific transfer of organelles andorganelle-encoded traits from donor to recipient Nicotiana speciesunder conditions which were selective for chloroplast transfer.An alloplasmic male sterile line of N. tabacum carrying thecytoplasm of N. bigelovii as the recipient and N. tabacum SR-1,a mutant with maternallyinherited streptomycin resistance, asthe cytoplasm donor were used. Organelle composition of 13 cybridplants was investigated by analysis of tentoxin and streptomycinsensitivities, chloroplast and mitochondrial DNA restrictionpatterns, and alloplasmic male sterility Chloroplast DNA analysisand the tentoxin test both showed that all 13 cybrid plantspossessed chloroplasts from the N. tabacum, SR-1 parent only.Analysis of mitochondrial DNA from second generation plantsderived from 11 of the original cybrid plants indicated verylittle heterogeneity with nine of the plants expressing pureparental-type mtDNAs. Although conditions were selective fordonor-type chloroplast transfer, the results indicate the generationof novel cytoplasmic combinations; pure donor chloroplasts incombination with either pure or recombinant-type recipient mitochondria.Our results support previous findings that the ‘donor-recipient’fusion method can be used to restore fertility of CMS linesof Nicotiana Key words: Nicotiana, cytoplasmic male sterility, chloroplast DNA, mitochondrial DNA, somatic hybridization  相似文献   

16.
Summary Sexual and somatic hybrid plants have been produced between Sinapis alba L. (white mustard) and Brassica napus L. (oil-seed rape), with the aim to transfer resistance to the beet cyst nematode Heterodera schachtii Schm. (BCN) from white mustard into the oil-seed rape gene pool. Only crosses between diploid accessions of S. alba (2n = 24, Sa1Sa1) as the pistillate parent and several B. napus accessions (2n = 38, AACC) yielded hybrid plants with 31 chromosomes. Crosses between tetraploid accessions of S. alba (2n = 48, Sa1Sa1Sa1Sa1) and B. napus were unsuccessful. Somatic hybrid plants were also obtained between a diploid accession of S. alba and B. napus. These hybrids were mitotically unstable, the number of chromosomes ranging from 56 to more than 90. Analysis of total DNA using a pea rDNA probe confirmed the hybrid nature of the sexual hybrids, whereas for the somatic hybrids a pattern identical to that of B. napus was obtained. Using chloroplast (cp) and mitochondrial (mt) DNA sequences, we found that all of the sexual F1 hybrids and somatic hybrids contained cpDNA and mtDNA of the S. alba parent. No recombinant mtDNA or cpDNA pattern was observed. Three BC1 plants were obtained when sexual hybrids were back-crossed with B. napus. Backcrossing of somatic hybrids with B. napus was not successful. Three sexual hybrids and one BC1 plant, the latter obtained from a cross between a sexual hybrid and B. napus, were found to show a high level of BCN resistance. The level of BCN resistance of the somatic hybrids was in general high, but varied between cuttings from the same plant. Results from cytological studies of chromosome association at meiotic metaphase I in the sexual hybrids suggest partial homology between chromosomes of the AC and Sa1 genomes and thus their potential for gene exchange.  相似文献   

17.
Organelle DNA inheritance of four 10-year-old somatic hybrid trees between Valencia orange [Citrus sinensis (L.) Osbeck] and Meiwa kumquat (Fortunella crassifolia Swingle) was analyzed by cleaved amplified polymorphic sequence (CAPS) and restriction fragment length polymorphisms (RFLPs). Five chloroplast (cp) and three mitochondrial (mt) universal primer pairs were amplified, but no polymorphisms were detected. When the polymerase chain reaction products were digested by 15 restriction enzymes, four polymorphic cpDNA-CAPS and two mtDNA-CAPS markers were found. Both the cpDNA and mtDNA in the somatic hybrids were derived from Valencia orange (the embryogenic suspension parent). Genomic DNA of the somatic hybrids and corresponding parents was digested by five restriction endonucleases and hybridized with one chloroplast probe (RbcL- RbcL) and nine mitochondrial probes (coxI, coxII, c oxIII, c ob, atpA, tyr, proI, atp6 and atp9). The results indicated that three hybrid plants shared one strong cpDNA band with both parents and that the remaining one plant had two additional novel bands besides the shared band, while their mtDNA was identical to that of Valencia orange plus non-parental bands. When data on the mtDNA banding patterns were combined with observations on phenotypic performance in the field, it was found that the more complex mtDNA banding pattern coincided with increased vigor of the plant. The stability of the organelle genomes was studied by extracting the genomic DNA of one hybrid plant at monthly intervals for 1 year and then analyzing it using RFLPs. Before the dieback of the shoots, two fragments of the mtDNA were lost while the cpDNAs remained stable. Ploidy analysis by flow cytometry showed that all of the hybrids were stable tetraploids. Four simple sequence repeat primer pairs were applied to detect microsatellite alleles of the four hybrid plants, both parents and the 12 DNA samples from one plant. The results showed that all hybrids had biparental bands uniformly, which indicated that they had the same nuclear background. These results suggest that the mtDNA pattern is correlated with the phenotypic abnormality of Valencia and kumquat somatic hybrid plants and that nuclear-cytoplasm incompatibility may be the cause of dieback.  相似文献   

18.
Organelle inheritance in intergeneric hybrids of Festuca pratensis and Lolium perenne was investigated by restriction enzyme and Southern blot analyses of chloroplast DNA (cpDNA) and mitochondrial DNA (mtDNA). All F1 hybrids exhibited maternal inheritance of both cpDNA and mtDNA. However, examination of backcross hybrids, obtained by backcrossing the intergeneric F1 hybrids to L. Perenne, indicated that both uniparental maternal organelle inheritance and uniparental paternal organelle inheritance can occur in different backcross hybrids.  相似文献   

19.
In recent years, a large number of reports have been published on the recovery of somatic hybrids in the genusLycopersicon and their potential use as a tool in plant breeding programs. Somatic hybridization as a way of enabling the incompatibility barriers which exist within the genusLycopersicon to be bypassed has attracted great interest. WildLycopersicon species harbor numerous interesting agronomic characteristics, which could be transferred to tomato by somatic hybridization. In particular, the production of asymmetric hybrids is explored as an approach to obtain the transfer of only a part of the nuclear genome of wildLycopersicon species. Considerable information is available on the fate of chloroplasts and mitochondria in fusion products inLycopersicon, and unfortunately, cybridization (transfer of chloroplasts and/or mitochondria) seems often difficult to achieve.  相似文献   

20.
The objective was to identify spontaneous hybrids between P. mugo and P. sylvestris using organelle DNA markers in sympatric zones at the sea‐side spit of Kursiu Nerija in western Lithuania. A field inventory was carried out over the entire Lithuanian part of the spit and 203 individuals morphologically intermediate between P. sylvestris and P. mugo were tested for their male parent with chloroplast DNA PCR‐RFLP markers and for their female parent with mitochondrial DNA PCR markers. Unfortunately, the mitochondrial DNA Nad7 marker failed to identify the female parent species in our study. However, the chloroplast DNA PCR‐RFLP marker revealed that out of 203 tested individuals only 23 had a paternity different than that indicated by morphology. Of these, 13 individuals were morphologically identified as P. sylvestris but possessed cpDNA of P. mugo (putative hybrids with P. sylvestris (female) ×P. mugo (male parent), and 10 individuals morphologically identified as P. mugo possessed cpDNA of P. sylvestris and may be hybrids with P. mugo (female) ×P. sylvestris (male parent). The remainder of the 177 individuals identified in the field inventory were were considered as pure species. In conclusion, our study indicates ongoing spontaneous hybridization between P. mugo and P. syvestris in Kursiu Nerija. Human impact via seed transfer on altered hybridization rates as well as evolutionary consequences are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号