首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The three-dimensional structure of the complexes of ribonuclease A with cytidyl-2',5'-adenosine (2',5'-CpA) and deoxycytidyl-3',5'-deoxyadenosine [3',5'-d(CpA)] in aqueous solution has been determined by 1H NMR methods in combination with restrained molecular dynamics calculations. Twenty-three intermolecular NOE cross-corrections for the 3',5'-d(CpA) complex and 19 for the 2',5'-CpA, together with about 1,000 intramolecular NOEs assigned for each complex, were translated into distance constraints and used in the calculation. No significant changes in the global structure of the enzyme occur upon complex formation. The side chains of His 12, Thr 45, His 119, and the amide backbone group of Phe 120 are involved directly in the binding of the ligands at the active site. The conformation of the two bases is anti in the two complexes, but differs from the crystal structure in the conformation of the two sugar rings in 3',5'-d(CpA), shown to be in the S-type region, as deduced from an analysis of couplings between the ribose protons. His 119 is found in the two complexes in only one conformation, corresponding to position A in the free protein. Side chains of Asn 67, Gln 69, Asn 71, and Glu 111 from transient hydrogen bonds with the adenine base, showing the existence of a pronounced flexibility of these enzyme side chains at the binding site of the downstream adenine. All other general features on the structures coincide clearly with those observed in the crystal state.  相似文献   

2.
A wealth of information available from x-ray crystallographic structures of enzyme-ligand complexes makes it possible to study interactions at the molecular level. However, further investigation is needed when i) the binding of the natural substrate must be characterized, because ligands in the stable enzyme-ligand complexes are generally inhibitors or the analogs of substrate and transition state, and when ii) ligand binding is in part poorly characterized. We have investigated these aspects in the binding of substrate uridyl 3',5'-adenosine (UpA) to ribonuclease A (RNase A). Based on the systematically docked RNase A-UpA complex resulting from our previous study, we have undertaken a molecular dynamics simulation of the complex with solvent molecules. The molecular dynamics trajectories of this complex are analyzed to provide structural explanations for varied experimental observations on the ligand binding at the B2 subsite of ribonuclease A. The present study suggests that B2 subsite stabilization can be effected by different active site groups, depending on the substrate conformation. Thus when adenosine ribose pucker is O4'-endo, Gln69 and Glu111 form hydrogen-bonding contacts with adenine base, and when it is C2'-endo, Asn71 is the only amino acid residue in direct contact with this base. The latter observation is in support of previous mutagenesis and kinetics studies. Possible roles for the solvent molecules in the binding subsites are described. Furthermore, the substrate conformation is also examined along the simulation pathway to see if any conformer has the properties of a transition state. This study has also helped us to recognize that small but concerted changes in the conformation of the substrate can result in substrate geometry favorable for 2',3' cyclization. The identified geometry is suitable for intraligand proton transfer between 2'-hydroxyl and phosphate oxygen atom. The possibility of intraligand proton transfer as suggested previously and the mode of transfer before the formation of cyclic intermediate during transphosphorylation are discussed.  相似文献   

3.
Cyclic 3',5'-adenosine monophosphate and sodium dibutyryl cyclic3',5'-adenosine monophosphate had no effect on dark-germinationof light-sensitive lettuce {Lacluca sativa L., var. Grand Rapids)seeds when given alone. Cyclic 3',5'-adenosine monophosphate,however, synergistically enhanced the 3 µ 10–5 Mgibberellic acid-induced germination, but showed no such effecton kinetin-stimulated germination. 5'-AMP, in contrast to cyclic3',5'-adenosine monophosphate, had no effect on gibberellicacidinduced germination. (Received August 8, 1971; )  相似文献   

4.
Cyclic 3',5'-adenosine monophosphate and sodium dibutyryl cyclic3',5'-adenosine monophosphate had no effect on sporulation ofSaccharomyces cerevisiae, when added to a sporulation mediumnot enriched with glucose. They did, however, reverse the repressionof sporulation by glucose, when added to the sporulation mediumtogether with glucose. 5'-AMP, 5'-ADP and 5'-ATP did not reversethe repression of sporulation by glucose. (Received February 24, 1972; )  相似文献   

5.
A detailed 220-MHz NMR study has been made of the conformational properties for the homodinucleotide adenylyl-3' leads to 5'-adenosine, ApA, in D2O. Unambiguous signal assignments of all proton signals were made with the aid of selectively deuterated nucleotidyl units, ApA, ApA, and D-8ApA, and complete, accurate sets of NMR parameters were derived by simulation-iteration methods. Sets of limiting chemical shifts and coupling values were also obtained for ApA and constituent monomers 3'-AMP and 5'-AMP at infinite dilution and at identical ionization states for assessment of dimerization effects. Conformational properties were evaluated quantitatively for most of the conformational bonds of ApA and these are consistent with two compact folded dynamically averaged structures, a base-stacked right helical structure, I, characterized as anti, C3'-endo, g-, w,w' (320,330 degrees), g'g', gg, C3'-endo, anti, and a more loosely base-stacked loop structure, II, with anti, C3'-endo, g-, w,w' (80 degrees, 50 degrees), g'g', gg, C3'-endo, anti orientations. Dimerization produces a number of nucleotidyl conformational changes including a shift in ribose equilibrium C2'-endo (S) in equilibrium C3'-endo (N) in favor of C3'-endo in both Ap- and -pA (60:40 vs. 35:65 in monomers), a change in glycosidic torsion angle chiCN toward 0 degrees, and a greater locking-in of rotamers along bonds involved in the phosphodiester backbone. Moreover, there is clear evidence that the transitions from S leads to N forms and chiCN leads to 0 degrees are directly related to base stacking in ApA. Finally, ApA exists in solution as an equilibrium between I, II and an unstacked form(s) with as yet undetermined conformational features. Since C4'-C5', C5'-O5', and C3'-O3' bonds possess exceptional conformational stabilities, it is proposed that destacking occurs primarily by rotation about P-O5' and/or O3'-P. Predominant factors influencing the overall ApA conformation are thus base-base interaction and flexibility about P-O5' and O3'-P, with change of ribose conformation occurring in consequence of an alteration of chiCN, the latter in turn being governed by the need for maximum eta overlap of stacked adenine rings.  相似文献   

6.
In experiments on unanesthetized non-immobilized rabbits, unit responses in the cortex and thalamus to the cyclic 3',5'-adenosine monophosphate (cAMPh) were studied by means of microionophoresis. It was shown that cAMPh changes the pattern of background unit activity, increasing or decreasing the discharge frequency. cAMPh changes unit responses both to acetylcholine and noradrenaline. These data permit, to assume that cAMPh participates both in adrenergic and in acetylocholinergic mechanisms of excitation processing in brain neurones.  相似文献   

7.
Two reductases, P450 oxidoreductase and P450Bm-3 reductase, were purified on a 2',5'-adenosine diphosphate solid support. Although the efficiency of these columns is well established, the cost of the resin and the eluting material 2'-adenosine can be prohibitive. Herein we show that the less costly 2',3'-adenosine monophosphate is an excellent eluting material.  相似文献   

8.
Cyclic 3',5'-adenosine monophosphate (cAMP) inhibits the rate of Escherichia coli growth in media with glucose. When the exogenous nucleotide is added, the generation time and the lag phase become longer. These parameters decrease if cAMP is entirely absent from the cya- mutant as compared to the parent cya+ strain. The nucleotide exerts a low activity in media with glycerol. The action of cAMP is highly specific.  相似文献   

9.
Using a modified Boyden chamber assay, we have examined the effect of cyclic nucleotides on bovine aortic endothelial cell migration in vitro. Dibutyrl cyclic 3',5'-adenosine monophosphate (5 mM) inhibited endothelial cell random migration by 67% and inhibited fibronectin-induced chemotaxis by 75%. Agents which significantly stimulated adenylate cyclase activity in endothelial cell membranes were also effective inhibitors of endothelial cell migration. Timolol blocked both the isoproterenol-induced stimulation of adenylate cyclase and the ability of isoproterenol to inhibit endothelial cell migration. Caffeine and isoproterenol together had a greater inhibitory effect on endothelial cell motility than either alone. These data suggest that cAMP may modulate vascular endothelial cell migration in an inhibitory fashion.  相似文献   

10.
X-ray crystallographic studies on 3'-5' oligomers have provided a great deal of information on the stereochemistry and conformational flexibility of nucleic acids and polynucleotides. In contrast, there is very little information available on 2'-5' polynucleotides. We have now obtained the crystal structure of Cytidylyl-2',5'-Adenosine (C2'p5'A) at atomic resolution to establish the conformational differences between these two classes of polymers. The dinucleoside phosphate crystallises in the monoclinic space group C2, with a = 33.912(4)A, b = 16.824(4)A, c = 12.898(2)A and beta = 112.35(1) with two molecules in the asymmetric unit. Spectacularly, the two independent C2'p5'A molecules in the asymmetric unit form right handed miniature parallel stranded double helices with their respective crystallographic two fold (b axis) symmetry mates. Remarkably, the two mini duplexes are almost indistinguishable. The cytosines and adenines form self-pairs with three and two hydrogen bonds respectively. The conformation of the C and A residues about the glycosyl bond is anti same as in the 3'-5' analog but contrasts the anti and syn geometry of C and A residues in A2'p5'C. The furanose ring conformation is C3' endo, C2' endo mixed puckering as in the C3'p5'A-proflavine complex. A comparison of the backbone torsion angles with other 2'-5' dinucleoside structures reveals that the major deviations occur in the torsion angles about the C3'-C2' and C4'-C3' bonds. A right-handed 2'-5' parallel stranded double helix having eight base pairs per turn and 45 degrees turn angle between them has been constructed using this dinucleoside phosphate as repeat unit. A discussion on 2'-5' parallel stranded double helix and its relevance to biological systems is presented.  相似文献   

11.
The level of cyclic 3',5'-adenosine monophosphate (cAMP) in human platelets and the activity of platelet adenylate cyclase in response to prostaglandin E1 stimulation do not change during two days storage at room temperature in ACD solution. However, the level of cyclic AMP is lower in platelets stored in ACD solution than in platelets from blood anticoagulated by ethylenediamine tetra-acetic acid.  相似文献   

12.
Evidence is presented for the presence of multiple cyclic AMP binding components in the plasma membrane and cytosol fractions of porcine renal cortex and medulla. N6-(Ethyl-2-diazomalonyl)-3',5'-adenosine monophosphate, a photoaffinity label for cyclic AMP binding sites, exhibits non-covalent binding characteristics similar to cyclic AMP in membrane and soluble fractions. Binding data for either compound to the plasma membrane fraction yields biphasic Scatchard plots while triphasic plots are obtained with the dialyzed cytosol. When covalently labeled fractions are separated on SDS-polyacrylamide gel electrophoresis, the cyclic AMP photoaffinity label is found on 49 000 and 130 000 dalton components in each kidney fraction. DEAE-cellulose and gel filtration chromatography of the labeled cortical cytosol fraction establishes that the three components suggested by the binding data correspond to two 49 000 dalton species and a 130 000 component. The 49 000 species have higher affinities for cyclic AMP than the 130 000 component (Ka(1) = 2.0 . 10(9), Ka(2) = 1.7 . 10(8), Ka(3) = 1.0 . 10(7)). The 49 000 components are associated with protein kinase activity while the 130 000 component does not exhibit protein kinase, adenosine deaminase, or cyclic nucleotide phosphodiesterase activity. Immunologic results and effects of phosphorylation and cyclic GMP on cyclic AMP binding further suggest that the 49 000 components are regulatory subunits of cyclic AMP-dependent protein kinases. Cyclic AMP binding to the 130 000 component is markedly inhibited by adenosine and adenine nucleotides, but not cyclic GMP. Thus, this component may reflect an aspect of adenosine control or metabolism which may or may not be a cyclic AMP-related cellular function.  相似文献   

13.
M Pincus  L L Thi  R P Carty 《Biochemistry》1975,14(16):3653-3661
2'(3')-O-Bromoacetyluridine reacts rapidly and selectively with bovine pancreatic ribonuclease A at pH 5.5 and 25 degrees. Under conditions of high molar ratios of nucleoside derivative to enzyme, the only derivative is N-3-carboxymethylhistidine-12 ribonuclease A. The reaction occurs almost exclusively with the histidine-12 residue at the active site inactivation of the enzyme is accompanied by the stoichiometric disappearance of unmodified ribonuclease A and appearance of the product, N-3-carboxymethylhistidine-12 ribonuclease A. Kinetic studies indicate a mechanism involving saturation of the enzyme by the nucleoside derivative. The inhibitor constant, Kb, is 0.087 M and k3 is 35.1 times 10(-4) sec minus 1. The reaction of 2'(3')-O-bromoacetyluridine with the enzyme occurs at a rate approximately 3100 times greater than that corresponding to the reaction with L-histidine. The alkylation reaction is inhibited competitively by uridine with a Ki of 0.013 M. 2'(3')-O-Bromoacetyluridine inactivates ribonuclease A 4.5 times faster than bromoacetic acid and the specificity for alkylation of active-site histidine residues is different. 2'(3')-O-Bromoacetyluridine reacts 1000 times more rapidly with ribonuclease A than iodoacetamide. The contribution of nucleoside binding to the overall rate of alkylation is discussed.  相似文献   

14.
Changes in the amount of cyclic 3',5'-adenosine monophosphate within the mycelium of Streptomyces griseus were measured as cultures progressed through trophophase and idiophase in a complex medium supporting growth and streptomycin synthesis. Concentrations were highest before the cultures entered stationary phase and had declined 90% by 5 h before the antibiotic was produced. This low conentration was maintained while the antibiotic accumulated during the idiophase. The results indicate that the onset of streptomycin synthesis is not directly mediated by an increase in intracellular cyclic 3',5'-adenosine monophosphate concentration, and thus that antibiotic production in S. griseus is not controlled by catabolite repression.  相似文献   

15.
A kinetic analysis of cyclic 3',5'-adenosine monophosphate (cAMP) synthesis in an adenine auxotroph of Escherichia coli 3000 was made by assaying the incorporation of [3H]adenine into cAMP during exponential growth. The rate of increase in intracellular [3H]cAMP was very slow (0.1-0.2 pmol/min/DU660). The steady state level was attained at about 40-min incubation after the addition of [3H]adenine, and was estimated to be 5 to 7 pmol/DU660. The rate and level of intracellular cAMP were scarcely affected by growth conditions, such as change of carbon source, whereas the excretion of cAMP into the medium began immediately after the addition of [3H]adenine, and continued at a rate of 5 to 7 pmol/min/DU660 in the glycerol medium. The excretion rate decreased to 1.4 pmol/min/DU660 in the presence of glucose. These results are inconsistent with the view that the excretion rate is dependent on the intracellular concentration of cAMP. Although the decreased rate of cAMP synthesis in the presence of glucose accounts for the permanent catabolite repression of inducible enzyme systems, no immediate depression in cAMP synthesis, which might account for the transient repression, was found after the addition of glucose.  相似文献   

16.
Oligoribonucleotides containing 2',5'-phosphodiester linkages have been synthesized on a solid support by the 'silyl-phosphoramidite' method. The stability of complexes formed between these oligonucleotides and complementary 3',5'-RNA strands have been studied using oligoadenylates and a variety of oligonucleotides of mixed base sequences including phosphorothioate backbones. In many cases, particularly for 2',5'-linked adenylates, the UV melting profiles are quite sharp and exhibit large hyperchromic changes. Substituting a few 3',5'-linkages with the 2',5'-linkage within an oligomer lowers the Tm of the complex and the degree of destabilization depends on the neighboring residues and neighboring linkages. The 2',5'-linked oligoribonucleotides prepared in this study exhibited remarkable selectivity for complementary single stranded RNA over DNA. For example, in 0.01 M phosphate buffer--0.10 M NaCl (pH 7.0), no association was observed between 2',5'-r(CCC UCU CCC UUC U) and its Watson-Crick DNA complement 3',5'-d(AGAAGGGAGAGGG). However, 2',5'-r(CCC UCU CCC UUC U) with its RNA complement 3',5'-r(AGAAGGGAGAGGG) forms a duplex which melts at 40 degrees C. The decamer 2',5'-r(Ap)9A forms a complex with both poly dT and poly rU but the complex [2',5'-r(Ap)9A]:[poly dT] is unstable (Tm, -1 degree C) and is seen only at high salt concentrations. In view of their unnatural character and remarkable selectivity for single stranded RNA, 2',5'-oligo-RNAs and their derivatives may find use as selective inhibitors of viral mRNA translation, and as affinity ligands for the purification of cellular RNA.  相似文献   

17.
18.
Mathy N  Bénard L  Pellegrini O  Daou R  Wen T  Condon C 《Cell》2007,129(4):681-692
Although the primary mechanism of eukaryotic messenger RNA decay is exoribonucleolytic degradation in the 5'-to-3' orientation, it has been widely accepted that Bacteria can only degrade RNAs with the opposite polarity, i.e. 3' to 5'. Here we show that maturation of the 5' side of Bacillus subtilis 16S ribosomal RNA occurs via a 5'-to-3' exonucleolytic pathway, catalyzed by the widely distributed essential ribonuclease RNase J1. The presence of a 5'-to-3' exoribonuclease activity in B. subtilis suggested an explanation for the phenomenon whereby mRNAs in this organism are stabilized for great distances downstream of "roadblocks" such as stalled ribosomes or stable secondary structures, whereas upstream sequences are never detected. We show that a 30S ribosomal subunit bound to a Shine Dalgarno-like element (Stab-SD) in the cryIIIA mRNA blocks exonucleolytic progression of RNase J1, accounting for the stabilizing effect of this element in vivo.  相似文献   

19.
When a particulate NADPH oxidase prepared from phorbol ester-activated human neutrophils was treated with pyridoxal 5'-diphospho-5'-adenosine (PLP-AMP), the superoxide anion-producing activity was inhibited according to affinity labeling kinetics. NADPH afforded a protection against inactivation which was competitive with respect to PLP-AMP; 2',5'-ADP and 2'-phospho-5' diphosphoadenosine (ATP ribose) appeared to be as potent as NADPH as protecting agents. NADP+ and ATP were less effective, while ADP and GTP-gamma-S did not protect significantly. These results suggest that PLP-AMP can be used, in conjunction with tritiated cyanoborohydride, to identify the elusive NADPH-dependent flavoprotein which is part of the electron transfer chain of NADPH oxidase.  相似文献   

20.
Positive selection procedures for mutants of Salmonella typhimurium lacking cyclic 3', 5'7-adenosine monophosphate (cAMP) phosphodiesterase have been devised. The gene (cpd) coding for this enzyme has been located on the chromosome and shown to be 25% co-transducible with metC using phage P22. The mutants have been used to investigate the role of the enzyme in the control of genes whose expression is known to be dependent on cAMP. Significant alterations in the regulation of some but not others of these genes have been observed in these mutants. Mutants lacking the cAMP phosphodiesterase are more sensitive than their parents to a variety of antibiotics that appear to enter the cell through cAMP-dependent transport systems. They grow faster than the wild type on succinate-ammonia-salts, and glucose-proline-salts media and are inhibited by added cAMP on glucose, citrate, or glycerol-ammonia salts media whereas the wild type is unaffected. Neither the growth of Salmonella typhimurium on glycerol or citrate media nor the level of acid hexose phosphatase in the strain is affected by the loss of cAMP phosphodiesterase. In addition, the mutant strains are extremely sensitive to high levels of cAMP. Loss of the cAMP phosphodiesterase in strains unable to synthesize cAMP (adenyl cyclase negative) reduces by 10-fold the requirement for exogenous cAMP for expression of catabolite-sensitive phenotypes. These results suggest that through its control of cAMP levels in the cell the phosphodiesterase may be involved in the regulation of certain classes of catabolite-sensitive operaons and also in protecting the cell against high levels of cAMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号