首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《朊病毒》2013,7(3):151-160
The formation and maintenance of prions in the yeast Saccharomyces cerevisiae is highly regulated by the cellular chaperone machinery. The most important player in this regulation is Hsp104p, which is required for the maintenance of all known prions.

The requirements for other chaperones, such as members of the Hsp40 or Hsp70 families, vary with each individual prion. [RNQ+] cells do not have a phenotype that is amenable to genetic screens to identify cellular factors important in prion propagation. Therefore, we used a chimeric construct that reports the [RNQ+] status of cells to perform a screen for mutants that are unable to maintain [RNQ+]. We found eight separate mutations in Hsp104p that caused [RNQ+] cells to become [rnq-]. These mutations also caused the loss of the [PSI+] prion. The expression of one of these mutants, Hsp104p-E190K, showed differential loss of the [RNQ+] and [PSI+] prions in the presence of wild type Hsp104p. Hsp104p-E190K inefficiently propagated [RNQ+] and was unable to maintain [PSI+]. The mutant was unable to act on other in vivo substrates, as strains carrying it were not thermotolerant. Purified recombinant Hsp104p-E190K showed a reduced level of ATP hydrolysis as compared to wild type protein. This is likely the cause of both prion loss and lack of in vivo function. Furthermore, it suggests that [RNQ+] requires less Hsp104p activity to maintain transmissible protein aggregates than Sup35p. Additionally, we show that the L94A mutation in Rnq1p, which reduces its interaction with Sis1p, prevents Rnq1p from maintaining a prion and inducing [PSI+].  相似文献   

2.
Prions are proteins that can adopt different infectious conformations known as “strains” or “variants,” each with a distinct, epigenetically inheritable phenotype. Mechanisms by which prion variants are determined remain unclear. Here we use the Saccharomyces cerevisiae prion Rnq1p/[PIN+] as a model to investigate the effects of chaperone proteins upon prion variant determination. We show that deletion of specific chaperone genes alters [PIN+] variant phenotypes, including [PSI+] induction efficiency, Rnq1p aggregate morphology/size and variant dominance. Mating assays demonstrate that gene deletion-induced phenotypic changes are stably inherited in a non-Mendelian manner even after restoration of the deleted gene, confirming that they are due to a bona fide change in the [PIN+] variant. Together, our results demonstrate a role for chaperones in regulating the prion variant complement of a cell.  相似文献   

3.
[PIN+] is the prion form of Rnq1 in Saccharomyces cerevisiae and is necessary for the de novo induction of a second prion, [PSI+]. The function of Rnq1, however, is little understood. The limited availability of defective rnq1 alleles impedes the study of its structure-function relationship by genetic analysis. In this study, we isolated rnq1 mutants that are defective in the stable maintenance of the [PIN+] prion. Since there is no rnq1 phenotype available that is applicable to a direct selection or screening for loss-of-function rnq1 mutants, we took advantage of a prion inhibitory agent, Rnq1Δ100, to develop a color-based genetic screen. Rnq1Δ100 eliminates the [PSI+] prion in the [PIN+] state but not in the [pin] state. This allows us to find loss-of-[PIN+] rnq1 mutants as white [PSI+] colonies. Nine rnq1 mutants with single-amino-acid substitutions were defined. These mutations impaired the stable maintenance of [PIN+] and, as a consequence, were also partially defective in the de novo induction of [PSI+]. Interestingly, eight of the nine alleles were mapped to the N-terminal region of Rnq1, which is known as the non-prion domain preceding the asparagine and glutamine rich prion domain of Rnq1. Notably, overexpression of these rnq1 mutant proteins restored [PIN+] prion activity, suggesting that each of the rnq1 mutants was not completely inactive. These findings indicate that the N-terminal non-prion domain of Rnq1 harbors a potent activity to regulate the maintenance of the [PIN+] prion.Key words: Rnq1, [PIN+], Sup35, [PSI+], yeast prion  相似文献   

4.
Prions are self-perpetuating conformational variants of particular proteins. In yeast, prions cause heritable phenotypic traits. Most known yeast prions contain a glutamine (Q)/asparagine (N)-rich region in their prion domains. [PSI+], the prion form of Sup35, appears de novo at dramatically enhanced rates following transient overproduction of Sup35 in the presence of [PIN+], the prion form of Rnq1. Here, we establish the temporal de novo appearance of Sup35 aggregates during such overexpression in relation to other cellular proteins. Fluorescently-labeled Sup35 initially forms one or a few dots when overexpressed in [PIN+] cells. One of the dots is perivacuolar, colocalizes with the aggregated Rnq1 dot and grows into peripheral rings/lines, some of which also colocalize with Rnq1. Sup35 dots that are not near the vacuole do not always colocalize with Rnq1 and disappear by the time rings start to grow. Bimolecular fluorescence complementation failed to detect any interaction between Sup35-VN and Rnq1-VC in [PSI +][PIN +] cells. In contrast, all Sup35 aggregates, whether newly induced or in established [PSI +], completely colocalize with the molecular chaperones Hsp104, Sis1, Ssa1 and eukaryotic release factor Sup45. In the absence of [PIN+], overexpressed aggregating proteins such as the Q/N-rich Pin4C or the non-Q/N-rich Mod5 can also promote the de novo appearance of [PSI +]. Similar to Rnq1, overexpressed Pin4C transiently colocalizes with newly appearing Sup35 aggregates. However, no interaction was detected between Mod5 and Sup35 during [PSI+] induction in the absence of [PIN +]. While the colocalization of Sup35 and aggregates of Rnq1 or Pin4C are consistent with the model that the heterologous aggregates cross-seed the de novo appearance of [PSI +], the lack of interaction between Mod5 and Sup35 leaves open the possibility of other mechanisms. We also show that Hsp104 is required in the de novo appearance of [PSI+] aggregates in a [PIN +]-independent pathway.  相似文献   

5.
The formation and maintenance of prions in the yeast Saccharomyces cerevisiae is highly regulated by the cellular chaperone machinery. The most important player in this regulation is Hsp104p, which is required for the maintenance of all known prions. The requirements for other chaperones, such as members of the Hsp40 or Hsp70 families, vary with each individual prion. [RNQ+] cells do not have a phenotype that is amenable to genetic screens to identify cellular factors important in prion propagation. Therefore, we used a chimeric construct that reports the [RNQ+] status of cells to perform a screen for mutants that are unable to maintain [RNQ+]. We found eight separate mutations in Hsp104p that caused [RNQ+] cells to become [rnq]. These mutations also caused the loss of the [PSI+] prion. The expression of one of these mutants, Hsp104p-E190K, showed differential loss of the [RNQ+] and [PSI+] prions in the presence of wild type Hsp104p. Hsp104p-E190K inefficiently propagated [RNQ+] and was unable to maintain [PSI+]. The mutant was unable to act on other in vivo substrates, as strains carrying it were not thermotolerant. Purified recombinant Hsp104p-E190K showed a reduced level of ATP hydrolysis as compared to wild type protein. This is likely the cause of both prion loss and lack of in vivo function. Furthermore, it suggests that [RNQ+] requires less Hsp104p activity to maintain transmissible protein aggregates than Sup35p. Additionally, we show that the L94A mutation in Rnq1p, which reduces its interaction with Sis1p, prevents Rnq1p from maintaining a prion and inducing [PSI+].Key words: [RNQ+], [PSI+], Hsp104p, Sis1p, mutagenesis  相似文献   

6.
Prions are self-propagating protein conformations. Transmission of the prion state between non-identical proteins, e.g. between homologous proteins from different species, is frequently inefficient. Transmission barriers are attributed to sequence differences in prion proteins, but their underlying mechanisms are not clear. Here we use a yeast Rnq1/[PIN+]-based experimental system to explore the nature of transmission barriers. [PIN+], the prion form of Rnq1, is common in wild and laboratory yeast strains, where it facilitates the appearance of other prions. Rnq1''s prion domain carries four discrete QN-rich regions. We start by showing that Rnq1 encompasses multiple prion determinants that can independently drive amyloid formation in vitro and transmit the [PIN+] prion state in vivo. Subsequent analysis of [PIN+] transmission between Rnq1 fragments with different sets of prion determinants established that (i) one common QN-rich region is required and usually sufficient for the transmission; (ii) despite identical sequences of the common QNs, such transmissions are impeded by barriers of different strength. Existence of transmission barriers in the absence of amino acid mismatches in transmitting regions indicates that in complex prion domains multiple prion determinants act cooperatively to attain the final prion conformation, and reveals transmission barriers determined by this cooperative fold.  相似文献   

7.
Prions (infectious proteins) analogous to the scrapie agent have been identified in Saccharomyces cerevisiae and Podospora anserina based on their special genetic characteristics. Each is a protein acting as a gene, much like nucleic acids have been shown to act as enzymes. The [URE3], [PSI+], [PIN+] and [Het-s] prions are self-propagating amyloids of Ure2p, Sup35p, Rnq1p and the HET-s protein, respectively. The [β] and [C] prions are enzymes whose precursor activation requires their own active form. [URE3] and [PSI+] are clearly diseases, while [Het-s] and [β] carry out normal cell functions. Surprisingly, the prion domains of Ure2p and Sup35p can be randomized without loss of ability to become a prion. Thus amino acid content and not sequence determine these prions. Shuffleability also suggests amyloids with a parallel in-register β-sheet structure.Key Words: Ure2, Sup35, Rnq1, HETs, PrP, prion, amyloid  相似文献   

8.
Prions are self-perpetuating aggregated proteins that are not limited to mammalian systems but also exist in lower eukaryotes including yeast. While much work has focused around chaperones involved in prion maintenance, including Hsp104, little is known about factors involved in the appearance of prions. De novo appearance of the [PSI +] prion, which is the aggregated form of the Sup35 protein, is dramatically enhanced by transient overexpression of SUP35 in the presence of the prion form of the Rnq1 protein, [PIN +]. When fused to GFP and overexpressed in [ps] [PIN +] cells, Sup35 forms fluorescent rings, and cells with these rings bud off [PSI +] daughters. We investigated the effects of over 400 gene deletions on this de novo induction of [PSI +]. Two classes of gene deletions were identified. Class I deletions (bug1Δ, bem1Δ, arf1Δ, and hog1Δ) reduced the efficiency of [PSI +] induction, but formed rings normally. Class II deletions (las17Δ, vps5Δ, and sac6Δ) inhibited both [PSI+] induction and ring formation. Furthermore, class II deletions reduced, while class I deletions enhanced, toxicity associated with the expanded glutamine repeats of the huntingtin protein exon 1 that causes Huntington''s disease. This suggests that prion formation and polyglutamine aggregation involve a multi-phase process that can be inhibited at different steps.  相似文献   

9.
Amyloidogenic proteins associated with a variety of unrelated diseases are typically capable of forming several distinct self-templating conformers. In prion diseases, these different structures, called prion strains (or variants), confer dramatic variation in disease pathology and transmission. Aggregate stability has been found to be a key determinant of the diverse pathological consequences of different prion strains. Yet, it remains largely unclear what other factors might account for the widespread phenotypic variation seen with aggregation-prone proteins. Here, we examined a set of yeast prion variants of the [RNQ+] prion that differ in their ability to induce the formation of another yeast prion called [PSI+]. Remarkably, we found that the [RNQ+] variants require different, non-contiguous regions of the Rnq1 protein for both prion propagation and [PSI+] induction. This included regions outside of the canonical prion-forming domain of Rnq1. Remarkably, such differences did not result in variation in aggregate stability. Our analysis also revealed a striking difference in the ability of these [RNQ+] variants to interact with the chaperone Sis1. Thus, our work shows that the differential influence of various amyloidogenic regions and interactions with host cofactors are critical determinants of the phenotypic consequences of distinct aggregate structures. This helps reveal the complex interdependent factors that influence how a particular amyloid structure may dictate disease pathology and progression.  相似文献   

10.
Yeast prion determinants are related to polymerization of some proteins into amyloid-like fibers. The [PSI+] determinant reflects polymerization of the Sup35 protein. Fragmentation of prion polymers by the Hsp104 chaperone represents a key step of the prion replication cycle. The frequency of fragmentation varies depending on the structure of the prion polymers and defines variation in the prion phenotypes, e.g., the suppressor strength of [PSI+] and stability of its inheritance. Besides [PSI+], overproduction of Sup35 can produce nonheritable phenotypically silent Sup35 amyloid-like polymers. These polymers are fragmented poorly and are present due to efficient seeding with the Rnq1 prion polymers, which occurs by several orders of magnitude more frequently than seeding of [PSI+] appearance. Such Sup35 polymers resemble human nonprion amyloids by their nonheritability, mode of appearance and increased size. Thus, a single protein, Sup35, can model both prion and nonprion amyloids. In yeast, these phenomena are distinguished by the frequency of polymer fragmentation. We argue that in mammals the fragmentation frequency also represents a key factor defining differing properties of prion and nonprion amyloids, including infectivity. By analogy with the Rnq1 seeding of nonheritable Sup35 polymers, the “species barrier” in prion transmission may be due to seeding by heterologous prion of nontransmissible type of amyloid, rather than due to the lack of seeding.Key Words: amyloid, prion, Rnq1, Sup35, Ure2, translation termination, yeast  相似文献   

11.
Yeast prions are self-perpetuating protein aggregates that are at the origin of heritable and transmissible non-Mendelian phenotypic traits. Among these, [PSI+], [URE3] and [PIN+] are the most well documented prions and arise from the assembly of Sup35p, Ure2p and Rnq1p, respectively, into insoluble fibrillar assemblies. Fibril assembly depends on the presence of N- or C-terminal prion domains (PrDs) which are not homologous in sequence but share unusual amino-acid compositions, such as enrichment in polar residues (glutamines and asparagines) or the presence of oligopeptide repeats. Purified PrDs form amyloid fibrils that can convert prion-free cells to the prion state upon transformation. Nonetheless, isolated PrDs and full-length prion proteins have different aggregation, structural and infectious properties. In addition, mutations in the “non-prion” domains (non-PrDs) of Sup35p, Ure2p and Rnq1p were shown to affect their prion properties in vitro and in vivo. Despite these evidences, the implication of the functional non-PrDs in fibril assembly and prion propagation has been mostly overlooked. In this review, we discuss the contribution of non-PrDs to prion assemblies, and the structure-function relationship in prion infectivity in the light of recent findings on Sup35p and Ure2p assembly into infectious fibrils from our laboratory and others.Key words: prion, Sup35p, Ure2p, Rnq1p, [PSI+], [URE3], [PIN+], amyloid fibrils  相似文献   

12.
Recent studies have shown that Sup35p prion fibrils probably have a parallel in-register β-structure. However, the part(s) of the N-domain critical for fibril formation and maintenance of the [PSI+] phenotype remains unclear. Here we designed a set of five SUP35 mutant alleles (sup35KK) with lysine substitutions in each of five N-domain repeats, and investigated their effect on infectivity and ability of corresponding proteins to aggregate and coaggregate with wild type Sup35p in the [PSI+] strain. Alleles sup35-M1 (Y46K/Q47K) and sup35-M2 (Q61K/Q62K) led to prion loss, whereas sup35-M3 (Q70K/Q71K), sup35-M4 (Q80K/Q81K), and sup35-M5 (Q89K/Q90K) were able to maintain the [PSI+] prion. This suggests that the critical part of the parallel in-register β-structure for the studied [PSI+] prion variant lies in the first 63–69 residues. Our study also reveals an unexpected interplay between the wild type Sup35p and proteins expressed from the sup35KK alleles during prionization. Both Sup35-M1p and Sup35-M2p coaggregated with Sup35p, but only sup35-M2 led to prion loss in a dominant manner. We suggest that in the fibrils, Sup35p can bind to Sup35-M1p in the same conformation, whereas Sup35-M2p only allowed the Sup35p conformation that leads to the non-heritable fold. Mutations sup35-M4 and sup35-M5 influence the structure of the prion forming region to a lesser extent, and can lead to the formation of new prion variants.  相似文献   

13.
The interaction of [PSI +] and [PIN +] factors in yeast Saccharomyces cerevisiae is known as the first evidence of prions networks. In [PIN +] cells, Rnq1p prion aggregates work as a template for Sup35p aggregation, which is essential for [PSI +] induction. No additional factors are required for subsequent Sup35p aggregation. Nevertheless, several recent reports provide data that indicate a more complex interplay between these prions. Our results show that the presence of Rnq1p in the cell significantly decreases the loss of [PSI +] prion, which is caused by a double mutation in SUP35 (Q61K, Q62K substitutions in the Sup35 protein). These observations support the existence of interaction networks that converge on a strong linkage of prionogenic and prion-like proteins, and the participation of Rnq1 protein in the maintenance of prion [PSI +].  相似文献   

14.
Molecular chaperones regulate essential steps in the propagation of yeast prions. Yeast prions possess domains enriched in glutamines and asparagines that act as templates to drive the assembly of native proteins into beta-sheet-rich, amyloid-like fibrils. Several recent studies highlight a significant and complex function for Hsp40 co-chaperones in propagation of prion elements in yeast. Hsp40 co-chaperones bind non-native polypeptides and transfer these clients to Hsp70s for refolding or degradation. How Hsp40 co-chaperones bind amyloid-like prion conformers that are enriched in hydrophilic residues such as glutamines and asparagines is a significant question in the field. Interestingly, selective recognition of amyloid-like conformers by distinct Hsp40s appears to confer opposing actions on prion assembly. For example, the Type I Hsp40 Ydj1 and Type II Hsp40 Sis1 bind different regions within the prion protein Rnq1 and function respectively to inhibit or promote [RNQ+] prion assembly. Thus, substrate selectivity enables distinct Hsp40s to act at unique steps in prion propagation.Key words: Hsp40, Ydj1, Sis1, amyloid, prion, Rnq1, J-protein, Hsp70  相似文献   

15.
During propagation, yeast prions show a strict sequence preference that confers the specificity of prion assembly. Although propagations of [PSI+] and [RNQ+] are independent of each other, the appearance of [PSI+] is facilitated by the presence of [RNQ+]. To explain the [RNQ+] effect on the appearance of [PSI+], the cross-seeding model was suggested, in which Rnq1 aggregates act as imperfect templates for Sup35 aggregation. If cross-seeding events take place in the cytoplasm of yeast cells, the collision frequency between Rnq1 aggregates and Sup35 will affect the appearance of [PSI+]. In this study, to address whether cross-seeding occurs in vivo, a new [PSI+] induction method was developed that exploits a protein fusion between the prion domain of Sup35 (NM) and Rnq1. This fusion protein successfully joins preexisting Rnq1 aggregates, which should result in the localization of NM around the Rnq1 aggregates and hence in an increased collision frequency between NM and Rnq1 aggregates. The appearance of [PSI+] could be induced very efficiently, even with a low expression level of the fusion protein. This study supports the occurrence of in vivo cross-seeding between Sup35 and Rnq1 and provides a new tool that can be used to dissect the mechanism of the de novo appearance of prions.Prions were originally defined as proteinaceous infectious particles responsible for transmissible spongiform encephalopathies in mammals (reviewed in reference 23). Since a non-Mendelian genetic element, [URE3], was identified as a yeast prion (37), however, this concept has been expanded to include protein-based genetic elements. In addition to [URE3], there are at least two more proteinaceous genetic elements in Saccharomyces cerevisiae, namely, [PSI+] and [RNQ+] (20, 22, 28). [Het-s] was also identified as a prion in the filamentous fungus Podospora anserina (2).Despite the absence of any structural and functional homologies between various prion proteins from different organisms, they share a common feature, i.e., prion proteins can adopt two distinct conformational states. One of these, the aggregated prion state, can stimulate the soluble, nonprion conformation to convert into the prion form. Gaining intermolecular β-sheet structures, purified yeast prion proteins aggregate and form amyloid fibers in vitro (8, 12, 28, 32). Protein extract from yeast cells in the prion state can facilitate the in vitro polymerization of soluble prion protein from nonprion cells (21), and amyloid fibers of purified yeast prion proteins can convert the cells into the prion state when introduced into yeast cells, demonstrating the protein-only hypothesis (15, 31). Thus, intracellular prion aggregates are thought to have the same structural basis as amyloid fibers formed in vitro.Yeast prion biology has provided invaluable insights into the prion concept at the molecular level. Because of its experimental convenience, [PSI+] has been investigated most intensively among various yeast prions. [PSI+] results from the aggregation of Sup35 protein, which is essential for terminating the translation at stop codons. When Sup35 is in the [PSI+] aggregated state, ribosomes often fail to release polypeptides at stop codons, causing a non-Mendelian trait which is easily detected by nonsense suppression. ade1 or ade2 nonsense mutants are used as marker genes to determine the [PSI+] state. These mutants cannot grow on adenine-deficient medium and form red colonies on medium supplemented with a limiting amount of adenine, such as yeast extract-peptone-dextrose (YPD). ade mutants in the [PSI+] state, however, can grow on adenine-deficient medium and form white colonies, as they produce functional Ade1 or Ade2 by virtue of a nonsense mutation readthrough. To sustain propagation, all yeast prions need the disaggregation activity of Hsp104, which can be inhibited by guanidine hydrochloride (GuHCl) (9). Since yeast prions are cured by growth on guanidine-containing medium, prion phenotypes can easily be distinguished from chromosomal suppressor mutants.Sup35 (eRF3) of S. cerevisiae has a prion-determining N-terminal domain (N), a highly charged middle domain (M) that confers solubility on the molecule, and an essential C-terminal domain that binds guanine nucleotides and stimulates the polypeptide release reaction catalyzed by Sup45 (eRF1) (17, 29, 33). The de novo appearance of [PSI+] can be induced by overexpression of SUP35 or its prion domain-containing fragments (NM) (6). [PSI+] induction, however, can be achieved only in [RNQ+] cells that harbor the prion state of the Rnq1 protein (4, 19). Two hypotheses about how [RNQ+] can affect the appearance of [PSI+] have been suggested. One is an inhibitor titration model that postulates the molecules preventing the aggregation of Sup35 and the recruitment of these inhibitors to Rnq1 aggregates in [RNQ+] cells. The other is a cross-seeding model in which Rnq1 aggregates directly catalyze the polymerization of Sup35. In vitro cross-seeding between different amyloidogenic proteins was reported, and Rnq1 amyloid fiber can also act as a seed for Sup35 polymerization in vitro (7, 13). These in vitro data support the possibility of cross-seeding between Rnq1 and Sup35. However, because the milieu of cytoplasm is very different from that of a test tube, whether this cross-seeding really occurs in vivo is still obscure. For this study, we developed a new, robust [PSI+] induction method that confirms the cross-seeding events in the cytoplasmic environment.  相似文献   

16.
Osherovich LZ  Weissman JS 《Cell》2001,106(2):183-194
The yeast prion [PSI(+)] results from self-propagating aggregates of Sup35p. De novo formation of [PSI(+)] requires an additional non-Mendelian trait, thought to result from a prion form of one or more unknown proteins. We find that the Gln/Asn-rich prion domains of two proteins, New1p and Rnq1p, can control susceptibility to [PSI(+)] induction as well as enhance aggregation of a human glutamine expansion disease protein. [PSI(+)] inducibility results from gain-of-function properties of New1p and Rnq1p aggregates rather than from inactivation of the normal proteins. These studies suggest a molecular basis for the epigenetic control of [PSI(+)] inducibility and may reveal a broader role for this phenomenon in the physiology of protein aggregation.  相似文献   

17.
Yeast prions are inherited through proteins that exist in alternate, self-perpetuating conformational states. The mechanisms by which these states arise and are maintained are still poorly defined. Here we demonstrate for the first time that Sis1, a member of the Hsp40 chaperone family, plays a critical role in the maintenance of a prion. The prion [RNQ+] is formed by Rnq1, which is present in the same physical complex as Sis1, but only when Rnq1 is in the prion state. The G/F domain of Sis1 is dispensable for rapid growth on rich medium, but is required for [RNQ+] maintenance, distinguishing essential regions of Sis1 from those needed for prion interaction. A specific Sis1 deletion mutant altered the physical aggregation pattern of Rnq1 without curing the prion. This variant state propagated in a heritable fashion after wild-type Sis1 function was restored, indicating that multiple physical states are compatible with prion maintenance and that changes in chaperone activity can create prion variants. Using a prion chimera we demonstrate that the prion-determinant domain of Rnq1 is genetically sufficient for control by Sis1.  相似文献   

18.
We report that a null rnq1 mutation in the yeast RNQ1 (YCL028w) prion-like gene of so far unknown function produces the doubling of spores in the asci. This phenotype is possibly due to the lack of inhibition by Rnq1p of an additional mitotic division during ascus formation. This novel phenotype termed "octopus asci" could be similar to prion [PIN+] phenotype.  相似文献   

19.
《朊病毒》2013,7(3):179-184
Yeast prion determinants are related to polymerization of some proteins into amyloid-like fibers. The [PSI+] determinant reflects polymerization of the Sup35 protein. Fragmentation of prion polymers by the Hsp104 chaperone represents a key step of the prion replication cycle. The frequency of fragmentation varies depending on the structure of the prion polymers and defines variation in the prion phenotypes, e.g., the suppressor strength of [PSI+] and stability of its inheritance. Besides [PSI+], overproduction of Sup35 can produce nonheritable phenotypically silent Sup35 amyloid-like polymers. These polymers are fragmented poorly and are present due to efficient seeding with the Rnq1 prion polymers, which occurs by several orders of magnitude more frequently than seeding of [PSI+] appearance. Such Sup35 polymers resemble human nonprion amyloids by their nonheritability, mode of appearance and increased size. Thus, a single protein, Sup35, can model both prion and nonprion amyloids. In yeast, these phenomena are distinguished by the frequency of polymer fragmentation. We argue that in mammals the fragmentation frequency also represents a key factor defining differing properties of prion and nonprion amyloids, including infectivity. By analogy with the Rnq1 seeding of nonheritable Sup35 polymers, the “species barrier” in prion transmission may be due to seeding by heterologous prion of nontransmissible type of amyloid, rather than due to the lack of seeding.  相似文献   

20.
《朊病毒》2013,7(4):305-310
Prions are infectious, self-propagating protein conformations. [PSI+], [RNQ+] and [URE3] are well characterized prions in Saccharomyces cerevisiae and represent the aggregated states of the translation termination factor Sup35, a functionally unknown protein Rnq1, and a regulator of nitrogen metabolism Ure2, respectively. Overproduction of Sup35 induces the de novo appearance of the [PSI+] prion in [RNQ+] or [URE3] strain, but not in non-prion strain. However, [RNQ+] and [URE3] prions themselves, as well as overexpression of a mutant Rnq1 protein, Rnq1Δ100, and Lsm4, hamper the maintenance of [PSI+]. These findings point to a bipolar activity of [RNQ+], [URE3], Rnq1Δ100, and Lsm4, and probably other yeast prion proteins as well, for the fate of [PSI+] prion. Possible mechanisms underlying the apparent bipolar activity of yeast prions will be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号