首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1.
1.|Alkylation of the DNA of hamster cells with a variety of agents leads to a dose-dependent delay in the onset of DNA synthesis.  相似文献   

2.
The arginine repressor (ArgR) from Mycobacterium tuberculosis (Mtb) is a gene product encoded by the open reading frame Rv1657. It regulates the l-arginine concentration in cells by interacting with ARG boxes in the promoter regions of the arginine biosynthesis and catabolism operons. Here we present a 2.5-Å structure of MtbArgR in complex with a 16-bp DNA operator in the absence of arginine. A biological trimer of the protein-DNA complex is formed via the crystallographic 3-fold symmetry axis. The N-terminal domain of MtbArgR has a winged helix-turn-helix motif that binds to the major groove of the DNA. This structure shows that, in the absence of arginine, the ArgR trimer can bind three ARG box half-sites. It also reveals the structure of the whole MtbArgR molecule itself containing both N-terminal and C-terminal domains.  相似文献   

3.
We attempted to identify parasite DNA in the biliary stones of humans via PCR and DNA sequencing. Genomic DNA was isolated from each of 15 common bile duct (CBD) stones and 5 gallbladder (GB) stones. The patients who had the CBD stones suffered from cholangitis, and the patients with GB stones showed acute cholecystitis, respectively. The 28S and 18S rDNA genes were amplified successfully from 3 and/or 1 common bile duct stone samples, and then cloned and sequenced. The 28S and 18S rDNA sequences were highly conserved among isolates. Identity of the obtained 28S D1 rDNA with that of Clonorchis sinensis was higher than 97.6%, and identity of the 18S rDNA with that of other Ascarididae was 97.9%. Almost no intra-specific variations were detected in the 28S and 18S rDNA with the exception of a few nucleotide variations, i.e., substitution and deletion. These findings suggest that C. sinensis and Ascaris lumbricoides may be related with the biliary stone formation and development.  相似文献   

4.
5.
The temperature-sensitive DNA polymerase III (Pol III) encoded by the dnaE486 allele confers a spontaneous mutator activity in SOS-induced bacteria that is largely dependent upon DNA polymerase V (Pol V), encoded by umuD, C. This mutator activity is influenced by the defective proof-reading sub-unit of Pol III encoded by the dnaQ905 (mutD5) allele arguing that Pol V is most likely fixing mutations arising from mismatched primer termini produced by Pol III(486). The size of the dnaQ effect is, however, modest leaving open the possibility that Pol V may be responsible for some of the mutator effect by engaging in bursts of processive activity.  相似文献   

6.
The essential Nps1p/Sth1p is a catalytic subunit of the nucleosome-remodeling complex, RSC, of Saccharomyces cerevisiae that can alter nucleosome structure by using the energy of ATP hydrolysis. Besides the ATPase domain, Nps1p harbors the bromodomain, of which the function(s) have not yet been defined. We have isolated a temperature-sensitive mutant allele of NPS1, nps1-13, which has amino acid substitutions within the bromodomain. This mutation perturbed the interaction between the RSC components and enhanced the sensitivity of the cells to several DNA-damaging treatments at the permissive temperature. Reduced expression of NPS1 also caused DNA damage sensitivity. These results suggest the importance of the Nps1p bromodomain in RSC integrity and a model in which high amounts of RSC would be required for the cells to overcome DNA damage.  相似文献   

7.
The dut mutants of Escherichia coli fail to hydrolyze dUTP and thus incorporate uracil into their DNA, suffering from chromosomal fragmentation. The postulated mechanism for the double-strand DNA breaks is clustered uracil excision, which requires high density of DNA-uracils. However, we did not find enough uracil residues or excision nicks in the DNA of dut mutants to account for clustered uracil excision. Using a dut recBC(Ts) mutant of E.coli to inquire into the mechanism of uracil-triggered chromosomal fragmentation, we show that this fragmentation requires DNA replication and, in turn, inhibits replication of the chromosomal terminus. As a result, origin-containing sub-chromosomal fragments accumulate in dut recBC conditions, indicating preferential demise of replication bubbles. We propose that the basic mechanism of the uracil-triggered chromosomal fragmentation is replication fork collapse at uracil-excision nicks. Possible explanations for the low level terminus fragmentation are also considered.  相似文献   

8.
The aim of this work was to clarify taxonomy and examine evolutionary relationships within European Ceriporiopsis species using a combined analysis of the large subunit (nLSU) nuclear rRNA and small subunit (mtSSU) mitochondrial rRNA gene sequences. Data from the ITS region were applied to enhance the view of the phylogenetic relationships among different species. The studied samples grouped into four complex clades, suggesting that the genus Ceriporiopsis is polyphyletic. The generic type Ceriporiopsis gilvescens formed a separate group together with Ceriporiopsis guidella and Phlebia spp. in the phlebioid clade. In this clade, the closely related species Ceriporiopsis resinascens and Ceriporiopsis pseudogilvescens grouped together with Ceriporiopsis aneirina. C. resinascens and C. pseudogilvescens have identical LSU and SSU sequences but differ in ITS. Ceriporiopsis pannocincta also fell in the phlebioid clade, but showed closer proximity to Gloeoporus dichrous than to C. gilvescens or C. aneirinaC. pseudogilvescensC. resinascens group. Another clade was composed of a Ceriporiopsis balaenaeCeriporiopsis consobrina group and was found to be closely related to Antrodiella and Frantisekia, with the overall clade highly reminiscent of the residual polyporoid clade. The monotypic genus Pouzaroporia, erected in the past for Ceriporiopsis subrufa due to its remarkable morphological differences, also fell within the residual polyporoid clade. Ceriporiopsis subvermispora held an isolated position from the other species of the genus. Therefore, the previously proposed name Gelatoporia subvermispora has been adopted for this species. Physisporinus rivulosus appeared unrelated to two other European Physisporinus species. Moreover, Ceriporiopsis (=Skeletocutis) jelicii grouped in a separate clade, distinct from Ceriporiopsis species. Finally, the ITS data demonstrated the proximity of some Ceriporiopsis species (Ceriporiopsis portcrosensis and Ceriporiopsis subsphaerospora) to Skeletocutis amorpha.  相似文献   

9.
Wu J  Capp C  Feng L  Hsieh TS 《Developmental biology》2008,323(1):130-142
Members of the RecQ family play critical roles in maintaining genome integrity. Mutations in human RecQL4 cause a rare genetic disorder, Rothmund-Thomson syndrome. Transgenic mice experiments showed that the RecQ4 null mutant causes embryonic lethality. Although biochemical evidence suggests that the Xenopus RecQ4 is required for the initiation of DNA replication in the oocyte extract, its biological functions during development remain to be elucidated. We present here our results in establishing the use of Drosophila as a model system to probe RecQ4 functions. Immunofluorescence experiments monitoring the cellular distribution of RecQ4 demonstrated that RecQ4 expression peaks during S phase, and RecQ4 is expressed only in tissues active in DNA replication, but not in quiescent cells. We have isolated Drosophila RecQ4 hypomorphic mutants, recqEP and recq423, which specifically reduce chorion gene amplification of follicle cells by 4-5 fold, resulting in thin and fragile eggshells, and female sterility. Quantitative analysis on amplification defects over a 14-kb domain in chorion gene cluster suggests that RecQ4 may have a specific function at or near the origin of replication. A null allele recq419 causes a failure in cell proliferation, decrease in DNA replication, chromosomal fragmentation, and lethality at the stage of first instar larvae. The mosaic analysis indicates that cell clones with homozygous recq419 fail to proliferate. These results indicate that RecQ4 is essential for viability and fertility, and is required for most aspects of DNA replication during development.  相似文献   

10.
11.

Background

Lateral gene transfer (LGT) from bacterial Wolbachia endosymbionts has been detected in ~20% of arthropod and nematode genome sequencing projects. Many of these transfers are large and contain a substantial part of the Wolbachia genome.

Results

Here, we re-sequenced three D. ananassae genomes from Asia and the Pacific that contain large LGTs from Wolbachia. We find that multiple copies of the Wolbachia genome are transferred to the Drosophila nuclear genome in all three lines. In the D. ananassae line from Indonesia, the copies of Wolbachia DNA in the nuclear genome are nearly identical in size and sequence yielding an even coverage of mapped reads over the Wolbachia genome. In contrast, the D. ananassae lines from Hawaii and India show an uneven coverage of mapped reads over the Wolbachia genome suggesting that different parts of these LGTs are present in different copy numbers. In the Hawaii line, we find that this LGT is underrepresented in third instar larvae indicative of being heterochromatic. Fluorescence in situ hybridization of mitotic chromosomes confirms that the LGT in the Hawaii line is heterochromatic and represents ~20% of the sequence on chromosome 4 (dot chromosome, Muller element F).

Conclusions

This collection of related lines contain large lateral gene transfers composed of multiple Wolbachia genomes that constitute >2% of the D. ananassae genome (~5 Mbp) and partially explain the abnormally large size of chromosome 4 in D. ananassae.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1097) contains supplementary material, which is available to authorized users.  相似文献   

12.
N,N-Dimethylformamide (DMF) has been widely used in industries because of its extensive miscibility with water and solvents. Its health effects include hepatotoxicity and male reproductoxicity, possibly linked with mitochondrial DNA (mtDNA) alterations including mtDNA common deletion (DeltamtDNA(4977)) and mtDNA copy number. The relationship between DMF exposure and mtDNA alterations, however, has not been postulated yet. The purposes of this study were to investigate whether the DMF exposure is associated with DeltamtDNA(4977) and mtDNA copy number and to evaluate the DMF-derived mtDNA alterations are more associated with exposure to the airborne DMF concentrations or to the levels of two urinary DMF biomarkers of N-methylformamide (NMF) and N-acetyl-S-(N-methylcarbamoryl) cysteine(AMCC). Thirteen DMF-exposed workers and 13 age and seniority-matched control workers in a synthetic leather factory were monitored on their airborne DMF, NMF and AMCC in the urine as well as DeltamtDNA(4977) and mtDNA copy number in blood cells. We found that the frequencies of relative DeltamtDNA(4977) in DMF-exposed group were significantly higher than those in the control group. Moreover, elevation in the proportion of DeltamtDNA(4977) of individuals with high urine AMCC (U-AMCC) and airborne DMF levels were significantly higher than those without. We conclude that long-term exposure to DMF is highly associated with the alterations of mtDNA in urine and blood cells. The DeltamtDNA(4977) was more significantly related to repeated exposure to DMF and mtDNA copy number was more closely related to short-term DMF exposure. We also confirmed that U-AMCC is more appropriate to serve as a toxicity biomarker for DMF exposure than U-NMF. Further study with a larger number of subjects is warranted.  相似文献   

13.
We constructed a set of Escherichia coli strains containing deletions in genes encoding three SOS polymerases, and defective in MutS and DNA polymerase I (PolI) mismatch repair, and estimated the rate and specificity of spontaneous endogenous tonB(+)-->tonB- mutations. The rate and specificity of mutations in strains proficient or deficient in three SOS polymerases was compared and found that there was no contribution of SOS polymerases to the chromosomal tonB mutations. MutS-deficient strains displayed elevated spontaneous mutation rates, consisting of dominantly minus frameshifts and transitions. Minus frameshifts are dominated by warm spots at run-bases. Among 57 transitions (both G:C-->A:T and A:T-->G:C), 35 occurred at two hotspot sites. PolI-deficient strains possessed an increased rate of deletions and frameshifts, because of a deficiency in postreplicative deletion and frameshift mismatch corrections. Frameshifts in PolI-deficient strains occurred within the entire tonB gene at non-run and run sequences. MutS and PolI double deficiency indicated a synergistic increase in the rate of deletions, frameshifts and transitions. In this case, mutS-specific hotspots for frameshifts and transitions disappeared. The results suggested that, unlike the case previously known pertaining to postreplicative MutS mismatch repair for frameshifts and transitions and PolI mismatch repair for frameshifts and deletions, PolI can recognize and correct transition mismatches. Possible mechanisms for distinct MutS and PolI mismatch repair are discussed. A strain containing deficiencies in three SOS polymerases, MutS mismatch repair and PolI mismatch repair was also constructed. The spectrum of spontaneous mutations in this strain is considered to represent the spectrum of in vivo DNA polymerase III replication errors. The mutation rate of this strain was 219x10(-8), about a 100-fold increase relative to the wild-type strain. Uncorrected polymerase III replication errors were predominantly frameshifts and base substitutions followed by deletions.  相似文献   

14.
Identification of Erythroxylum taxa by AFLP DNA analysis   总被引:1,自引:0,他引:1  
Erythroxylum coca, indigenous to the Andean region of South America, is grown historically as a source of homeopathic medicine. However, in the last century, cultivation of E. coca and several closely-related species for the production of illicit cocaine has become a major global problem. Two subspecies, E. coca var. coca and E. coca var. ipadu, are almost indistinguishable phenotypically; a related cocaine-bearing species also has two subspecies (E. novogranatense var. novogranatense and E. novogranatense var. truxillense) that are phenotypically similar, but morphologically distinguishable. The purpose of this research was to discover unique AFLP DNA patterns ("genetic fingerprinting") that characterize the four taxa and then, if successful, to evaluate this approach for positive identification of the various species of coca. Of seven different AFLP primer pairs tested, a combination of five proved optimal in differentiating the four taxa as well as a non-cocaine-bearing species, E. aerolatum. This method of DNA fragment separation was selective, and faster, for coca identification, compared with analyses based on flavonoid chemotaxonomy. Using the 5-primer AFLP approach, 132 known and unknown coca leaf accessions were evaluated. Of these, 38 were collected in 1997-2001 from illicit coca fields in Colombia, and all were genetically differentiated from coca originating in Peru and Bolivia. Based on the DNA profiling, we believe that the Colombian coca now represents a hybridization of E. coca var. ipadu. Geographical profiling within Colombia also seems feasible as new coca production areas are developed or new types of coca are introduced within traditional growing areas.  相似文献   

15.
This is the first attempt to resolve the phylogenetic relationship between different syngens of Paramecium bursaria and to investigate at a molecular level the intraspecific differentiation of strains originating from very distant geographical locations. Herein we introduce a new collection of five P. bursaria syngens maintained at St Petersburg State University, as the international collection of syngens was lost in the 1960s. To analyze the degree of speciation within Paramecium bursaria, we examined 26 strains belonging to five different syngens from distant and geographically isolated localities using rDNA (ITS1-5.8S-ITS2-5'LSU) fragments, mitochondrial cytochrome c oxidase subunit I (COI), and H4 gene fragments. It was shown that P. bursaria strains of the same syngens cluster together in all three inferred molecular phylogenies. The genetic diversity among the studied P. bursaria strains based on rDNA sequences was rather low. The COI divergence of Paramecium bursaria was also definitely lower than that observed in the Paramecium aurelia complex. The nucleotide sequences of the H4 gene analyzed in the present study indicate the extent of genetic differences between the syngens of Paramecium bursaria. Our study demonstrates the diagnostic value of molecular markers, which are important tools in the identification of Paramecium bursaria syngens.  相似文献   

16.
Blastocystis hominis is an anaerobic parasite of the human intestinal tract belonging to the Stramenopile group. Using genome sequencing project data, we describe here the complete sequence of a 29,270-bp circular DNA molecule that presents mitochondrial features (such as oxidative phosphorylation complex I subunits) but lacks complexes III, IV and V. Transmission electron microscopy analyses reveal that this molecule, as well as mitochondrial (NADH:ubiquinone oxidoreductase subunit 7 (NAD7), beta-succinyl-CoA synthetase (beta-SCS)) and hydrogenosomal (pyruvate ferredoxin oxido-reductase (PFOR), iron-hydrogenase) proteins, are located within double-membrane surrounded-compartments known as mitochondria-like organelles (MLOs). As there is no evidence for hydrogen production by this organism, we suggest that MLOs are more likely anaerobic mitochondria.  相似文献   

17.
18.
In all eukaryotes, the ribosomal RNA genes are stably inherited redundant elements. In Drosophila melanogaster, the presence of a Ybb(-) chromosome in males, or the maternal presence of the Ribosomal exchange (Rex) element, induces magnification: a heritable increase of rDNA copy number. To date, several alternative classes of mechanisms have been proposed for magnification: in situ replication or extra-chromosomal replication, either of which might act on short or extended strings of rDNA units, or unequal sister chromatid exchange. To eliminate some of these hypotheses, none of which has been clearly proven, we examined molecular-variant composition and compared genetic maps of the rDNA in the bb(2) mutant and in some magnified bb(+) alleles. The genetic markers used are molecular-length variants of IGS sequences and of R1 and R2 mobile elements present in many 28S sequences. Direct comparison of PCR products does not reveal any particularly intensified electrophoretic bands in magnified alleles compared to the nonmagnified bb(2) allele. Hence, the increase of rDNA copy number is diluted among multiple variants. We can therefore reject mechanisms of magnification based on multiple rounds of replication of short strings. Moreover, we find no changes of marker order when pre- and postmagnification maps are compared. Thus, we can further restrict the possible mechanisms to two: replication in situ of an extended string of rDNA units or unequal exchange between sister chromatids.  相似文献   

19.
In mammals, the silencing step of the X-chromosome inactivation (XCI) process is initiated by the non-coding Xist RNA. Xist is known to be controlled by the non-coding Xite and Tsix loci, but the mechanisms by which Tsix and Xite regulate Xist are yet to be fully elucidated. Here, we examine the role of higher order chromatin structure across the 100-kb region of the mouse X-inactivation center (Xic) and map domains of specialized chromatin in vivo. By hypersensitive site mapping and chromosome conformation capture (3C), we identify two domains of higher order chromatin structure. Xite makes looping interactions with Tsix, while Xist makes contacts with Jpx/Enox, another non-coding gene not previously implicated in XCI. These regions interact in a developmentally-specific and sex-specific manner that is consistent with a regulatory role in XCI. We propose that dynamic changes in three-dimensional architecture leads to formation of separate chromatin hubs in Tsix and Xist that together regulate the initiation of X-chromosome inactivation.  相似文献   

20.
Vaccines contain residual DNA derived from the cells used to produce them. As part of our investigation to assess the risk of this cellular DNA, we are developing a quantitative in vivo assay to assess the oncogenicity of DNA. In an earlier study, we had generated expression plasmids for two oncogenes - human activated T24-H-ras and murine c-myc - and had shown that these two plasmids, pMSV-T24-H-ras and pMSV-c-myc, could act in concert to induce tumors in mice, although the efficiency was low. In this study, we took two approaches to increase the oncogenic efficiency: 1) both oncogene-expression cassettes were placed on the same plasmid; 2) transfection facilitators, which increase DNA uptake and expression in vitro, were tested. The dual-expression plasmid, pMSV-T24-H-ras/MSV-c-myc, is about 20-fold more efficient at tumor induction in newborn NIH Swiss mice than the separate expression plasmids, with tumors being induced with 1 µg of the dual-expression plasmid DNA. However, none of the transfection facilitators tested increased the efficiency of tumor induction. Based on these data, the dual-expression plasmid pMSV-T24-H-ras/MSV-c-myc will be used as the positive control to develop a sensitive and quantitative animal assay that can be used to assess the oncogenic activity of DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号