首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protoplast fusion experiments between Lycopersicon esculentum or L. peruvianum and Nicotiana tabacum or N. plumbaginifolia were performed to investigate the possibility of producing symmetric and asymmetric somatic hybrids between these genera. These fusions, which involved 1.7 × 108 protoplasts, yielded 35 viable hybrid calli. Plant regeneration was successful with two calli. One of these regenerants flowered, but developed no fruits. Analysis of the nuclear DNA by means of dot blot hybridization with species-specific repetitive DNA probes combined with flow cytometry, revealed that the nuclei of most hybrid calli contained the same absolute amount of Nicotiana DNA as the Nicotiana parent or (much) less, whereas the amount of Lycopersicon DNA per nucleus was 2–5 times that of the parental genotype. Eighteen of the 34 hybrids analyzed possessed Lycopersicon chloroplast DNA (cpDNA), whereas the other 16 had DNA from Nicotiana chloroplasts. The cpDNA type was correlated with the nuclear DNA composition; hybrids with more than 2C Nicotiana nuclear DNA possessed Nicotiana chloroplasts, whereas hybrids with 2C or less Nicotiana nuclear DNA contained Lycopersicon chloroplasts. Mitochondrial DNA (mtDNA) composition was correlated with both nuclear DNA constitution and chloroplast type. Hybrids possessed only or mainly species-specific mtDNA fragments from the parent predominating in the nucleus and often providing the chloroplasts. The data are discussed in relation to somatic incompatibility which could explain the low frequency at which hybrids between Lycopersicon and Nicotiana species are obtained and the limited morphogenetic potential of such hybrids.  相似文献   

2.
Summary Somatic hybrid plants were recovered following fusion of leaf mesophyll protoplasts isolated from tomato (Lycopersicon esculentum) cultivar UC82 with protoplasts isolated from suspension cultured cells of L. chilense, LA 1959. Iodoacetate was used to select against the growth of unfused tomato protoplasts. Two somatic hybrids were recovered in a population of 16 regenerants. No tomato regenerants were recovered; all of the non-hybrid regenerants were L. chilense. The L. chilense protoplast regenerants were tetraploid. The hybrid nature of the plants was verified using species-specific restriction fragment length polymorphisms for the nuclear, chloroplast and mitochondrial genomes. The somatic hybrids had inherited the chloroplast DNA of the tomato parent, and portions of the mitochondrial DNA of the L. chilense parent. The somatic hybrids formed flowers and developed seedless fruit.  相似文献   

3.
Summary Asymmetric somatic hybrid plants were obtained by a modified PEG/DMSO fusion procedure between protoplasts derived from suspension cells of an interspecific tomato hybrid, Lycopersicon esculentum x L. pennellii, and mesophyll protoplasts of Solanum melongena, eggplant. The tomato hybrid was previously transformed with Agrobacterium tumefaciens and contained the kanamycin-resistance marker gene. Prior to fusion, the donor protoplasts of the tomato hybrid were gamma irradiated at 9.0 krad. Thus, non-division of irradiated tomato hybrid protoplasts coupled with kanamycin sensitivity of eggplant enabled selection of somatic cell hybrids. Forty-nine calli selected post-fusion regenerated leaf-like structures in the presence of 50 mg/l kanamycin. However, only four of the 49 calli regenerated intact shoots which rooted in the presence of 50 mg/l kanamycin and were later transferred to the greenhouse. Analysis of phosphoglucoisomerase and peroxidase isozymes, and Southern hybridization with a nuclear-specific pea 45 S ribosomal RNA gene confirmed somatic hybrid status. Cytology revealed that the four hybrid plants had chromosome numbers of 45, 60, 42 and 57, respectively; they were all sterile.  相似文献   

4.
Summary Somatic hybrid plants have been regenerated following polyethylene glycol mediated fusion of leaf mesophyll protoplasts from tomato and protoplasts from Lycopersicon pennellii callus. Three different cultivars of tomato were used as sources of protoplasts: Early Girl, Manapal, and UC82B. Fusions were performed between protoplasts of these tomato cultivars and protoplasts of L. pennellii, and between protoplasts of the cultivars and protoplasts of L. pennellii that had been exposed to 3 or 6 krads of gamma radiation. Somatic hybrid plants were identified on the basis of heterozygous isozyme banding patterns, and leaf and flower morphology. Somatic hybrid plants were regenerated following fusion of tomato protoplasts with either untreated or irradiated L. pennellii protoplasts. All were heterozygous for isozyme loci on five different chromosomes. Regenerated somatic hybrids showed inheritance of either or both parental chloroplast genomes, but predominantly the L. pennellii mitochondrial genome. The regenerated somatic hybrid plants exhibited reduced fertility, less than 20% viable pollen. A total of 34 somatic hybrid calli were identified. Of these, 21 regenerated shoots, and 7 produced seed following manual pollinations.  相似文献   

5.
Summary Mesophyll protoplasts of tomato (Lycopersicon esculentum) and pepino (Solanum muricatum) were fused by using an electrofusion method and cultured in modified MS medium supplemented with naphthaleneacetic acid and kinetin, in which only pepino and somatic hybrid protoplasts could divide. Somatic hybrid plants showing intermediate characteristics in morphology were regenerated from the calli exhibiting vigorous growth in contrast with those of pepino. The hybrid nature of these plants was confirmed by cytological observation and biochemical analyses of phosphoglucomutase isozymes and the fraction-1-protein. The regenerated somatic hybrids grew to flowering stage and set fruits.  相似文献   

6.
Summary A single somatic hybrid callus clone was identified following the fusion of Lycopersicon esculentum protoplasts and Solanum rickii suspension culture protoplasts. The hybrid nature of the callus and the plants regenerating from it was determined by assaying phosphoglucomutase-2 isozyme expression. The chloroplast genome present in four somatic hybrid plants was characterized by probing digests of total DNA with nick translated L. esculentum chloroplast DNA(cpDNA). All four somatic hybrid plants had inherited S. rickii cpDNA. Two clones of plant mitochondrial DNA (mtDNA), soybean 18S and 5S rDNA and maize cytochrome oxidase subunit II were used to characterize the mtDNA present in total DNA digests of four somatic hybrid plants. In both cases, the somatic hybrid plants had inherited most but not all of the S. rickii specific fragments, but none of the L. esculentum specific fragments.  相似文献   

7.
8.
Highly asymmetric somatic hybrid plants were obtained by PEG/DMSO fusion of gamma-irradiated mesophyll protoplasts of the kanamycin-resistant (KmR+) interspecific hybrid Lycopersicon esculentum x L. pennellii (EP) with mesophyll protoplasts of Solanum melongena (eggplant, E). Elimination of the EP chromosomes was obtained by irradiating the donor genome with different doses of gamma rays (100, 250, 500, 750 and 1000 Gy). The selection of somatic hybrid calli was based on kanamycin resistance; EP and E protoplasts did not divide due to the irradiation treatment and sensitivity to kanamycin, respectively. KmR+ calli were recovered following all irradiation doses of donor EP protoplasts. The hybrid nature of the recovered calli was confirmed by PCR amplification of the NptII gene, RAPD patterns and Southern hybridizations using potato ribosomal DNA and pTHG2 probes. Ploidy levels of calli confirmed as hybrid were further analyzed by flow cytometry. Such analyses revealed that the vast majority of hybrid calli that did not regenerate shoots were 5–9n polyploids. The three asymmetric somatic hybrid plants obtained were regenerated only from callus with a ploidy level close to 4n, and such calli occurred only when the donor EP had been exposed to 100 Gy. The amount of DNA in somatic hybrid calli, from 100-Gy exposure, was found by dot blot hybridization with the species-specific probe, pTHG2, to be equivalent with 3.1–25.8% of the tomato genome. Thus, DNA contained in 3.8–13.2 average-size tomato chromosomes was present in these hybrid calli. The asymmetric somatic hybrid plants had the eggplant morphology and were regenerated from one hybrid callus that contained an amount of tomato DNA equivalent to 6.29 average-size tomato chromosomes.  相似文献   

9.
Protoplasts from a nitrate reductase-deficient mutant of Nicotiana tabacum L. were fused with protoplasts from a stamen-less, cytoplasmically malesterile cultivar of tobacco containing the cytoplasm from N. suaveolens Lehm. Plants were regenerated from the fused protoplasts and characterized with respect to stamen development, chromosome number, and chloroplast composition. Of 29 regenerated plants, stamen production was restored in 26 plants and pollen production in 22. One plant was male sterile and two plants have never flowered. Analysis of the electrophoretic mobility of ribulose-1,5-bisphosphate carboxylase (RuBPcase) showed that 19 of the plants contained RuBPcase of the N. suaveolens type, six plants contained enzyme of the N. tabacum type, and four plants contained both types. Analysis of resistance to tentoxin in seedlings from 20 of the plants demonstrated that 14 had N. suaveolens-type chloroplasts, three had N. tabacum type, and three contained both types. Many of the plants which produced stamens and pollen still contained chloroplasts of the N. suaveolens type. Thus, the trait of cytoplasmic male sterility in tobacco is not an expression of the type of chloroplast genetic material.  相似文献   

10.
Summary Five somatic hybrids between Brassica campestris and B. oleracea were obtained. Molecular, morphological and cytological information all suggest that the resynthesized B. napus plants were hybrids. All five plants were diploid (2n=38) and had mainly bivalents at meiosis. Seedset was low after selfing but normal after crossing with B. napus. Molecular proof of the hybrid nature of these plants was obtained by hybridization of a rDNA repeat to total DNA. Analysis of chloroplast DNA restriction patterns revealed that all hybrids had chloroplasts identical to the B. oleracea parent. The analysis of mitochondrial DNA indicated that three hybrids had restriction patterns identical to those of B. campestris, and the other two had restriction patterns similar to those of B. oleracea. The 11.3 kb plasmid present in mitochondria of the B. campestris parent was also found in mitochondria of all five hybrids. This suggests that the plasmid from a B. campestris type of mitochondria was transferred into mitochondria of a B. oleracea type.  相似文献   

11.
Summary The organization of the mitochondrial genome and the genotype of the chloroplast genome was characterized using restriction fragment length polymorphisms in a population (82 individuals) of symmetric and asymmetric somatic hybrids of tomato. The protoplast fusion products were regenerated following the fusion of leaf mesophyll protoplasts of Lycopersicon esculentum (tomato cv UC82) with suspension cell protoplasts of L. pennellii that had been irradiated with 5, 10, 15, 25, 50, or 100 kRads from a gamma source. The chloroplast genome in the somatic hybrids showed a random pattern of inheritance, i.e., either parental genome was present in equal numbers of regenerants, while in asymmetric somatic hybrids, the chloroplast genotype reflected the predominant nuclear genotype, i.e., tomato. The mitochondrial genome in the symmetric somatic hybrids showed a non-random pattern of inheritance, i.e., predominantly from the L. pennellii parent; asymmetric somatic hybrids had more tomato-specific mitochondrial sequences than symmetric somatic hybrids. The non-random inheritance of the chloroplast and mitochondrial DNA in these tomato protoplast fusion products appears to be influenced by the nuclear background of the regenerant.  相似文献   

12.
Summary Leaf mesophyll protoplasts of Lycopersicon esculentum (2n=2x=24) were fused with suspension culture-derived protoplasts of Solanum lycopersicoides (2n=2x=24) and intergeneric somatic hybrid plants were regenerated following selective conditions. A two phase selection system was based on the inability of S. lycopersicoides protoplasts to divide in culture in modified medium 8E and the partial inhibition of L. esculentum protoplasts by the PEG/DMSO fusion solution. At the p-calli stage, putative hybrids were visually selected based on their hybrid vigor and lime-green coloration in contrast to slower growing parental calli characterized by a watery, whitish-brown coloration. Early identification of the eight hybrid plants studied was facilitated by isozyme analysis of leaf tissue samples taken from plants in vitro at the rooting stage. Regenerated plants growing in planting medium were further verified for hybridity by 5 isozymes marking 7 loci on 5 chromosomes in tomato. These included Skdh-1 mapped to chromosome 1 of tomato, Pgm-2 on chromosome 4, Got-2 and Got-3 on chromosome 7, Got-4 on chromosome 8, and Pgi-1 and Pgdh-2 both on chromosome 12. Fraction I protein small subunits further confirmed the hybrid nature of the plants with bands of both parents expressed in all hybrids. The parental chloroplasts could not be differentiated by the isoelectric points of the large subunit. Seven of the eight somatic hybrids had a chromosome number ranging from the expected 2n=4x=48 to 2n=68. Mixoploid root-tip cells containing 48, 53, 54 or 55 chromosomes for two of the hybrids were also observed.Michigan Agricultural Experiment Station Journal Article No. 11736. Supported by Grant No. I-751-84R from BARD — The United States — Israel Binational Agricultural Research and Development Fund  相似文献   

13.
Intergeneric somatic hybridization between wheat (cv. Jinan 177) protoplasts that have 24-28 chromosomes and Haynaldia villosa protoplasts containing 11-14 chromosomes was carried out by the polyethylene glycol (PEG) method. A high frequency of hybrid calli and plants were obtained from the fusion products, as revealed by cytological and biochemical techniques and by PCR analysis of 5S rDNA spacer sequences. GISH (genomic in situ hybridization) analysis confirmed the presence of chromosomes from both parents in the hybrid clones and the common occurrence of translocations between them. The RFLP analysis of the organellar DNA using mitochondrion- and chloroplast-specific probes revealed that mitochondria from both parents existed in the cells of hybrid calli and their recombination, whereas chloroplasts segregated and recombined randomly. The gross morphology of hybrid plants resembled that of wheat, but the gross morphology of their ovaries and anthers were intermediate between those of the two parents. The relationship between hybrid plant regeneration and the balance of genetic materials in hybrid clones is discussed.  相似文献   

14.
Summary Asymmetric somatic hybrids were obtained between a chlorophyll-deficient mutant of Nicotiana sylvestris (V42) and a nitrate-reductase (NR)-deficient line of N. plumbaginifolia (cnx20 or Nia26), using each of the parents alternately as the irradiated donor. Irradiation doses applied ranged from 10 to 1,000 Gy of gamma-rays. Hybrid selection was based on complementation of NR deficiency with wild-type NR genes. To aid in the analysis of somatic hybrids, species-specific repetitive DNA sequences from N. plumbaginifolia (NPR9 and NPR18) were cloned. NPR18 is a dispersed repetitive sequence occupying about 0.4% of the N. plumbaginifolia genome. In turn, NPR9, which is part of a highly repetitive DNA sequence, occupies approximately 3% of the genome. The species-specific plant DNA repeats, together with cytological analysis data, were used to assess the relative amount of the N. plumbaginifolia genome in the somatic hybrids. In fusion experiments using irradiated N. plumbaginifolia, an increase in irradiation dose prior to fusion led to a decrease in N. plumbaginifolia nuclear DNA content per hybrid genome. For some hybrid lines, an increase in the quantity of repetitive sequences was detected. Thus, hybrid lines 1NV/21, 100NV/7, 100NV/ 9, and 100NV/10 (where N. plumbaginifolia was the irradiated donor) were characterized by amplification of NPR9. In the reverse combination (where N. sylvestris was the irradiated donor), an increase in the copy number of NPR18 was determined for hybrid clones 1VC/2, 1VC/3, 100VC/2 and oct100/7. Possible reasons for the amplification of the repeated sequences are discussed.  相似文献   

15.
Summary Several nuclear and cytoplasmic characters of the back-crossed progeny of a somatic hybrid between male sterile Nicotiana tabacum (N. debneyi cytoplasm) and N. glutinosa have been analysed. Progeny were obtained by repeated back-crossing of a somatic hybrid with pollen from either N. tabacum or N. glutinosa. Nuclear ribosomal RNA genes (rDNA) were found to be a reliable marker to determine the constitution of nuclear genomes in the progeny. The progeny obtained by back-crossing with N. tabacum pollen maintained uniformity in leaf morphology. On the other hand, variation in leaf morphology was observed in the second back-cross population obtained with N. glutinosa pollen. This may be due to a variable contribution of N. tabacum chromosomes. Segregation of rDNA was also found in individuals of the same back-crossed progeny, but was not related to the chromosome number. The stable inheritance of chloroplast DNA in the back-crossed generation was confirmed regardless of the type of pollen donor. Male sterility was consistently maintained throughout several generations, suggesting that the nuclear genome of either N. tabacum or N. glutinosa does not influence the expression of cytoplasmic male sterility.  相似文献   

16.
Summary In a previous study, six recombination sites have been confirmed in the chloroplast DNA (cpDNA) of pt14, a somatic hybrid of Nicotiana tabacum and Nicotiana plumbaginifolia. In the present study, physical mapping revealed six recombination sites in the 11.4-kb SalI fragment alone, only one of which has been previously identified. This fragment is located in the large unique region. We assume, therefore, that the pt14 cpDNA is a fine mosaic of the parental genomes with a recombination site about every 2 kb. A 748-bp region that comprised the intergenic region between ORF73 and ORF74B, and 460 bp of the petD intron have been sequenced. Parent-specific sequences in the pt14 DNA defined the regions within which recombination took place. The exact site of recombination events could not be determined because the parental sequences were identical between the polymorphic markers, and these sequences have been preserved in the pt14 line.  相似文献   

17.
UV-irradiated kanamycin-resistant Lycopersicon esculentum leaf protoplasts were fused with wild-type Nicotiana plumbaginifolia leaf protoplasts. Hybrid calli were recovered after selection in kanamycin-containing medium and subsequently regenerated. Cytological analysis of these regenerants showed that several (2–4) tomato chromosomes, or chromosome fragments, were present in addition to a polyploid Nicotiana genome complement. All lines tested had neomycin phosphotransferase (NPTII) activity and the presence of the kanamycin gene was shown by Southern blotting. In two cases a different hybridization profile for the kanamycin gene, compared to the tomato donor partner, was observed, suggesting the occurence of intergenomic recombination events. The hybrid nature of the regenerants was further confirmed by Southern-blotting experiments using either a ribosomal DNA sequence or a tomato-specific repeat as probes. The hybrids were partially fertile and some progeny could be obtained. Our results demonstrate that UV irradiation is a valuable alternative for asymmetric cell-hybridization experiments. Received: 3 August 1996 / Accepted: 23 August 1996  相似文献   

18.
Summary Asymmetric somatic hybrids of Lycopersicon esculentum and Lycopersicon peruvianum were analysed for the retention of genes and alleles specific for L. peruvianum. The hybrids were obtained by fusion of protoplasts from L. esculentum with those of L. peruvianum (the donor), the latter having been irradiated before fusion with 50, 300 or 1,000 Gy of gamma-rays. The retention of three different types of genes or alleles was analysed. (1) The gene coding for kanamycin resistance, which is dominant and had been introduced in most of the L. peruvianum donor plants by transformation. It was present at one locus in 16 L. peruvianum donor plants and at two loci in one donor plant. (2) The genes coding for acid phosphatase, locus Aps-1, and glutamate oxaloacetate transaminase (GOT); different alleles of these genes are co-dominant and were detected by isozyme analysis. (3) Eighteen single gene morphological markers for which most of the L. esculentum genotypes used were homozygous recessive. Kanamycin resistance from donor plants with one locus was retained in about 50% of the asymmetric 30H-hybrids (the donor was irradiated with 300 Gy). L. peruvianum specific alleles of Aps-1 and GOT were present in at least 70% of the hybrids; the retention of donor alleles was lower in 30H- than in 5H-hybrids (donor irradiated with 50 Gy). On average, 73% of the L. peruvianum-specific alleles (one or both) of the morphological markers were detected in the 30H-hybrids. Several of the L. esculentum genotypes used were homozygous recessive for two morphological markers on the same chromosome; in 43% of the 30H-hybrids derived from them, only one of these markers was complemented by the L. peruvianum allele. This is an indication of frequent breakage of the L. peruvianum chromosomes. Several hybrid calli regenerated genotypically different shoots. On the whole, this analyses confirms the conclusion drawn from the cytogenetic and morphological analysis of these asymmetric hybrids, namely that irradiation prior to fusion eliminates the L. peruvianum genome to only a limited extent.  相似文献   

19.
Summary Asymmetric somatic hybrids of Lycopersicon esculentum and Lycopersicon peruvianum were obtained by fusion of leaf protoplasts from both species after irradiation of protoplasts or leaf tissue of L. peruvianum with 50, 300, or 1,000 Gy of gamma-rays. These radiation doses were sufficient to abolish the growth of the L. peruvianum protoplasts. The hybrids were selected for their ability to regenerate plants; this regeneration capacity derived from L. peruvianum. All asymmetric hybrid plants were aneuploid. The ploidy level, the morphology, and the regeneration rate were analyzed in relation to the radiation dose applied to L. peruvianum. After a low dose (50 Gy), most hybrids had near-triploid chromosome numbers, whereas after a high dose (300 or 1,000 Gy), most hybrids had near-pentaploid numbers. The morphology of the asymmetric hybrids was intermediate between that of L. esculentum and symmetric somatic hybrids of both species (obtained without irradiation treatment), and approached the morphology of L. esculentum to a greater extent after a high dose of irradiation. The asymmetric hybrids regenerated more slowly than the symmetric hybrids and regeneration proceeded more slowly after a high dose than after a low dose of irradiation. The high-dose hybrids also grew more slowly, flowered less, and set fruits less than the low-dose hybrids. No seeds could be obtained from any asymmetric hybrid.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号