共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Chimeric influenza virus induces neutralizing antibodies and cytotoxic T cells against human immunodeficiency virus type 1. 总被引:4,自引:12,他引:4
下载免费PDF全文

S Li V Polonis H Isobe H Zaghouani R Guinea T Moran C Bona P Palese 《Journal of virology》1993,67(11):6659-6666
Expression vectors based on DNA or plus-stranded RNA viruses are being developed as vaccine carriers directed against various pathogens. Less is known about the use of negative-stranded RNA viruses, whose genomes have been refractory to direct genetic manipulation. Using a recently described reverse genetics method, we investigated whether influenza virus is able to present antigenic structures from other infectious agents. We engineered a chimeric influenza virus which expresses a 12-amino-acid peptide derived from the V3 loop of gp120 of human immunodeficiency virus type 1 (HIV-1) MN. This peptide was inserted into the loop of antigenic site B of the influenza A/WSN/33 virus hemagglutinin (HA). The resulting chimeric virus was recognized by specific anti-V3 peptide antibodies and a human anti-gp120 monoclonal antibody in both hemagglutination inhibition and neutralization assays. Mice immunized with the chimeric influenza virus produced anti-HIV antibodies which were able to bind to synthetic V3 peptide, to precipitate gp120, and to neutralize MN virus in human T-cell culture system. In addition, the chimeric virus was also capable of inducing cytotoxic T cells which specifically recognize the HIV sequence. These results suggest that influenza virus can be used as an expression vector for inducing both B- and T-cell-mediated immunity against other infectious agents. 相似文献
3.
Virus-specific cytotoxic T lymphocytes in human immunodeficiency virus type 1-infected chimpanzees.
下载免费PDF全文

Chimpanzees have been important in studies of human immunodeficiency virus type 1 (HIV-1) pathogenesis and in evaluation of HIV-1 candidate vaccines. However, little information is available about HIV-1-specific cytotoxic T lymphocytes (CTL) in these animals. In the present study, in vitro stimulation of peripheral blood mononuclear cells (PBMC) from infected chimpanzees with HIV-1 Gag peptides was shown to be a sensitive, reproducible method of expanding HIV-1-specific CD8(+) effector CTL. Of interest, PBMC from two chimpanzees had CTL activity against Gag epitopes also recognized by major histocompatibility complex class I-restricted CTL from HIV-1-infected humans. The use of peptide stimulation will help to clarify the role of CTL in vaccine-mediated protection and HIV-1 disease progression in this important animal model. 相似文献
4.
V3 loop of the human immunodeficiency virus type 1 Env protein: interpreting sequence variability. 总被引:8,自引:26,他引:8
下载免费PDF全文

Two different states of human immunodeficiency virus type 1 are apparent in the asymptomatic and late stages of infection. Important determinants associated with these two states have been found within the V3 loop of the viral Env protein. In this study, two large data sets of published V3 sequences were analyzed to identify patterns of sequence variability that would correspond to these two states of the virus. We were especially interested in the pattern of basic amino acid substitutions, since the presence of basic amino acids in V3 has been shown to change virus tropism in cell culture. Four features of the sequence heterogeneity in V3 were observed: (i) approximately 70% of all nonconservative basic substitutions occur at four positions in V3, and V3 sequences with a basic substitution in at least one of these four positions contain approximately 95% of all nonconservative basic substitutions; (ii) substitution patterns within V3 are influenced by the identity of the amino acid at position 25; (iii) sequence polymorphisms account for a significant fraction of uncharged amino acid substitutions at several positions in V3, and sequence heterogeneity other than these polymorphisms is most significant at two positions near the tip of V3; and (iv) sequence heterogeneity in V3 (in addition to the basic amino acid substitutions) is approximately twofold greater in V3 sequences that contain basic amino acid substitutions. By using this sequence analysis, we were able to identify distinct groups of V3 sequences in infected patients that appear to correspond to these two virus states. The identification of these discrete sequence patterns in vivo demonstrates how the V3 sequence can be used as a genetic marker for studying the two states of human immunodeficiency virus type 1. 相似文献
5.
Toshio Murakami Shuzo Matsushita Yosuke Maeda Kiyoshi Takatsuki Takashi Uchiyama Toshio Hattori 《生物化学与生物物理学报:疾病的分子基础》1993,1181(2):155-162
A principal neutralizing determinant of human immunodeficiency virus type 1 (HIV-1) lies within the V3 loop of gp120, the external major envelope glycoprotein. V3 loop peptides derived from two HIV-1 strains, HTLV-III BH-10 (V3-BH10) and LAVELI (V3-ELI), were synthesized and biotinylated. The binding of both biotinylated V3-BH10 and V3-ELI to the surfaces of MOLT-4 clone 8 cells was demonstrated by flow cytometric analyses. Both the peptides (more than 2 μM) bound to the cells (2 · 105) in a dose-dependent manner. The binding of biotinylated V3-BH10 was specifically inhibited by a neutralizing monoclonal antibody (0.5β). The binding of both of the biotinylated V3 loop peptides was enhanced by the addition of unlabeled V3-BH10. In addition, the peptides were employed as ligands on affinity columns. A major V3 loop binding protein (V3BP) was purified from the membrane soluble fraction of MOLT-4 cells by successive application to two different V3 loop columns. V3BP consisted of two major polypeptides (32 and 33 kDa). The SDS-PAGE profile of V3BP did not change under non-reducing conditions, but only a single band was observed after analysis on native PAGE. The major peak of the eluate as determined by size exclusion chromatography was abroad and the estimated relative molecular mass was much larger than 33 kDa, suggesting that V3BP comprises several subunits. Taken together, we confirmed that the V3 loop peptides are useful in the characterization of V3BP(s) of which they are conformational ligands. 相似文献
6.
Convergent evolution within the V3 loop domain of human immunodeficiency virus type 1 in association with disease progression. 总被引:5,自引:6,他引:5
下载免费PDF全文

N Strunnikova S C Ray R A Livingston E Rubalcaba R P Viscidi 《Journal of virology》1995,69(12):7548-7558
Phylogenetic analysis was used to study in vivo genetic variation of the V3 region of human immunodeficiency virus type 1 in relation to disease progression in six infants with vertically acquired human immunodeficiency virus type 1 infection. Nucleotide sequences from each infant formed a monophyletic group with similar average branch lengths separating the sets of sequences. In contrast to the star-shaped phylogeny characteristic of interinfant viral evolution, the shape of the phylogeny formed by sequences from the infants who developed AIDS tended to be linear. A computer program, DISTRATE, was written to analyze changes in DNA distance values over time. For the six infants, the rate of divergence from the initial variant was inversely correlated with CD4 cell counts averaged over the first 11 to 15 months of life (r = -0.87, P = 0.024). To uncover evolutionary relationships that might be dictated by protein structure and function, tree-building methods were applied to inferred amino acid sequences. Trees constructed from the full-length protein fragment (92 amino acids) showed that viruses from each infant formed a monophyletic group. Unexpectedly, V3 loop protein sequences (35 amino acids) that were found at later time points from the two infants who developed AIDS clustered together. Furthermore, these sequences uniquely shared amino acids that have been shown to confer a T-cell line tropic phenotype. The evolutionary pattern suggests that viruses from these infants with AIDS acquired similar and possibly more virulent phenotypes. 相似文献
7.
Nef-mediated resistance of human immunodeficiency virus type 1 to antiviral cytotoxic T lymphocytes. 总被引:3,自引:0,他引:3
下载免费PDF全文

Otto O Yang Phuong Thi Nguyen Spyros A Kalams Tanya Dorfman Heinrich G G?ttlinger Sheila Stewart Irvin S Y Chen Steven Threlkeld Bruce D Walker 《Journal of virology》2002,76(4):1626-1631
Although Nef has been proposed to effect the escape of human immunodeficiency virus type 1 (HIV-1) from cytotoxic T lymphocytes (CTL) through downmodulation of major histocompatibility complex class I molecules, little direct data have been presented previously to support this hypothesis. By comparing nef-competent and nef-deleted HIV-1 strains in an in vitro coculture system, we demonstrate that the presence of this viral accessory gene leads to impairment of the ability of HIV-1-specific CTL clones to suppress viral replication. Furthermore, inhibition by genetically modified CTL that do not require major histocompatibility complex class I-presented antigen (expressing the CD4 T-cell receptor [TCR] zeta-chain hybrid receptor) is similar for both nef-competent and -deleted strains, indicating that Nef does not impair the effector functions of CTL but acts at the level of TCR triggering. In contrast, we note that another accessory gene, vpr, does not induce resistance of HIV-1 to suppression by CTL clones. We conclude that Nef (and not Vpr) contributes to functional HIV-1 immune evasion and that this effect is mediated by diminished antigen presentation to CTL. 相似文献
8.
Alteration of V3 loop context within the envelope of human immunodeficiency virus type 1 enhances neutralization.
下载免费PDF全文

M Robert-Guroff A Louie M Myagkikh F Michaels M P Kieny M E White-Scharf B Potts D Grogg M S Reitz Jr 《Journal of virology》1994,68(6):3459-3466
Neutralization of a chimeric human immunodeficiency virus (HIV) type 1, containing the V3 loop of the MN isolate substituted within the HXB2 envelope, was enhanced up to 20-fold compared with the HXB2 or MN parental isolates by human HIV-positive sera. MN V3 loop-specific monoclonal antibodies were better able to recognize the chimeric virus compared with MN, staining a greater percentage of infected cells and exhibiting slight increases in relative affinity with a concomitant increase in neutralization titer. Competition analysis revealed that enhanced neutralization by human HIV-positive sera of the chimera was attributable in some cases to better reactivity with the linear V3 loop epitope but in others to conformational loop epitopes or previously cryptic or poorly recognized epitopes outside the loop region. Mice primed with a vaccinia virus-chimeric envelope recombinant and boosted with gp160 developed a spectrum of antibodies different from that of mice similarly immunized with HXB2 or MN recombinants or that of naturally infected humans. The chimeric envelope elicited antibodies with enhanced binding to the native MN V3 loop; however, the sites seen by the BALB/c mice were not neutralizing epitopes. Nevertheless, similar to the observations made with use of human sera, the chimeric virus was more readily neutralized by all of the immune mouse sera, an effect apparently mediated by non-V3 loop epitopes. These studies illustrate that not only the V3 loop sequence and conformation but also its context within the viral envelope influence neutralization. 相似文献
9.
Molecular mimicry between the human immunodeficiency virus type 1 gp120 V3 loop and human brain proteins.
下载免费PDF全文

Immunologically cross-reactive proteins in the human brain that resemble the V3 loop of human immunodeficiency virus type 1 (HIV-1) gp120 have been identified. When several homogenized tissues from normal brains were used, a monoclonal antibody raised against amino acids 308 to 320 of the V3 loop reacted with three prominent human brain proteins (HBP) of 35, 55, and 110 kDa. Among the three, the 55-kDa HBP appears to be specific to the central nervous system. These results indicate that the V3 loop of HIV-1 gp120 shares an epitope with HBP. An immune response to the V3 loop that generates cross-reactive antibodies to cellular proteins may be an autoimmune mechanism by which HIV-1 can damage the central nervous system. 相似文献
10.
Cooperative effects of the human immunodeficiency virus type 1 envelope variable loops V1 and V3 in mediating infectivity for T cells. 总被引:2,自引:7,他引:2
下载免费PDF全文

Insertion of T-cell line-tropic V3 and V4 loops from the HXB2 strain into the macrophage-tropic YU-2 envelope resulted in a virus with delayed infectivity for HUT78 and Jurkat cells compared with HXB2. Sequence analysis of viral DNA derived from long-term cultures of Jurkat cells revealed a specific mutation that changed a highly conserved Asn residue in the V1 loop of Env to an Asp residue (N-136-->D). Introduction of this mutation into clones containing a T-cell line-tropic V3 loop, either with or without a T-cell line-tropic V4 loop, resulted in viruses that replicated to high levels in Jurkat cells and peripheral blood lymphocytes. The Env proteins from these constructs were expressed with the vaccinia virus/T7 hybrid system and were found to be translated, processed, and cleaved and to bind to soluble CD4 similar to the wild-type HXB2 and YU-2 Env proteins. Env-mediated fusion with HeLa T4+ cells, however, was regulated by both the altered V1 loop and T-cell line-tropic V3 loop. These results suggest that subsequent to the initial gp120-CD4 binding event, a functional interaction can occur between the altered V1 loop and T-cell line-tropic V3 loop that results in infection of Jurkat cells and peripheral blood lymphocytes. 相似文献
11.
N-linked glycosylation of the V3 loop and the immunologically silent face of gp120 protects human immunodeficiency virus type 1 SF162 from neutralization by anti-gp120 and anti-gp41 antibodies 总被引:1,自引:0,他引:1
下载免费PDF全文

We examined how asparagine-linked glycans within and adjacent to the V3 loop (C2 and C3 regions) and within the immunologically silent face (V4, C4, and V5 regions) of the human immunodeficiency virus (HIV) SF612 envelope affect the viral phenotype. Five of seven potential glycosylation sites are utilized when the virus is grown in human peripheral blood mononuclear cells, with the nonutilized sites lying within the V4 loop. Elimination of glycans within and adjacent to the V3 loop renders SF162 more susceptible to neutralization by polyclonal HIV(+)-positive and simian/human immunodeficiency virus-positive sera and by monoclonal antibodies (MAbs) recognizing the V3 loop, the CD4- and CCR5-binding sites, and the extracellular region of gp41. Importantly, our studies also indicate that glycans located within the immunologically silent face of gp120, specifically the C4 and V5 regions, also conferred on SF162 resistance to neutralization by anti-V3 loop, anti-CD4 binding site, and anti-gp41 MAbs but not by antibodies targeting the coreceptor binding site. We also observed that the amino acid composition of the V4 region contributes to the neutralization phenotype of SF162 by anti-V3 loop and anti-CD4 binding site MAbs. Collectively, our data support the proposal that the glycosylation and structure of the immunologically silent face of the HIV envelope plays an important role in defining the neutralization phenotype of HIV type 1. 相似文献
12.
Development of the anti-gp120 antibody response during seroconversion to human immunodeficiency virus type 1. 总被引:3,自引:25,他引:3
下载免费PDF全文

We have studied the development of the antibody response to the surface glycoprotein gp120 of human immunodeficiency virus type 1 in three individuals who presented with primary human immunodeficiency virus type 1 infection syndrome. Serum anti-gp120 antibodies were first detected 4 to 23 days after presentation, after p24 antigen and infectious-virus titers in the peripheral blood had declined manyfold from their highest values. Whether anti-gp120 antibodies present at undetectable levels are involved in clearance of viremia remains unresolved. Among the earliest detectable anti-gp120 antibodies were those to conformationally sensitive epitopes; these antibodies were able to block the binding of gp120 monomers to soluble CD4 or to a human monoclonal antibody to a discontinuous epitope overlapping the CD4-binding site. Some of these antibodies were type specific to a degree, in that they were more effective at blocking ligand binding to autologous gp120 than to heterologous gp120. However, the appearance of these antibodies did not correlate with that of antibodies able to neutralize the autologous virus in vitro by a peripheral blood mononuclear cell-based assay. Antibodies to the V3 loop were detected at about the same time as, or slightly later than, those to the CD4-binding site. There was a weak correlation between the presence of antibodies to the V3 loop and autologous virus-neutralizing activity in two of three individuals studied. However, serum from the third individual contained V3 antibodies but lacked the ability to neutralize the autologous virus in vitro, even immediately after seroconversion. Thus, no simple, universal correlate of autologous virus-neutralizing activity in a peripheral blood mononuclear cell-based assay is apparent from in vitro assays that rely on detecting antibody interactions with monomeric gp120 or fragments thereof. 相似文献
13.
Apoptosis induced in CD4+ cells expressing gp160 of human immunodeficiency virus type 1. 总被引:9,自引:12,他引:9
下载免费PDF全文

In a previous study (Y. Koga, M. Sasaki, H. Yoshida, H. Wigzell, G. Kimura, and K. Nomoto, J. Immunol. 144:94-102, 1990), we demonstrated that the expression of gp160, a precursor form of envelope glycoprotein of human immunodeficiency virus type 1, in CD4+ cells causes the downregulation of surface CD4 and single-cell killing by forming intracellular gp160-CD4 complex. In the present study we investigated the events that lead to cell death in CD4+ cells expressing gp160. We found that apoptosis is induced in cells undergoing single-cell death. Moreover, even the cell clone, which expresses so little gp160 that it does not exhibit any apparent cytopathic effects, such as the inhibition of cell growth, was found to be highly susceptible to the apoptosis induction by the anti-Fas monoclonal antibody. 相似文献
14.
Detection of cytotoxic T lymphocytes specific for synthetic peptides of gp160 in HIV-seropositive individuals. 总被引:21,自引:0,他引:21
M Clerici D R Lucey R A Zajac R N Boswell H M Gebel H Takahashi J A Berzofsky G M Shearer 《Journal of immunology (Baltimore, Md. : 1950)》1991,146(7):2214-2219
Four synthetic peptides corresponding to the IIIB sequence of gp160 of HIV were recently reported to stimulate Th cell function by PBL from HIV-infected, asymptomatic patients. In the present report, we used these same peptides to demonstrate CTL activity in a similar patient population. EBV-transformed B-cell lines from asymptomatic, HIV seropositive and seronegative control donors were pre-incubated with the peptides. Fresh PBL from 19 (76%) of 25 HIV seropositive donors lysed autologous targets pulsed with at least one of the four peptides. Autologous targets pulsed with two non-immunogenic peptides were not lysed. PBL from none of the eight HIV seronegative controls lysed peptide-preincubated autologous targets. The CTL activity was mediated by T cells, was predominantly MHC class I restricted, and was increased by in vitro restimulation of PBL with the peptides. HLA A-2 was identified as a restricting element for all four peptides in different patients, and for three of the peptides in the same donor. HLA-A1 or -B8 may also present some of the peptides. Thus, the same peptides can be recognized by human Th cells and class I MHC-restricted CTL. 相似文献
15.
16.
Multibranched V3 peptides inhibit human immunodeficiency virus infection in human lymphocytes and macrophages. 总被引:1,自引:2,他引:1
下载免费PDF全文

N Yahi J Fantini K Mabrouk C Tamalet P de Micco J van Rietschoten H Rochat J M Sabatier 《Journal of virology》1994,68(9):5714-5720
Synthetic polymeric constructions (SPCs) including the consensus sequence of the human immunodeficiency virus type 1 (HIV-1) surface envelope glycoprotein gp120 V3 loop (GPGRAF) blocked the fusion between HIV-1- and HIV-2-infected cells and CD4+ uninfected cells. A structure-activity relationship study using V3 SPC analogs showed that the most efficient inhibitor of cell fusion was an eight-branched SPC with the hexapeptide motif GPGRAF (i.e., [GPGRAF]8-SPC). N-terminal acetylation or incorporation of D-amino acids in the GPGRAF sequence of this SPC resulted in significant loss of activity. Analogs with fewer than six residues in the motif (i.e., GPGRA or GPGR), as well as SPCs with a nonrelevant sequence, did not inhibit cell fusion, demonstrating the high specificity of the antifusion activity. [GPGRAF]8-SPC, which was not toxic to CEM cells at concentrations of up to 50 microM, inhibited 50% of HIV-1(LAI) replication in these cells at a concentration of 0.07 microM. Moreover, [GPGRAF]8-SPC inhibited the infection of human peripheral blood mononuclear cells by several HIV-1 and HIV-2 isolates, including laboratory strains [HIV-1(LAI), HIV-1(NDK), and HIV-2(ROD)], and fresh primary isolates, including two zidovudine-resistant HIV-1 isolates and two HIV-2 isolates obtained from infected individuals. The multibranched peptide also inhibited infection of human primary macrophages by the highly cytopathic macrophage-tropic isolate HIV-1(89.6). The antiviral activity of [GPGRAF]8-SPC was not related to a virucidal effect, since preincubation of HIV-1 with the peptide did not affect its infectious titer. This result is in agreement with the concept that the multibranched peptide mimics a part of the V3 loop and thus interacts with the host cell. The therapeutic properties of synthetic multibranched peptides based on the V3 loop consensus motif should be evaluated in HIV-infected patients. 相似文献
17.
Kiszka I Kmieciak D Gzyl J Naito T Bolesta E Sieron A Singh SP Srinivasan A Trinchieri G Kaneko Y Kozbor D 《Journal of virology》2002,76(9):4222-4232
The magnitude and breadth of cytotoxic-T-lymphocyte (CTL) responses induced by human immunodeficiency virus type 1 (HIV-1) envelope protein from which the hypervariable V3 loop had been deleted (DeltaV3) were evaluated in the HLA-A2/K(b) transgenic mice. It was demonstrated that vaccines expressing the DeltaV3 mutant of either HIV-1(IIIB) or HIV-1(89.6) envelope glycoprotein induced broader CD8(+) T-cell activities than those elicited by the wild-type (WT) counterparts. Specifically, the differences were associated with higher responses to conserved HLA-A2-restricted CTL epitopes of the envelope glycoprotein and could be correlated with an increased cell surface occupancy by the epitope-HLA-A2 complexes in target cells expressing the DeltaV3 mutant. Using recombinant vaccinia virus expressing heterologous gp160 of primary HIV-1 isolates in a murine challenge system, we observed that the extent of resistance to viral transmission was higher in animals immunized with the DeltaV3 than the WT envelope vaccine. The protection was linked to the presence of envelope-specific CD8(+) T cells, since depletion of these cells by anti-CD8 antibody treatment at the time of challenge abolished the vaccine-induced protection. The results from our studies provide insights into approaches for boosting the breadth of envelope-specific CTL responses. 相似文献
18.
Neutralizing antibodies against the V3 loop of human immunodeficiency virus type 1 gp120 block the CD4-dependent and -independent binding of virus to cells. 总被引:1,自引:1,他引:1
下载免费PDF全文

The CD4 molecule is an essential receptor for human immunodeficiency virus type 1 (HIV-1) through high-affinity interactions with the viral external envelope glycoprotein gp120. Previously, neutralizing monoclonal antibodies (MAbs) specific to the third hypervariable domain of gp120 (the V3 loop) have been thought to block HIV infection without affecting the binding of HIV particles to CD4-expressing human cells. However, here we demonstrate that this conclusion was not correct and was due to the use of soluble gp120 instead of HIV particles. Indeed, neutralizing anti-V3 loop MAbs inhibited completely the binding and entry of HIV particles into CD4+ human cells. In contrast, the binding of virus was only partially inhibited by neutralizing anti-CD4 MAbs against the gp120 binding site in CD4, which, like the anti-V3 loop MAbs, completely inhibited HIV entry and infection. Nonneutralizing control MAbs against either the V3 loop or the N or C terminus of gp120 had no significant effect on HIV binding and entry. HIV-1 particles were also found to bind human and murine cells expressing or not expressing the human CD4 molecule. Interestingly, the binding of HIV to CD4+ murine cells was inhibited by both anti-V3 and anti-CD4 MAbs, whereas the binding to human and murine CD4- cells was affected only by anti-V3 loop MAbs. The effect of anti-V3 loop neutralizing MAbs on the HIV binding to cells appears not to be the direct consequence of gp120 shedding from HIV particles or of a decreased affinity of CD4 or gp120 for binding to its surface counterpart. Taken together, our results suggest the existence of CD4-dependent and -independent binding events involved in the attachment of HIV particles to cells; in both of these events, the V3 loop plays a critical role. As murine cells lack the specific cofactor CXCR4 for HIV-1 entry, other cell surface molecules besides CD4 might be implicated in stable binding of HIV particles to cells. 相似文献
19.
In vivo distribution and cytopathology of variants of human immunodeficiency virus type 1 showing restricted sequence variability in the V3 loop.
下载免费PDF全文

Y K Donaldson J E Bell E C Holmes E S Hughes H K Brown P Simmonds 《Journal of virology》1994,68(9):5991-6005
The distribution, cell tropism, and cytopathology in vivo of human immunodeficiency virus (HIV) was investigated in postmortem tissue samples from a series of HIV-infected individuals who died either of complications associated with AIDS or for unrelated reasons while they were asymptomatic. Proviral sequences were detected at a high copy number in lymphoid tissue of both presymptomatic patients and patients with AIDS, whereas significant infection of nonlymphoid tissue such as that from brains, spinal cords, and lungs were confined to those with AIDS. V3 loop sequences from both groups showed highly restricted sequence variability and a low overall positive charge of the encoded amino acid sequence compared with those of standard laboratory isolates of HIV type 1 (HIV-1). The low charge and the restriction in sequence variability were comparable to those observed with isolates showing a non-syncytium-inducing (NSI) and macrophage-tropic phenotype in vitro. All patients were either exclusively infected (six of seven cases) or predominantly infected (one case) with variants with a predicted NSI/macrophage-tropic phenotype, irrespective of the degree of disease progression. p24 antigen was detected by immunocytochemical staining of paraffin-fixed sections in the germinal centers within lymphoid tissue, although little or no antigen was found in areas of lymph node or spleen containing T lymphocytes from either presymptomatic patients or patients with AIDS. The predominant p24 antigen-expressing cells in the lungs and brains of the patients with AIDS were macrophages and microglia (in brains), frequently forming multinucleated giant cells (syncytia) even though the V3 loop sequences of these variants resembled those of NSI isolates in vitro. These studies indicate that lack of syncytium-forming ability in established T-cell lines does not necessarily predict syncytium-forming ability in primary target cells in vivo. Furthermore, variants of HIV with V3 sequences characteristic of NSI/macrophage-tropic isolates form the predominant population in a range of lymphoid and nonlymphoid tissues in vivo, even in patients with AIDS. 相似文献
20.
Productive and lytic infection of human CD4+ type 1 helper T cells with macrophage-tropic human immunodeficiency virus type 1. 总被引:1,自引:1,他引:1
下载免费PDF全文

Y Tanaka Y Koyanagi R Tanaka Y Kumazawa T Nishimura N Yamamoto 《Journal of virology》1997,71(1):465-470
It is generally recognized that macrophage-tropic human immunodeficiency virus type 1 (HIV-1) is the predominant population during the acute and asymptomatic phases of HIV-1 infection. Here, we compared the proliferation and syncytium-inducing activities of different HIV-1 strains in primary CD4+ T cells expressing various helper T (Th)-type cytokine profiles. The macrophage-tropic HIV-1 strains HIV-1JR-CSF, HIV-1NFN-SX, and HIV-1SF162 could proliferate vigorously and generate syncytia in primary CD4+ T cells irrespective of their Th subtype, in contrast to the T-cell-line-tropic HIV-1 strains HIV-1NL4-3 and HIV-1IIIB, which favored non-type 1 Th conditions. These results indicate that macrophage-tropic HIV-1 may be more invasive and virulent, since it kills more CD4+ Th1 cells than T-cell-line-tropic HIV-1 during the early stages of HIV-1 infection, when the Th1 immune response is dominant. 相似文献