首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alzheimer's disease is a progressive neurodegenerative disorder characterised by the gradual onset of dementia. The pathological hallmarks of the disease are beta-amyloid (Abeta) plaques, neurofibrillary tangles, synaptic loss and reactive gliosis. The current therapeutic effort is directed towards developing drugs that reduce Abeta burden or toxicity by inhibiting secretase cleavage, Abeta aggregation, Abeta toxicity, Abeta metal interactions or by promoting Abeta clearance. A number of clinical trials are currently in progress based on these different therapeutic strategies and they should indicate which, if any, of these approaches will be efficacious. Current diagnosis of Alzheimer's disease is made by clinical, neuropsychologic and neuroimaging assessments. Routine structural neuroimaging evaluation with computed tomography and magnetic resonance imaging is based on non-specific features such as atrophy, a late feature in the progression of the disease, hence the crucial importance of developing new approaches for early and specific recognition at the prodromal stages of Alzheimer's disease. Functional neuroimaging techniques such as functional magnetic resonance imaging, magnetic resonance spectroscopy, positron emission tomography and single photon emission computed tomography, possibly in conjunction with other related Abeta biomarkers in plasma and CSF, could prove to be valuable in the differential diagnosis of Alzheimer's disease, as well as in assessing prognosis. With the advent of new therapeutic strategies there is increasing interest in the development of magnetic resonance imaging contrast agents and positron emission tomography and single photon emission computed tomography radioligands that will permit the assessment of Abeta burden in vivo.  相似文献   

2.
Frame-shifted amyloid precursor protein (APP(+1)), which has a truncated out-of-frame C-terminus, accumulates in the neuropathological hallmarks of patients with Alzheimer's disease pathology. To study a possible involvement of APP(+1) in the pathogenesis of Alzheimer's disease, we expressed APP695 and APP(+1) in the HEK293 cell-line and studied whether the processing of APP695 was affected. APP(+1) is a secretory protein, but high expression of APP695 and APP(+1) results in the formation of intracellular aggregate-like structures containing both proteins and Fe65, an adaptor protein that interacts with APP695. APP(+1) is shown to interact with APP695, suggesting that these structures consist of functional protein complexes. Such an interaction can also be anticipated in post-mortem brains of young Down's syndrome patients without any sign of neuropathology. Here we observed APP(+1) immunoreactivity in beaded fibres. Additional support for functional consequences on the processing of APP695 comes from a 1.4-fold increase in levels of secreted amyloid beta40 in cells co-expressing APP695 and APP(+1), although APP(+1) itself does not contain the amyloid beta sequence. Taken together, these data show that co-expression of APP695 and APP(+1) affects the processing of APP695 in a pro-amyloidogenic way and this could gradually contribute to Alzheimer's disease pathology, as has been implicated in Down's syndrome patients.  相似文献   

3.
The assembly of amyloid β-protein to amyloid fibrils is a critical event in Alzheimer's disease. Evidence exists that endocytic pathway abnormalities, including the enlargement of early endosomes, precede the extraneuronal amyloid fibril deposition in the brain. We determined whether endocytic dysfunction potently promotes the assembly of amyloid β-protein on the surface of cultured cells. Blocking the early endocytic pathway by clathrin suppression, inactivation of small GTPases, removal of membrane cholesterol, and Rab5 knockdown did not result in amyloid fibril formation on the cell surface from exogenously added soluble amyloid β-protein. In contrast, blocking the late endocytic pathway by Rab7 suppression markedly induced the amyloid fibril formation in addition to the enlargement of early endosomes. Notably, a monoclonal antibody specific to GM1-ganglioside-bound amyloid β-protein, an endogenous seed for Alzheimer amyloid, completely blocks the amyloid fibril formation. Our results suggest that late but not early endocytic dysfunction contributes to the amyloid fibril formation by facilitating the generation of amyloid seed in the Alzheimer's brain.  相似文献   

4.
Haass C 《The EMBO journal》2004,23(3):483-488
In 1959, Dave Brubeck and Paul Desmond revolutionized modern jazz music by composing their unforgettable Take Five in 5/4, one of the most defiant time signatures in all music. Of similar revolutionary importance for biomedical and basic biochemical research is the identification of the minimal set of genes required to obtain a deadly time bomb ticking in all of us: Alzheimer's disease. It now appears that one needs to Take Five genes to produce a deadly peptide by a proteolytic mechanism, which paradoxically is otherwise of pivotal importance for development and cell fate decisions.  相似文献   

5.
Microglia are widely held to play important pathophysiologic roles in Alzheimer's disease (AD). On exposure to amyloid β peptide (Aβ) they exhibit chemotactic, phagocytic, phenotypic and secretory responses consistent with scavenger cell activity in a localized inflammatory setting. Because AD microglial chemotaxis, phagocytosis, and secretory activity have common, tightly linked soluble intermediaries (e.g., cytokines, chemokines), cell surface intermediaries (e.g., receptors, opsonins), and stimuli (e.g., highly inert Aβ deposits and exposed neurofibrilly tangles), the mechanisms for microglial clearance of Aβ are necessarily coupled to localized inflammatory mechanisms that can be cytotoxic to nearby tissue. This presents a critical dilemma for strategies to remove Aβ by enhancing micoglial activation—a dilemma that warrants substantial further investigation.  相似文献   

6.
Early onset familial Alzheimer's disease (FAD) is linked to autosomal dominant mutations in the amyloid precursor protein (APP) and presenilin 1 and 2 (PS1 and PS2) genes. These are critical mediators of total amyloid beta-peptide (Abeta) production, inducing cell death through uncertain mechanisms. Tauroursodeoxycholic acid (TUDCA) modulates exogenous Abeta-induced apoptosis by interfering with E2F-1/p53/Bax. Here, we used mouse neuroblastoma cells that express either wild-type APP, APP with the Swedish mutation (APPswe), or double-mutated human APP and PS1 (APPswe/DeltaE9), all exhibiting increased Abeta production and aggregation. Cell viability was decreased in APPswe and APPswe/DeltaE9 but was partially reversed by z-VAD.fmk. Nuclear fragmentation and caspase 2, 6 and 8 activation were also readily detected. TUDCA reduced nuclear fragmentation as well as caspase 2 and 6, but not caspase 8 activities. p53 activity, and Bcl-2 and Bax changes, were also modulated by TUDCA. Overexpression of p53, but not mutant p53, in wild-type and mutant neuroblastoma cells was sufficient to induce apoptosis, which, in turn, was reduced by TUDCA. In addition, inhibition of the phosphatidylinositide 3'-OH kinase pathway reduced TUDCA protection against p53-induced apoptosis. In conclusion, FAD mutations are associated with the activation of classical apoptotic pathways. TUDCA reduces p53-induced apoptosis and modulates expression of Bcl-2 family.  相似文献   

7.
Amyloid beta-peptide (Abeta) is implicated as the major causative agent in Alzheimer's disease (AD). Abeta is produced by the processing of the amyloid precursor protein (APP) by BACE1 (beta-secretase) and gamma-secretase. Many inhibitors have been developed for the secretases. However, the inhibitors will interfere with the processing of not only APP but also of other secretase substrates. In this study, we describe the development of inhibitors that prevent production of Abeta by specific binding to the beta-cleavage site of APP. We used the hydropathic complementarity (HC) approach for the design of short peptide inhibitors. Some of the HC peptides were bound to the substrate peptide (Sub W) corresponding to the beta-cleavage site of APP and blocked its cleavage by recombinant human BACE1 (rhBACE1) in vitro. In addition, HC peptides specifically inhibited the cleavage of Sub W, and not affecting other BACE1 substrates. Chemical modification allowed an HC peptide (CIQIHF) to inhibit the processing of APP as well as the production of Abeta in the treated cells. Such novel APP-specific inhibitors will provide opportunity for the development of drugs that can be used for the prevention and treatment of AD with minimal side effects.  相似文献   

8.
Oligomers of Abeta peptide have been indicated recently as a possible main causative agent of Alzheimer's disease. However, information concerning their structural properties is very limited. Here Abeta oligomers are studied by non-covalent complexes mass spectrometry and disulfide rearrangement. As a model molecule, an Abeta fragment spanning residues 10-30 (Abeta10-30) has been used. This model peptide is known to contain the core region responsible for Abeta aggregation to fibrils. Non-covalent complexes mass spectrometry indicates that, at neutral pH, monomers are accompanied by oligomers up to hexamers of gradually decreasing population. H-2H exchange studies and direct monomer exchange rate measurements with the use of 15N labeled peptides and mass spectrometry show a fast exchange of monomeric units between oligomers. Disulfide exchange studies of cysteine tagged Abeta10-30 and its mutant show proximity of N-N and C-C termini of monomers in oligomers. The presented data underscore a dynamic character for pre-nucleation forms of Abeta, however, with a marked tendency for parallel strand orientation in oligomers.  相似文献   

9.
The amyloid beta-protein precursor (APP) is proteolytically cleaved to generate the amyloid beta-protein (Abeta), the principal constituent of senile plaques found in Alzheimer's disease (AD). In addition, Abeta in its oligomeric and fibrillar forms have been hypothesized to induce neuronal toxicity. We and others have previously shown that APP can be cleaved by caspases at the C-terminus to generate a potentially cytotoxic peptide termed C31. Furthermore, this cleavage event and caspase activation were increased in the brains of AD, but not control, cases. In this study, we show that in cultured cells, Abeta induces caspase cleavage of APP in the C-terminus and that the subsequent generation of C31 contributes to the apoptotic cell death associated with Abeta. Interestingly, both Abeta toxicity and C31 pathway are dependent on the presence of APP. Both APP-dependent Abeta toxicity and C31-induced apoptotic cell death involve apical or initiator caspases-8 and -9. Our results suggest that Abeta-mediated toxicity initiates a cascade of events that includes caspase activation and APP cleavage. These findings link C31 generation and its potential cell death activity to Abeta cytotoxicity, the leading mechanism proposed for neuronal death in AD.  相似文献   

10.
The paradigm of endoplasmic reticulum (ER)-associated degradation (ERAD) holds that misfolded secretory and membrane proteins are translocated back to the cytosol and degraded by the proteasome in a coupled process. Analyzing the degradation of ER-localized amyloid β-peptide (Aβ), we found a divergence from this general model. Cell-free reconstitution of the export in biosynthetically loaded ER-derived brain microsomes showed that the export was mediated by the Sec61p complex and required a cytosolic factor but was independent of ATP. In contrast to the ERAD substrates known so far, the exported Aβ was degraded by both, a proteasome-dependent and a proteasome-independent pathway. RNA interference experiments in Aβ-transfected cells identified the protease of the proteasome-independent pathway as insulin-degrading enzyme (IDE). The IDE-mediated clearance mechanism for ER-localized Aβ represents an as yet unknown type of ERAD which is not entirely dependent on the proteasome.  相似文献   

11.
Amyloid beta peptide (A beta) is believed to play a central role in the pathogenesis of Alzheimer's disease (AD). However, the form of A beta that induces neurodegeneration in AD, defined here as bioactive A beta, is not clear. Preventing the formation of bioactive A beta or inactivating previously formed bioactive A beta should be a promising approach to treat AD. We have previously developed a cell-based assay for the detection of bioactive A beta species. The assay is based upon the correlation between the ability of an A beta sample to induce a unique form of cellular MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] formazan exocytosis, and its ability to activate glia and induce neurotoxicity. Here, we show that this cell-based assay is not only useful for a cellular model of A beta amyloidogenesis but is also able to detect bioactive A beta species in a transgenic mouse model of AD, as well as in post-mortem cortex samples from AD patients. There is a good correlation between the extent of glia activation and the level of bioactive A beta species in the mouse brain. A promising deuteroporphyrin that can inactivate bioactive A beta species was also identified using this assay. These novel insights and findings should have important implications for the treatment of AD.  相似文献   

12.
Impaired proteasome function in Alzheimer's disease   总被引:9,自引:0,他引:9  
Inhibition of proteasome activity is sufficient to induce neuron degeneration and death; however, altered proteasome activity in a neurodegenerative disorder has not been demonstrated. In the present study, we analyzed proteasome activity in short-postmortem-interval autopsied brains from 16 Alzheimer's disease (AD) and nine age- and sex-matched controls. A significant decrease in proteasome activity was observed in the hippocampus and parahippocampal gyrus (48%), superior and middle temporal gyri (38%), and inferior parietal lobule (28%) of AD patients compared with controls. In contrast, no significant decrease in proteasome activity was observed in either the occipital lobe or the cerebellum. The loss of proteasome activity was not associated with a decrease in proteasome expression, suggesting that the proteasome may become inhibited in AD by a posttranslational modification. Together, these data indicate a possible role for proteasome inhibition in the neurodegeneration associated with AD.  相似文献   

13.
Enolase enzymes are abundantly expressed, cytosolic carbon-oxygen lyases known for their role in glucose metabolism. Recently, enolase has been shown to possess a variety of different regulatory functions, beyond glycolysis and gluconeogenesis, associated with hypoxia, ischemia, and Alzheimer's disease (AD). AD is an age-associated neurodegenerative disorder characterized pathologically by elevated oxidative stress and subsequent damage to proteins, lipids, and nucleic acids, appearance of neurofibrillary tangles and senile plaques, and loss of synapse and neuronal cells. It is unclear if development of a hypometabolic environment is a consequence of or contributes to AD pathology, as there is not only a significant decline in brain glucose levels in AD, but also there is an increase in proteomics identified oxidatively modified glycolytic enzymes that are rendered inactive, including enolase. Previously, our laboratory identified α-enolase as one the most frequently up-regulated and oxidatively modified proteins in amnestic mild cognitive impairment (MCI), early-onset AD, and AD. However, the glycolytic conversion of 2-phosphoglycerate to phosphoenolpyruvate catalyzed by enolase does not directly produce ATP or NADH; therefore it is surprising that, among all glycolytic enzymes, α-enolase was one of only two glycolytic enzymes consistently up-regulated from MCI to AD. These findings suggest enolase is involved with more than glucose metabolism in AD brain, but may possess other functions, normally necessary to preserve brain function. This review examines potential altered function(s) of brain enolase in MCI, early-onset AD, and AD, alterations that may contribute to the biochemical, pathological, clinical characteristics, and progression of this dementing disorder.  相似文献   

14.
Mutations in the presenilin 1 (PS1) gene are associated with autosomal dominant, early-onset, familial Alzheimer's disease and result in increased release of the hyperaggregatable 42-amino acid form of the amyloid beta-peptide (A(beta)42). To determine which subcellular compartments are potential source(s) of released Abeta42, we compared the levels and spatial segregation of intracellular A(beta)40 and A(beta)42 peptides between N2a neuroblastoma cells doubly transfected with the "Swedish" familial Alzheimer's disease-linked amyloid precursor protein variant and either wild-type PS1 (PS1(wt)) or familial Alzheimer's disease-linked delta9 mutant PS1 (PS1delta9). As expected, PS1delta9-expressing cells had dramatically higher levels of intracellular Abeta42 than did cells expressing PS1wt. However, the highest levels of A(beta)42 colocalized not with endoplasmic reticulum or Golgi markers but with rab8, a marker for trans-Golgi network (TGN)-to-plasma membrane (PM) transport vesicles. We show that PS1 mutants are capable of causing accumulation of A(beta)42 in late compartments of the secretory pathway, generating there a readily releasable source of A(beta)42. Our findings indicate that PS1 "bioactivity" localizes to the vicinity of the TGN and/or PM and reconcile the apparent discrepancy between the preponderant concentration of PS1 protein in proximal compartments of the secretory pathway and the recent findings that PS1 "bioactivity" can control gamma-secretase-like processing of another transmembrane substrate, Notch, at or near the PM.  相似文献   

15.
Alzheimer's disease (AD) is thought by many to result from the accumulation of the neurotoxic amyloid-β (Aβ) peptide in brain parenchyma. The process by which Aβ is proteolytically derived from the larger amyloid precursor protein (APP) has been the focus of much attention in the AD research field over the past decade. Recently, several of the proteins directly involved in the generation of Aβ have been identified and characterized providing a number of viable therapeutic targets for the treatment of AD. However, the cellular mechanisms by which these proteins interact in the proteolytic processing of APP have not been well defined, nor are they readily apparent when one considers what is known about the intracellular localization and trafficking of the various participants. This article will review the underlying cell biology of Aβ production and discuss the mechanistic options for APP processing given the current knowledge of the proteases involved.  相似文献   

16.
One of the hallmarks of Alzheimer's disease is the accumulation of senile plaques in brain, extracellular lesions comprised mostly of aggregates of the amyloid beta-peptide (Abeta). Abeta is proteolytically derived from the Alzheimer's amyloid precursor protein (APP). The generation of Abeta and nonamyloidogenic derivatives of APP involves utilization of alternative processing pathways and multiple subcellular compartments. To improve our understanding of the regulation of APP processing, we investigated the effects of wortmannin, a phosphatidylinositol 3-kinase (PI3-kinase) inhibitor, on APP processing. PI3-kinases form a multifaceted family of enzymes that represent converging points for multiple signal transduction pathways and also act as key regulators of vesicular trafficking. In N2a neuroblastoma cells expressing either wild-type APP or the "Swedish" familial Alzheimer's disease-associated mutant variant of APP, wortmannin treatment resulted in decreased release of both Abeta and soluble APPalpha. In parallel, full-length APP and both processed derivatives accumulated inside the cells. These effects were not present at nanomolar concentrations of wortmannin, but only at micromolar concentrations, implying the possible involvement of a recently described trans-Golgi network (TGN)-associated PI3-kinase that is resistant to nanomolar concentrations of the inhibitor, but sensitive to micromolar concentrations. All effects were reversible when the drug was removed from the cell culture medium. Given the suspected site of action of this novel PI3-kinase activity at the TGN, it is tempting to speculate that the unexpected increase in the levels of both intracellular soluble APPalpha and intracellular Abeta might be due to wortmannin-induced covesiculation of APP together with its respective secretase enzymes within the TGN, leading to the execution of alpha-, beta-, and gamma-secretase reactions.  相似文献   

17.
Alzheimer's disease (AD) is marked by the presence of neurofibrillary tangles and amyloid plaques in the brain of patients. To study plaque formation, we report on further quantitative and qualitative analysis of human and mouse amyloid beta peptides (Abeta) from brain extracts of transgenic mice overexpressing the London mutant of human amyloid precursor protein (APP). Using enzyme-linked immunosorbant assays (ELISAs) specific for either human or rodent Abeta, we found that the peptides from both species aggregated to form plaques. The ratios of deposited Abeta1-42/1-40 were in the order of 2-3 for human and 8-9 for mouse peptides, indicating preferential deposition of Abeta42. We also determined the identity and relative levels of other Abeta variants present in protein extracts from soluble and insoluble brain fractions. This was done by combined immunoprecipitation and mass spectrometry (IP/MS). The most prominent peptides truncated either at the carboxyl- or the amino-terminus were Abeta1-38 and Abeta11-42, respectively, and the latter was strongly enriched in the extracts of deposited peptides. Taken together, our data indicate that plaques of APP-London transgenic mice consist of aggregates of multiple human and mouse Abeta variants, and the human variants that we identified were previously detected in brain extracts of AD patients.  相似文献   

18.
Beta amyloid peptide-containing neuritic plaques are a defining feature of Alzheimer's disease pathology. Beta amyloid are 38-43 residue peptides derived by proteolytic cleavage of amyloid precursor protein. Although much attention has focused on the proteolytic events leading to beta amyloid generation, the function of amyloid precursor protein remains poorly described. Previously, we reported that amyloid precursor protein functions as a pro-inflammatory receptor on monocytic lineage cells and defined a role for amyloid precursor protein in adhesion by demonstrating that beta(1) integrin-mediated pro-inflammatory activation of monocytes is amyloid precursor protein dependent. We demonstrated that antibody-induced cross-linking of amyloid precursor protein in human THP-1 monocytes and primary mouse microglia stimulates a tyrosine kinase-based pro-inflammatory signaling response leading to acquisition of a reactive phenotype. Here, we have identified pro-inflammatory mediators released upon amyloid precursor protein-dependent activation of monocytes and microglia. We show that amyloid precursor protein cross-linking stimulated tyrosine kinase-dependent increases in pro-inflammatory cytokine release and a tyrosine kinase-independent increase in beta amyloid 1-42 generation. These data provide much needed insight into the function of amyloid precursor protein and provide potential therapeutic targets to limit inflammatory changes associated with the progression of Alzheimer's disease.  相似文献   

19.
The enzyme gamma-secretase catalyzes the intramembrane proteolytic cleavage that generates the amyloid beta-peptide from the beta-amyloid precursor protein. The presenilin (PS) protein is one of the four integral membrane protein components of the mature gamma-secretase complex. The PS protein is itself subjected to endoproteolytic processing, generating stable N- and C-terminal fragment (NTF and CTF, respectively) heterodimers. Here we demonstrate that coexpression of PS1 NTF and CTF functionally mimics expression of the full-length PS1 protein and restores gamma-secretase activity in PS-deficient mammalian cells. The coexpressed fragments re-associate with each other inside the cell, where they also interact with nicastrin, another gamma-secretase complex component. Analysis of gamma-secretase activity following the expression of mutant forms of NTF and CTF, under conditions bypassing endoproteolysis, indicated that the putatively catalytic Asp257 and Asp385 residues have a direct effect on gamma-secretase activity. Moreover, we demonstrate that expression of the wild-type CTF rescues endoproteolytic cleavage of C-terminally truncated PS1 molecules that are otherwise uncleaved and inactive. Recovery of cleavage is critically dependent on the integrity of Asp385. Taken together, our findings indicate that ectopically expressed NTF and CTF restore functional gamma-secretase complexes and that the presence of full-length PS1 is not a requirement for proper complex assembly.  相似文献   

20.
Differences Between Vascular and Plaque Core Amyloid in Alzheimer's Disease   总被引:20,自引:5,他引:15  
Abstract: The predominant protein of cerebrovascular and plaque core amyloid in Alzheimer's disease, Down's syndrome, hereditary hemorrhage with amyloidosis—Dutch type, sporadic cerebral amyloid angiopathy, and age-related amyloidosis is a unique polypeptide, called β protein. The length of the plaque amyloid protein was reported to be 42–43 residues, but the complete length of the cerebral vascular amyloid is not known. To clarify this issue, amyloid fibrils from the leptomeninges of an Alzheimer's disease patient were isolated and the primary structure determined. The complete sequence of cerebrovascular β-amyloid protein, although homologous to the plaque core amyloid protein previously reported, has 39 residues instead of 42. Amino terminal heterogeneity is present but minimal, and it is three residues shorter at the carboxy terminus. These differences are similar to those found in two cases of hereditary hemorrhage with amyloidosis—Dutch type. The differences between vascular and plaque β-amyloid may reflect diverse processing of the β protein precursor in the vessel wall and brain parenchyma due to tissue-specific endopeptidases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号