首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The interaction of 3,7-diamino-2,8-dimethyl-5-phenyl phenazinium chloride (Safranine T) with the aqueous as well as reverse micellar solution of a phospholipid 1,2-diacyl-sn-glycero-3-phosphocholine (Azolecithin), a major structural phospholipid in brain, comprising approx 15% of total lipid, primarily localized in grey matter have been studied by absorption and fluorescence spectroscopic studies. The results show the evidence of complex formation of the dye in the ground and in the excited state. The interaction of the dye with the lipid in reverse micellar state is more compared to that in liposomes. An attempt has been made to determine the polarity of the microenvironment of the dye in liposomes or reverse micelles from the spectral studies of the dye in different solvents of known polarity. The polarity functions of the phosphatidylcholine (PC) liposomes are slightly lower compared to that of PC reverse micelles.  相似文献   

2.
An absorption and fluorescence spectral and temporal studies on the solubilzation properties of adrenaline in micellar environment in sodium dodecyl sulfate (SDS) and in tetradodecyltrimethyl ammonium bromide (TTABr) has been carried out. Observed Stokes shifts have been correlated with polarity parameters which allowed an estimate of the dielectric constant of the adrenaline environment in SDS and TTABr micelles at 44 and 58, respectively. Experiments with methanol-water mixtures indicate that the hydrogen bonding formation with solvent and the hydrophilic nature of adrenaline influence its solubilization in micelles. Fluorescence and anisotropy decay analysis has shown that neutral adrenaline in SDS micelle is partitioned between aqueous phase (70%) and less polar, micellar phase (30%) and the interactions are limited to the Guy-Chapman layer without deeper penetration into micellar hydrophobic core.  相似文献   

3.
Ground state absorption and steady-state and time-resolved fluorescence measurements have been carried out to understand the host-guest interactions of p-diethylaminobenzonitrile (DEABN) and p-dimethylaminobenzonitrile (DMABN) dyes with alpha-cyclodextrin (alpha-CD) and beta-cyclodextrin (beta-CD) hosts. DEABN and DMABN dyes show both locally excited (LE) state and intramolecular charge transfer (ICT) state emissions in solution. The LE and ICT emissions of the dyes are seen to get modulated in the presence of alpha-CD and beta-CD hosts. The results indicate that the dyes form 1 : 1 inclusion complexes with both the hosts. Comparing the binding constants and the fluorescence characteristics of different dye x CD systems it is inferred that DEABN adopts a completely different orientation on complexation with alpha-CD than in the other cases of dye.CD systems. It is indicated that while in all other cases of dye x CD systems the N,N-dialkyl group of the dyes enters the host cavity leaving the C[triple bond, length as m-dash]N group projected out into the water phase, the DEABN dye enters the alpha-CD cavity (smallest CD) with its C[triple bond, length as m-dash]N group entering the host cavity. The differences in the orientation of the dye in the host cavities is understood to be determined by the requirement of maximum van der Waals contact of the encapsulated dye with the host cavity for maximum stability of the complex and the relative sizes of the substituents of the dye compared to the host cavities. From the observation that the binding constants for the present dye x CD systems are not that significantly high, it is inferred that the hydrophobic interaction mainly govern the inclusion complex formation in the present systems.  相似文献   

4.
Zhang Y  Du H  Tang Y  Xu G  Yan W 《Biophysical chemistry》2007,128(2-3):197-203
The interactions of three cyanine dyes, which exhibit different meso substituent in polymethine chain, with human serum albumin (HSA) have been investigated by the means of absorption, fluorescence and circular dichroism (CD) spectra. In phosphate buffer solution (PBS), the mentioned dyes exist not as isolated monomers but rather in the formation of J-aggregation. In the presence of HSA, the absorption and fluorescence emission spectra indicated that the J-aggregation was decomposed to monomer because of the strong affinity between dye molecules and HSA. Besides the association of cyanine dyes with HSA, binding to HSA gave rise to the J-aggregation CD signals. The meso substituent in the polymethine plays an important role in the interaction of HSA and the J-aggregation. Spectral studies showed that the dye bound with HSA in a 1:1 formation. The apparent constant (K(a)) value was roughly identified by analysis of the corresponding fluorescence data at various HSA concentrations. The higher affinity of the molecule with meso phenyl towards HSA with respect to molecules with meso ethyl or methyl can be attributed to the arrangement of molecules in J-aggregation and the hydrophobic force between the molecules and HSA.  相似文献   

5.
We review our recent low-temperature absorption, circular dichroism (CD), magnetic CD (MCD), fluorescence and laser-selective measurements of oxygen-evolving Photosystem II (PSII) core complexes and their constituent CP 4 3, CP 47 and D1/D2/cytb(559) sub-assemblies. Quantitative comparisons reveal that neither absorption nor fluorescence spectra of core complexes are simple additive combinations of the spectra of the sub-assemblies. The absorption spectrum of the D1/D2/cytb(559) component embedded within the core complex appears significantly better structured and red-shifted compared to that of the isolated sub-assembly. A characteristic MCD reduction or 'deficit' is a useful signature for the central chlorins in the reaction centre. We note a congruence of the MCD deficit spectra of the isolated D1/D2/cytb(559) sub-assemblies to their laser-induced transient bleaches associated with P 680. A comparison of spectra of core complexes prepared from different organisms helps distinguish features due to inner light-harvesting assemblies and the central reaction-centre chlorins. Electrochromic spectral shifts in core complexes that occur following low-temperature illumination of active core complexes arise from efficient charge separation and subsequent plastoquinone anion (Q(A)(-)) formation. Such measurements allow determinations of both charge-separation efficiencies and spectral characteristics of the primary acceptor, Pheo(D1). Efficient charge separation occurs with excitation wavelengths as long as 700 nm despite the illuminations being performed at 1.7 K and with an extremely low level of incident power density. A weak, homogeneously broadened, charge-separating state of PSII lies obscured beneath the CP 47 state centered at 690 nm. We present new data in the 690-760 nm region, clearly identifying a band extending to 730 nm. Active core complexes show remarkably strong persistent spectral hole-burning activity in spectral regions attributable to CP 43 and CP 47. Measurements of homogeneous hole-widths have established that, at low temperatures, excitation transfer from these inner light-harvesting assemblies to the reaction centre occurs with approximately 70-270 ps(-1) rates, when the quinone acceptor is reduced. The rate is slower for lower-energy sub-populations of an inhomogeneously broadened antenna (trap) pigment. The complex low-temperature fluorescence behaviour seen in PSII is explicable in terms of slow excitation transfer from traps to the weak low-energy charge-separating state and transfer to the more intense reaction-centre excitations near 685 nm. The nature and origin of the charge-separating state in oxygen-evolving PSII preparations is briefly discussed.  相似文献   

6.
Two new difluoroboron β‐carbonyl cyclic ketonate complexes C2B and DC2B were investigated using several spectroscopic methods. Relative to the absorption spectra, the fluorescence spectra were more affected by the polarity of the solvent. Also, compound C2B showed a more pronounced Stokes’ shift after solvent polarity increased. Transient absorption measurements then demonstrated the relaxation behaviour of the excited state compound molecule. The kinetic results showed that the excited state C2B in tetrahydrofuran (THF) can return from the intramolecular charge‐transfer (ICT) state and the initial excited state to the ground state. The kinetic relaxation pathway after THF was replaced by dimethyl sulfoxide became single. When the carbazole unit was introduced, DC2B also exhibited an ICT state but there was no significant difference in the excited state relaxation path after solvent polarity was changed. The results indicated that C2B is more susceptible to solvent polarity regulation. The global fit results revealed that an increase in the solvent polarity prolonged the lifetime of the ICT state of compound C2B and had the opposite effect on compound DC2B. These results provide guidance for understanding the relationship between solvent polarity and the designing and synthesizing advanced compound materials.  相似文献   

7.
The distribution of indole and tryptophan derivatives between sodium dodecyl sulfate (SDS) micellar and aqueous phases was analyzed using conventional methods of ultraviolet (UV) absorption spectroscopy and measurement of fluorescence quenching by succinimide. On the assumption of a simple pseudo-phase equilibrium between both phases the distribution coefficient was easily obtained by the measurement of the ratioR pv of the absorbance intensity in the peak to that in the valley of the UV spectra or the fluorescence quenching constant Ksv. The possibilities and limitations of utilizing the ratio of the collisional quenching constant estimating from theK sv value in the micellar phase to that in the aqueous phase for a measure of the polarity of the microenvironment around the tryptophan derivatives in the SDS micelle is discussed in comparison with theR pv values for the UV spectra. The indole ring in the derivatives in the SDS micelle is localized near or on the micelle-water interface with its imino group directed toward the aqueous phase. Thus it can serve as a feasible model for interpreting the distribution coefficients andR pv values obtained for the various indole and tryptophan derivatives.Abbreviations UV ultraviolet - SDS sodium dodecyl sulfate - ATEE N-acetyl-l-tryptophan ethyl ester - ATA N-acetyl-l-tryptophan-amide - CMC critical micelle concentration  相似文献   

8.
B. Böddi  Katalin Kovács  F. Láng 《BBA》1983,722(2):320-326
Protochlorophyll (PChl) forms were performed in Triton X-100 detergent micelles. The concentration of Triton X-100 was 7·10?4 M (above the critical micellar concentration); the concentration of PChl varied between 1.6·10?5 and 1.8·10?4 M. Absorption, fluorescence and circular dichroism (CD) spectra were registered. The absorption spectra were resolved into Gaussian components by computer analysis. PChl forms with absorption bands at 632–634, 638, 652–654, 663–664, 668 and 676 nm and with fluorescence emission bands at 634–636, 640–644, 652–655, 677–678, 686 and 694–696 nm were observed in micellar solutions of different PChl concentrations. The CD spectra showed a strong dependence on the concentration of PChl: positive CD signals or positive Cotton effects were observed in the vicinity of 650 nm. The intensity of these signals increased in parallel with increasing concentration of PChl. No CD signals were found in the region of the longer wavelength absorption bands. These data show that the PChl exists in many different forms in this system, and the spectroscopic properties of these forms are determined by different molecular interactions viz., interactions of PChl with Triton X-100 or water molecules and/or by the aggregation of PChl.  相似文献   

9.
Two low molecular mass proteins (13 kDa which inhibits Na+,K(+)-ATPase and 12 kDa which modulates Ca2+, Mg(2+)- and Ca(2+)-ATPases), purified from rat brain cytosol form complexes with chlorpromazine (CPZ) on incubation. The conformational characteristics of the proteins and their complex have been studied by comparing the fluorescence and CD spectra. The tryptophan fluorescence data show that the inhibitor-CPZ complex does not quench the fluorescence of NA+,K(+)-ATPase significantly. CD spectra indicate that the structure of the inhibitor is changed on formation of the complex. The inhibitor-CPZ complex significantly changes the conformation of Na+,K(+)-ATPase. The regulator protein-CPZ complex does not have any appreciable effect on Ca2+, Mg(2+)- and Ca(2+)-ATPase activities. The Trp-fluorescence of Ca2+,Mg(2+)- and Ca(2+)-ATPase are not significantly affected in presence of the complex. CD spectra indicate that the structure of the regulator is abruptly affected on formation of the complex. The conformations of Ca2+,Mg(2+)- and Ca(2+)-ATPases are found to be altered in presence of the complex.  相似文献   

10.
Yang Z  Su X  Wu F  Gong Y  Kuang T 《Biophysical chemistry》2005,115(1):19-27
Phosphatidylglycerol (PG) is the only anionic phospholipid in photosynthetic membrane. In this study, photosystem I (PSI) particles obtained from plant spinach were reconstituted into PG liposomes at a relatively high concentration. The results from visible absorption, fluorescence emission, and circular dichroism (CD) spectra reveal an existence of the interactions of PSI with PG. PG effect causes blue-shift and intensity decrease of Chl a peak bands in the absorption and 77 K fluorescence emission. The visible CD spectra indicate that the excitonic interactions for Chl a and Chl b molecules were enhanced upon reconstitution. Furthermore, more or less blue- or red-shift of the peaks characterized by Chl a, Chl b, and carotenoid molecules are also occurred. Simultaneously, an increase in alpha-helix and a decrease particularly in the disordered conformations of protein secondary structures are observed. In addition, the same effect also leads to somewhat more tryptophan (Trp) residues exposed to the polar environment. These results demonstrate that some alteration of molecular organization occurs within both the external antenna LHCI and PSI core complex after PSI reconstitution.  相似文献   

11.
The interaction between [Pd(But-dtc)(phen)]NO3 (where But-dtc = butyldithiocarbamate and phen = 1,10-phenanthroline) with HSA (Human Serum Albumin) was investigated by applying fluorescence, UV–Vis and circular dichroism techniques under physiological conditions. The results of fluorescence spectra indicated that the Pd(II) complex could effectively quench the fluorescence intensity of HSA molecules via static mechanism. The number of binding sites and binding constant of HSA–Pd(II) complex were calculated. Analysis of absorption titration data on the interaction between Pd(II) complex and HSA revealed the formation of HSA–Pd(II) complex with high-binding affinity. Thermodynamic parameters indicated that hydrophobic forces play a major role in this interaction. Furthermore, CD measurements were taken to explore changes in HSA secondary structure induced by the Pd(II) complex.  相似文献   

12.
The absorption and fluorescence spectra of 3,3'-dioctadecyloxacarbocyanine [DiOC18(3)], a cationic oxacarbocyanine dye have been studied in aqueous and nonaqueous media containing egg phosphatidylcholine (PC) as well as in different solvents of diverse nature. The results show the evidence of complex formation of the dye in the ground and in the excited states with PC. The excited state interaction of the dye with PC suggests the electron transfer from PC to dye and this is supported by photovoltage generation in a photoelectrochemical cell consisting of dye and PC in aqueous medium. An attempt has been made to determine the polarity of the microenvironment of the dye in PC liposome or PC reverse micelle from the spectral studies of the dye in different solvents of known polarity.  相似文献   

13.
We have carried out a kinetic analysis of the conformational changes that myoglobin (Mb) undergoes in the presence of the anionic surfactant sodium dodecyl sulfate (SDS). The time-resolved results have been combined with steady-state circular dichroism (CD) and resonance Raman (RR) spectroscopy. Time-resolved absorption spectra indicate that SDS induces changes in the heme coordination with the formation of three different Mb species, depending on SDS concentration. The formation of the Mb/SDS complex involves three or four phases, depending on surfactant concentration. The kinetic data are analyzed assuming two modes of interaction according to whether SDS is monomeric or micellar. The two pathways are separated but interconnected through free Mb. At the lowest concentrations a six-coordinated, low-spin form dominates. Two distinct five-coordinated species are formed at higher SDS concentrations: one is a protein-free heme and the other reequilibrates slowly with the six-coordinated, low-spin form. The resulting complexes have been characterized by CD and RR. In addition, CD spectra show that the local changes in the heme environment are coupled to changes in the protein structure.  相似文献   

14.
Complexation between the primary carrier of ligands in blood plasma, human serum transferrin (Tf), and a cyanine dye, 3,3′‐di(3‐sulfopropyl)‐4,5,4′,5′‐dibenzo‐9‐phenyl‐thiacarbocyanine‐triethylam monium salt (PTC) was investigated using fluorescence spectra, UV/Vis absorption spectra, synchronous fluorescence spectra, circular dichroism (CD) and molecular dynamic docking. The experimental results demonstrate that the formation of PTC–Tf complex is stabilized by van der Waal's interactions and hydrogen bonds, and the binding constants were found to be 8.55 × 106, 8.19 × 106 and 1.75 × 104 M?1. Moreover, fluorescence experiments prove that the operational mechanism for the fluorescence quenching is static quenching and non‐radiative energy transfer. Structural investigation of the PTC–Tf complexes via synchronous fluorescence spectra and CD showed that the structure of Tf became more stable with a major increase in the α‐helix content and increased polarity around the tryptophan residues after PTC binding. In addition, molecular modeling highlights the residues located in the N‐lobe, which retain high affinity for PTC. The mode of action of the PTC–Tf complex is illustrated by these results, and may provide an effective pathway for the transport and targeted delivery of antitumor agents. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Fluorescent quantum dots (QDs) have been widely applied in biological and biomedical areas, but relatively little is known about the interaction of QDs with some natural enzymes. Herein, the interactions between 3-mercaptopropionic acid-capped CdTe QDs (MPA-QDs) and papain were systematically investigated by UV–Vis absorption spectra, fluorescence spectra and circular dichroism (CD) spectra under the physiological conditions. The fluorescence spectra results indicated that MPA-QDs quenched the fluorescence intensity of papain. The modified Stern–Volmer quenching constant K a at different temperatures and the corresponding thermodynamic parameters ΔH, ΔG and ΔS were also calculated. The binding of MPA-QDs and papain is a result of the formation of QDs-papain complex and the electrostatic interactions play a major role in stabilizing the complex. The CD technique was further used to analyze the conformational changes of papain induced by MPA-QDs and the results indicated that the biological activity of papain was affected by MPA-QDs dramatically.  相似文献   

16.
To study flavin-protein and flavoprotein-ligand interaction, the absorption, CD and MCD spectra of riboflavin, FAD, roseoflavin, the complexes of riboflavin and roseoflavin with riboflavin binding protein(RBP),D-amino acid oxidase(D-AO) and its complexes with ligands were observed in the spectral region of 310-600 nm and the binding properties of D-AO with di-substituted benzoate derivatives and of RBP with roseoflavin were also measured. The dimer of D-amino acid oxidase has a higher affinity for di-substituted benzoate derivatives than the monomer. The change in the absorption of FAD in D-AO caused by the binding of the first ligand to the dimer, which can bind two ligands, was similar to that caused by the binding of the second ligand. Roseoflavin could bind to RBP in a 1 : 1 ratio and the dissociation constant was 3.8 x 10(-8)M. The protein fluorescence of RBP was quenched by about 86% due to complex formation with roseoflavin. The MCD spectra showed similar patterns for all molecular complexes of riboflavin and FAD, with two negative extrema of ellipticity which probably correspond to the Faraday B-term, but the Faraday A-term could not be observed, suggesting that there was no degeneracy in the excited state of flavins. It is also suggested, based on a comparison of the absorption, CD and MCD spectra, that the vibronic structure of flavin was modified differently by each flavin-protein or flavoprotein-ligand interaction. Comparison of the absorption, CD and MCD spectra(310-600 nm) for roseoflavin and the roseoflavin-RBP complex revealed that there were five spectral components around 320, 340, 400, 500, and 550 nm in roseoflavin.  相似文献   

17.
Direct evidence of carotenoid/cyclodextrin inclusion complex formation was obtained for the water-soluble sodium salt of beta-caroten-8'-oic acid (IV) by using 1H NMR and UV-Vis absorption spectroscopy. It was shown that this carotenoid forms a stable 1:1 inclusion complex with beta-cyclodextrin (stability constant K11 approximately 1500 M(-1)). All other carotenoids under study in the presence of cyclodextrins (CDs) form large aggregates in aqueous solution as demonstrated by very broad absorption spectra and considerable change in color. By using the EPR spin trapping technique, the scavenging ability of IV toward OOH radicals was compared in DMSO and in the aqueous CD solution. A considerable decrease in PBN/OOH spin adduct yield was detected in the presence of uncomplexed IV because of a competing reaction of the carotenoid with OOH radical. No such decrease occurred in the presence of the IV/CD complex. Moreover, a small increase in spin adduct yield (pro-oxidant effect) is most likely due to the reaction of the carotenoid with Fe3+ to regenerate Fe2+, which in turn regenerates the OOH radical. Our data show that CD protects the carotenoid from reactive oxygen species. On the other hand, complexation with CD results in considerable decrease in antioxidant ability of the carotenoid.  相似文献   

18.
We report the results of investigation on the spectroscopic properties of a new fluorescent lipophylic probe. The fluorophore o-aminobenzoic acid was covalently bound to the acyl chain hexadecylamine, producing the compound 2-amino-N-hexadecyl-benzamide. The behavior of the probe was dependent on the polarity of the medium: absorption and emission spectral position, quantum yield and lifetime decay indicate distinct behavior in water compared to ethanol and cyclohexane. The probe dissolves in the organic solvents, as indicated by the very low value of steady state fluorescence anisotropy and the short rotational correlation times obtained from fluorescence anisotropy decay measurements. On the other hand, the probe has low solubility in water, leading to the formation of aggregates in aqueous medium. The complex absorption spectrum in water was interpreted as originating from different forms of aggregation, as deduced from the wavelength dependence of anisotropy parameters. The probe interacts with surfactants in pre-micellar and micellar forms, as observed in experiments in the presence of sodium n-dodecylsulphate (SDS), n-cetyltrimethylammonium bromide (CTAB); 3-(dodecyl-dimethylammonium) propane-1-sulphonate (DPS) and 3-(hexadecyl-dimethylammonium) propane-1-sulphonate (HPS), and with vesicles of the phospholipid dimiristoyl-phosphatidylcholine (DMPC). The results demonstrate that AHBA is able to monitor properties like surface electric potential and phase transition of micelles and vesicles.  相似文献   

19.
Zhao X  Shang Y  Hu J  Liu H  Hu Y 《Biophysical chemistry》2008,138(3):144-149
The interaction between DNA and cationic gemini surfactant trimethylene-1, 3-bis (dodecyldimethylammonium bromide) (12-3-12) has been investigated by the measurements of fluorescence, surface tension, UV spectrum and circular dichroism (CD). Micelle-like structure of 12-3-12 induced by DNA appears at critical aggregation concentration (CAC), which is much lower than critical micelle concentration (CMC) of 12-3-12 in DNA-free solution. CAC is independent of DNA concentration, but the CMC of the mixed solutions of DNA and 12-3-12(CMC(mix)) increases with the increasing of DNA concentration. The surface tensions of the mixed system are higher than that of the pure surfactant solution, much different from the so-called synergistic lowering of the surface tension for other polymer-surfactant systems. Phase separation occurs after the neutralization point and the precipitate redissolves with superfluous 12-3-12. Cationic surfactant 12-3-12 can exclude ethidium bromide (EB) from the DNA/EB complex, and this process does not depend on the DNA concentration but on the charge ratio of 12-3-12 to DNA. The binding constant of EB to DNA decreases sharply at the charge ratio from 0.5 to 1.0. Circular dichroism (CD) spectra show that DNA undergoes a conformational transition from native B-form to chiral psi-phase with increasing of 12-3-12.  相似文献   

20.
The charge-transfer complexes of a poly(L -tryptophan) sequence with imidazolium hydrochloride and poly(L -histidine hydrochloride) have been investigated in 2,2,2-trifluoroethanol by ultraviolet (uv), circular dichroism (CD), and fluorescence techniques. Both complexes exhibit absorption maxima centered at around 275 nm, whereas hypochromism with respect to the combined spectra of the constituents can be observed below 250 nm. All complexes show optical activity in the near uv and in the peptide absorption region, which is discussed in terms of the conformational properties of the donor. A marked decrease of the fluorescence intensity of the L -tryptophan sequence is observed upon addition of imidazolium hydrochloride and poly(L -histidine hydrochloride). From the fluorescence data the formation constant of the charge-transfer complex between the L -tryptophan sequence and imidazolium ions is also evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号