首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The humoral and cellular immune responses in the genital mucosa likely play an important role in the prevention of sexually transmitted infections, including infection with human immunodeficiency virus type 1 (HIV-1). Here we show that vaginal infection of progesterone-treated BALB/c mice with a recombinant influenza virus bearing the immunodominant P18IIIB cytotoxic T-lymphocyte (CTL) epitope of the gp160 envelope protein from an HIV-1 IIIB isolate (P18IIIB; RIQRGPGRAFVTIGK) can induce a specific immune response in regional mucosal lymph nodes, as well as in a systemic site (the spleen). A single inoculation of mice with the recombinant influenza virus induced long-lasting (at least 5 months) antigen-specific CTL memory detectable as a rapid recall of effector CTLs upon vaginal infection with recombinant vaccinia virus expressing HIV-1 IIIB envelope gene products. Long-term antigen-specific CTL memory was also induced and maintained in distant mucosal tissues when mice were intranasally immunized with the recombinant influenza virus. These results indicate that mucosal immunization and, in particular, local vaginal immunization with recombinant influenza virus can provide strong, durable immune responses in the female genital tract of mice.  相似文献   

2.
The magnitude and breadth of cytotoxic-T-lymphocyte (CTL) responses induced by human immunodeficiency virus type 1 (HIV-1) envelope protein from which the hypervariable V3 loop had been deleted (DeltaV3) were evaluated in the HLA-A2/K(b) transgenic mice. It was demonstrated that vaccines expressing the DeltaV3 mutant of either HIV-1(IIIB) or HIV-1(89.6) envelope glycoprotein induced broader CD8(+) T-cell activities than those elicited by the wild-type (WT) counterparts. Specifically, the differences were associated with higher responses to conserved HLA-A2-restricted CTL epitopes of the envelope glycoprotein and could be correlated with an increased cell surface occupancy by the epitope-HLA-A2 complexes in target cells expressing the DeltaV3 mutant. Using recombinant vaccinia virus expressing heterologous gp160 of primary HIV-1 isolates in a murine challenge system, we observed that the extent of resistance to viral transmission was higher in animals immunized with the DeltaV3 than the WT envelope vaccine. The protection was linked to the presence of envelope-specific CD8(+) T cells, since depletion of these cells by anti-CD8 antibody treatment at the time of challenge abolished the vaccine-induced protection. The results from our studies provide insights into approaches for boosting the breadth of envelope-specific CTL responses.  相似文献   

3.
Human immunodeficiency virus type 1 (HIV-1) isolates exhibit extensive sequence variation, particularly in the gp120 subunit of the envelope glycoprotein, and the degree of this variation has raised questions as to whether conserved regions of the HIV-1 envelope can be recognized by the host immune response. A CD8+ cytotoxic T-lymphocyte (CTL) clone specific for the HIV-1 envelope was derived by culturing peripheral blood mononuclear cells from an HIV-1 seropositive subject in the presence of a CD3-specific monoclonal antibody, interleukin-2, and irradiated allogeneic peripheral blood mononuclear cells. Lysis of target cells was restricted by an HLA-C molecule, Cw4, which has not been previously shown to present viral antigen to CTL. Mapping of the specificity of this CTL clone by using synthetic HIV-1 peptides localized the epitope to an 8-amino-acid region of gp120 (amino acids 376 to 383) which is conserved among approximately 90% of sequenced viral isolates. Examination of the recognition of variant peptides by this CTL clone demonstrated that a single, nonconservative amino acid substitution within the 8-amino-acid minimal epitope could abrogate lysis of targets incubated with the variant peptide. The identification of a CTL epitope in a highly conserved region of gp120 documents the ability of cellular immune responses of infected persons to respond to relatively invariant portions of this highly variable envelope glycoprotein. However, the ability of even a single-amino-acid change in gp120 to abolish lysis by CTL supports the hypothesis that sequence variation in HIV-1 may serve as a mechanism of immune escape. In addition, the identification of an HLA-C molecule presenting viral antigen to CTL supports a functional role for these molecules.  相似文献   

4.
Novel viral vectors that are able to induce both strong and long-lasting immune responses may be required as effective vaccines for human immunodeficiency virus type 1 (HIV-1) infection. Our previous experiments with a replication-competent vaccine strain-based rabies virus (RV) expressing HIV-1 envelope protein from a laboratory-adapted HIV-1 strain (NL4-3) and a primary HIV-1 isolate (89.6) showed that RV-based vectors are excellent for B-cell priming. Here we report that cytotoxic T-lymphocyte (CTL) responses against HIV-1 gp160 are induced by recombinant RVs. Our results indicated that a single inoculation of mice with an RV expressing HIV-1 gp160 induced a solid and long-lasting memory CTL response specific for HIV-1 envelope protein. Moreover, CTLs from immunized mice were not restricted to the homologous HIV-1 envelope protein and were able to cross-kill target cells expressing HIV-1 gp160 from heterologous HIV-1 strains. These studies further suggest promise for RV-based vectors to elicit a persistent immune response against HIV-1 and their potential utility as efficacious anti-HIV-1 vaccines.  相似文献   

5.
To improve the safety of recombinant vaccinia virus vaccines, modified vaccinia virus Ankara (MVA) has been employed, because it has a replication defect in most mammalian cells. Here we apply MVA to human immunodeficiency virus type 1 (HIV-1) vaccine development by incorporating the envelope protein gp160 of HIV-1 primary isolate strain 89.6 (MVA 89.6) and use it to induce mucosal cytotoxic-T-lymphocyte (CTL) immunity. In initial studies to define a dominant CTL epitope for HIV-1 89.6 gp160, we mapped the epitope to a sequence, IGPGRAFYAR (from the V3 loop), homologous to that recognized by HIV MN loop-specific CTL and showed that HIV-1 MN-specific CTLs cross-reactively recognize the corresponding epitope from strain 89.6 presented by H-2Dd. Having defined the CTL specificity, we immunized BALB/c mice intrarectally with recombinant MVA 89.6. A single mucosal immunization with MVA 89.6 was able to elicit long-lasting antigen-specific mucosal (Peyer’s patch and lamina propria) and systemic (spleen) CTL responses as effective as or more effective than those of a replication-competent vaccinia virus expressing 89.6 gp160. Immunization with MVA 89.6 led to (i) the loading of antigen-presenting cells in vivo, as measured by the ex vivo active presentation of the P18-89.6 peptide to an antigen-specific CTL line, and (ii) the significant production of the proinflammatory cytokines (interleukin-6 and tumor necrosis factor alpha) in the mucosal sites. These results indicate that nonreplicating recombinant MVA may be at least as effective for mucosal immunization as replicating recombinant vaccinia virus.  相似文献   

6.
gp120 is the envelope glycoprotein found on the surface of human immunodeficiency virus type 1 (HIV-1), and it binds to human cell surface CD4 receptors to initiate the HIV-1 infection process. It is now well-established that synthetic peptides from the V3 region on gp120 elicit antibodies that block HIV-1 infection and HIV-1-mediated cell fusion. Here we show that synthetic peptides derived from similar V3 regions of several isolates of HIV-1 bind [3H]heparin, and we also demonstrate that [3H]heparin binds to recombinant gp120 IIIB. The binding could be blocked by unlabeled heparin, dextran sulfate, and by a highly anionic benzylated synthetic peptide derived from human CD4 (amino acids 81-92). The nonbenzylated peptides from the same region were considerably less active. Unlabeled heparin, dextran sulfate, and the CD4-derived peptides were able to compete with the binding of soluble gp120 to immobilized antibodies against fragments of the V3 from isolate IIIB, but they had no effect on the binding of gp120 to anti-peptide antibodies targeted against another unrelated region of gp120. Biotin conjugated to the benzylated CD4-peptide bound to gp120 and was blocked from this binding by anti-V3 antibodies. These results indicate that the three materials that have been demonstrated by others to block HIV-1 infection in vitro, sulfated polysaccharides, certain CD4-derived synthetic peptides, and anti-V3 antibodies, may be acting through a common mechanism that includes binding to the V3 region of gp120 on HIV-1.  相似文献   

7.
For the structural analysis of T-cell receptor (TCR) and peptide/MHC interaction, a series of peptides with a single amino acid substitution by a corresponding D-amino acid, having the same weight, size, and charge, within P18-I10 (aa318-327: RGPGRAFVTI), an immunodominant epitope of HIV-1 IIIB envelope glycoprotein, restricted by the H-2Dd class I MHC molecule, has been synthesized. Using those peptides, we have observed that the replacement at positions 324F, 325V, 326T, and 327I with each corresponding D-amino acid induced marked reduction of the potency to sensitize targets for P18-I10-specific murine CD8+ cytotoxic T lymphocytes (CTLs), LINE-IIIB, recognition. To analyze further the role of amino acid at position 325, the most critical site for determining epitope specificity, we have developed a CTL line [LINE-IIIB(325D)] and its offspring clones specific for the epitope I-10(325v) having a D-valine (v) at position 325. Taking advantage of two distinct sets of CD8+ CTLs restricted by the same Dd, three-dimensional structural analysis on TCR and peptide/MHC complexes by molecular modeling was performed, which indicates that the critical amino acids within the TCRs for interacting with 325V or 325v appear to belong to the complementarity-determining region 1 but not to the complementarity-determining region 3 of Vbeta chain.  相似文献   

8.
During primary viral infection, in vivo exposure to high doses of virus causes a loss of Ag-specific CD8(+) T cells. This phenomenon, termed clonal exhaustion, and other mechanisms by which CTLs are deleted are poorly understood. Here we show evidence for a novel form of cell death in which recently stimulated CD8(+) HIV-1 envelope gp160-specific murine CTLs become apoptotic in vitro after brief exposure to free antigenic peptide (P18-I10). Peak apoptosis occurred within 3 h of treatment with peptide, and the level of apoptosis was dependent on both the time after initial stimulation with target cells and the number of targets. Using T cell-specific H-2D(d)/P18-I10 tetramers, we observed that the apoptosis was induced by such complexes. Induction of apoptosis was blocked by cyclosporin A, a caspase 3 inhibitor, and a mitogen-activated protein kinase inhibitor, but not by Abs to either Fas ligand or to TNF-alpha. Thus, these observations suggest the existence of a Fas- or TNF-alpha-independent pathway initiated by TCR signaling that is involved in the rapid induction of CTL apoptosis. Such a pathway may prove important in the mechanism by which virus-specific CTLs are deleted in the presence of high viral burdens.  相似文献   

9.
The HIV-1 envelope glycoprotein is a trimeric complex of heterodimers composed of a surface glycoprotein, gp120, and a transmembrane component, gp41. The association of this complex with CD4 stabilizes the coreceptor-binding site of gp120 and promotes the exposure of the gp41 helical region 1 (HR1). Here, we show that a 15-amino-acid peptide mimetic of the HIV-1 coreceptor CCR5 fused to a dimeric antibody Fc domain (CCR5mim-Ig) bound two gp120 molecules per envelope glycoprotein complex and by itself promoted HR1 exposure. CCR5mim-Ig also stabilized the association of a CD4-mimetic peptide with the envelope glycoprotein. A fusion of the CD4- and CCR5-mimetic peptides, DM1, bound gp120 and neutralized R5, R5X4, and X4 HIV-1 isolates comparably to CD4, and they did so markedly more efficiently than either peptide alone. Our data indicate that the potency of DM1-Ig derives from its avidity for the HIV-1 envelope glycoprotein trimer and from the bidirectional induction of its receptor-mimetic components. DM1 has significant advantages over other inhibitors that target both coreceptor and CD4-binding sites, and it may serve as a lead for a new class of HIV-1 inhibitor peptides.  相似文献   

10.
We have previously reported the induction of MHC class I-restricted, CD8+ cytotoxic T lymphocytes (CTLs) specific to human immunodeficiency virus type 1 (HIV-1) in mice by a 15-amino acid peptide (R15K) from the V3 loop in gp120. We now present evidence showing that CTL activity induced by R15K was stable for 8–10 weeks after a single injection and that as little as 20 μg peptide was sufficient for efficient CTL induction in vivo. While induction of CTLs was efficient with R15K emulsified in either complete or incomplete Freund's adjuvant, only a low-level CTL response was observed in mice immunized with R15K in either alum or saline. We analyzed a series of carrier-free synthetic peptides ranging in length from 8 to 24 amino acids from the V3 loop region and observed that peptide R10I consisting of 10 amino acids from the middle portion of R15K was more efficient for CTL induction. Additionally, lymph node cells from mice immunized with 24 and 15 amino acid peptides (N24G and R15K, respectively) when restimulated in vitro with R10I exhibited greater HIV-1 env-specific CTL activity than when either of the longer peptides was used for restimulation. A peptide consisting of only 8 amino acids (R8K) was sufficient neither for inducing primary CTLs nor for in vitro restimulation of lymph node CTL precursors. These results establish that a carrier-free 10-amino acid synthetic peptide from the V3 loop region in HIV-1 gp120 has the optimal sequence for efficient induction of HIV env-specific CTLs in mice.  相似文献   

11.
External envelope glycoprotein from cell membranes and culture media of H9 cells infected with human immunodeficiency virus type 1 (HIV-1) isolate HTLV-IIIRF was isolated by immunoaffinity chromatography and compared with similar materials isolated from another variant, HTLV-IIIB. Envelope glycoprotein from IIIB and IIIRF appears to be identical, whether isolated from infected cell membranes or culture media. The molecular size of the IIIRF external envelope glycoprotein was 110 kilodaltons, whereas the relative size of IIIB gp120 was 123 kilodaltons. Amino-terminal sequence analysis of purified external envelope glycoprotein isolated from infected cell membranes or culture fluids revealed identical single sequences for the first 20 amino acids for each variant. The sequences obtained for IIIB gp120 were identical to those reported for the BH10 clone of the IIIB isolate, and the sequences determined for IIIRF gp110 matched the amino acid sequence predicted for the HAT3 clone of the Haitian HIV isolate. The amino-terminal sequences of external envelope glycoproteins isolated from either HIV-1 variant corresponded to the sequence starting at the proposed proteolytic cleavage site for the processing of the signal peptide of gp160. Immunization with external envelope glycoprotein isolated from either of the two HIV-1 variants yielded goat antibodies that primarily precipitated the homologous antigen. Sequential immunization of a single goat with gp120 and then gp110 resulted in the generation of antibodies that precipitated external envelope glycoprotein from both variants.  相似文献   

12.
For testing of recombinant virus-like particles (VLPs) in the SHIV monkey model, SIVmac239 Pr56gag precursor-based pseudovirions were modified by HIV-1 gp160 derived peptides. First, well-characterized epitopes from the HIV-1 envelope glycoprotein were inserted into the Pr56gag precursor by replacing defined regions that were shown to be dispensable for virus particle formation. Expression of these chimeric proteins in a baculovirus expression system resulted in efficient assembly and release of non-infectious, hybrid VLPs. In a second approach the HIV-1IIIB external glycoprotein gp120 was covalently linked to an Epstein-Barr virus derived transmembrane domain. Coexpression of the hybrid envelope derivative with the Pr56gag precursor yielded recombinant SIV derived Pr56gag particles with the HIV-1 gp120 firmly anchored on the VLP surface. Immunization of rhesus monkeys with either naked VLPs or VLPs adsorbed to alum induced substantial serum antibody titers and promoted both T helper cell and cytotoxic T lymphocyte responses. Furthermore, priming macaques with the corresponding set of recombinant Semliki-Forest viruses tended to enhance the immunological outcome. Challenge of the immunized monkeys with chimeric SHIV resulted in a clearly accelerated reduction of the plasma viremia as compared to control animals.  相似文献   

13.
Repeated immunizations of goats, horses, or chimpanzees with envelope glycoprotein gp120 isolated from human immunodeficiency virus type 1 (HIV-1) resulted in type-specific neutralizing-antibody responses, which began to decay approximately 20 days following the administration of antigen. This was true repeatedly for serum samples from animals hyperimmunized with gp120s from either the HTLV-IIIB (IIIB) or the envelope-divergent HTLV-IIIRF (RF) HIV-1 isolates. Animals previously immunized with the IIIB gp120 were then inoculated with purified RF gp120. The first response in these animals was an anamnestic resurgence of neutralizing antibody to IIIB without detectable neutralizing antibody for RF. However, with later RF gp120 boosts, the IIIB neutralizing-antibody titers fell and an RF type-specific neutralizing-antibody response developed. When assessed with other HIV-1 variants, no group-specific neutralizing antibody was seen in any of the vaccination protocols evaluated. These results will pose real obstacles in the development of an effective vaccine for HIV.  相似文献   

14.
In previous studies, we have used antisera raised to envelope (env)-gene-encoded synthetic peptides to identify a region of (HIV) glycoprotein (gp) 120 env protein designated SP10 that contains a type-specific neutralizing determinant. To develop a polyvalent, synthetic peptide inoculum that can evoke both neutralizing antibodies and T cell proliferative responses to more than one HIV isolate, synthetic peptides containing type-specific neutralizing determinants of gp120 from HIV isolates HTLV-IIIB (IIIB), HTLV-IIIMN (MN) and HTLV-IIIRF (RF) were coupled to a 16 amino acid T cell epitope (T1) of HIV-IIIB gp120 and used to immunize goats. Goat antisera to each T1-SP10 peptide derived from the SP10 region of gp120 of IIIB, MN, and RF neutralized HIV isolates IIIB, MN and RF in a type-specific manner. Moreover, peripheral blood T cells from immunized goats also proliferated in a type-specific manner to peptides derived from gp120 of IIIB, MN, and RF. When combined in a trivalent inoculum, T1-SP10 peptides from HIV-1 isolates IIIB, MN, and RF evoked a high titered neutralizing antibody response to isolates IIIB, MN, and RF in goats and as well induced immune T cells to undergo blast transformation in the presence of peptides derived from gp120 of all three HIV isolates. The T1 portion of the T1-SP10 construct was shown to induce a B cell antibody response against determinants within the T1 peptide in addition to inducing T cell proliferative responses in immune goat T cells. Moreover, the SP10 portion of the T1-SP10 constructs not only induced B cell antibody production but also induced type-specific T cell proliferative responses localized to the C-terminal variable sequences of the SP10 peptides. Finally, the T1-SP10 peptide construct induced memory T cell proliferative responses to native gp120 env protein. Thus, combinations of homologous SP10 region synthetic peptides containing type-specific neutralizing determinants and T cell epitopes of HIV gp120 may be useful in man to elicit high titered neutralizing B cell responses and, as well, T cell responses to more than one HIV isolate.  相似文献   

15.
The role of carbohydrates in the immunogenicity of human immunodeficiency virus type 1 (HIV-1) glycoproteins (gp160 and gp120) remains poorly understood. We have analyzed the specificity and neutralizing capacity of antibodies raised against native gp160 or against gp160 deglycosylated by either endo F-N glycanase, neuraminidase, or alpha-mannosidase. Rabbits immunized with these immunogens produced antibodies that recognized recombinant gp160 (rgp160) from HIV-1 in a radioimmunoassay and in an enzyme-linked immunosorbent assay. Antibodies elicited by the different forms of deglycosylated gp160 were analyzed for their reactivity against a panel of synthetic peptides. Compared with anti-native gp160 antisera, serum reactivity to most peptides remained unchanged, or it could increase (peptide P41) or decrease. Only antibodies raised against mannosidase-treated gp160 failed to react with a synthetic peptide (peptide P29) within the V3 loop of gp120. Rabbits immunized with desialylated rgp160 generated antibodies which recognized not only rgp160 from HIV-1 but also rgp140 from HIV-2 at high titers. Although all antisera produced against glycosylated or deglycosylated rgp160 could prevent HIV-1 binding to CD4-positive cells in vitro, only antibodies raised against native or desialylated gp160 neutralized HIV-1 infectivity and inhibited syncytium formation between HIV-1-infected cells and noninfected CD4-positive cells, whereas antibodies raised against alpha-mannosidase-treated gp160 inhibited neither virus replication nor syncytium formation. These findings indicate that the carbohydrate moieties of gp160 can modulate the specificity and the protective efficiency of the antibody response to the molecule.  相似文献   

16.
The biologically active form of the human immunodeficiency virus type 1 (HIV-1) envelope (Env) glycoprotein is oligomeric. We previously described a soluble HIV-1 IIIB Env protein, gp140, with a stable oligomeric structure composed of uncleaved gp120 linked to the ectodomain of gp41 (P. L. Earl, C. C. Broder, D. Long, S. A. Lee, J. Peterson, S. Chakrabarti, R. W. Doms, and B. Moss, J. Virol. 68:3015-3026, 1994). Here we compared the antibody responses of rabbits to gp120 and gp140 that had been produced and purified in an identical manner. The gp140 antisera exhibited enhanced cross-reactivity with heterologous Env proteins as well as greater neutralization of HIV-1 compared to the gp120 antisera. To examine both immunogenicity and protective efficacy, we immunized rhesus macaques with oligomeric gp140. Strong neutralizing antibodies against a homologous virus and modest neutralization of heterologous laboratory-adapted isolates were elicited. No neutralization of primary isolates was observed. However, a substantial fraction of the neutralizing activity could not be blocked by a V3 loop peptide. After intravenous challenge with simian-HIV virus SHIV-HXB2, three of the four vaccinated macaques exhibited no evidence of virus replication.  相似文献   

17.
A few cases have been described of antigenic determinants that are broadly presented by multiple class II MHC molecules, especially murine I-E or human DR, in which polymorphism is limited to the beta chain, and the alpha chain is conserved. However, no similar cases have been studied for presentation by class I MHC molecules. Because both domains of the MHC peptide binding site are polymorphic in class I molecules, exploring permissiveness in class I presentation would be of interest, and also such broadly presented antigenic determinants would clearly be useful for vaccine development. We had defined an immunodominant determinant, P18, of the HIV-1 gp160 envelope protein recognized by human and murine CTL. To determine the range of class I MHC molecules that could present this peptide and to determine whether two HIV-1 gp160 Th cell determinants, T1 and HP53, could also be presented by class I MHC molecules, we attempted to generate CTL specific for these three peptides in 10 strains of B10 congenic mice, representing 10 MHC types, and BALB/c mice. P18 was presented by at least four different class I MHC molecules from independent haplotypes (H-2d, p, u, and q to CD8+ CTL. In H-2d and H-2q the presentation was mapped to the D-end class I molecule, and for Dd, a requirement for both the alpha 1 and alpha 2 domains of Dd, not Ld, was found. HP53 was also presented by the same four different class I MHC molecules to CD8+ CTL although at higher concentrations. T1 was presented by class I molecules in three different strains of distinct MHC types (B10.M, H-2f; B10.A, H-2a; and B10, H-2b) to CTL. The CTL specific for P18 and HP53 were shown to be CD8+ and CD4- and to kill targets expressing endogenously synthesized whole gp160 as well as targets pulsed with the corresponding peptide. To compare the site within each peptide presented by the different class I molecules, we used overlapping and substituted peptides and found that the critical regions of each peptide are the similar for all four MHC molecules. Thus, antigenic sites are broadly or permissively presented by class I MHC molecules even without a nonpolymorphic domain as found in DR and I-E, and these sequences may be of broad usefulness in a synthetic vaccine.  相似文献   

18.
We have recently described a mAb, KP15, directed against the MHC-I/peptide molecular complex consisting of H-2D(d) and a decamer peptide corresponding to residues 311-320 of the HIV IIIB envelope glycoprotein gp160. When administered at the time of primary immunization with a vaccinia virus vector encoding gp160, the mAb blocks the subsequent appearance of CD8(+) CTL with specificity for the immunodominant Ag, P18-I10, presented by H-2D(d). This inhibition is specific for this particular peptide Ag; another H-2D(d)-restricted gp160 encoded epitope from a different HIV strain is not affected, and an H-2L(d)-restricted epitope encoded by the viral vector is also not affected. Using functional assays and specific immunofluorescent staining with multivalent, labeled H-2D(d)/P18-I10 complexes (tetramers), we have enumerated the effects of blocking of priming on the subsequent appearance, avidity, and TCR Vbeta usage of Ag-specific CTL. Ab blocking skews the proportion of high avidity cells emerging from immunization. Surprisingly, Vbeta7-bearing Ag-specific TCR are predominantly inhibited, while TCR of several other families studied are not affected. The ability of a specific MHC/peptide mAb to inhibit and divert the CD8(+) T cell response holds implications for vaccine design and approaches to modulate the immune response in autoimmunity.  相似文献   

19.
Vaccines prepared from the envelope glycoprotein, gp120, of the common laboratory isolate of human immunodeficiency virus type 1 (HIV-1) (IIIB/LAV-1) elicit antibodies that neutralize the homologous virus but show little if any cross-neutralizing activity. This may be because the principal neutralizing determinant (PND) of gp120 is highly unusual in the IIIB/LAV-1 strain and is not representative of those found in the majority of field isolates. We have now examined the immunogenicity of recombinant gp120 prepared from the MN strain of HIV-1 (MN-rgp120), whose PND is thought to be representative of approximately 60% of the isolates in North America. Our results show that MN-rgp120 is a potent immunogen and elicits anti-gp120 titers comparable to those found in HIV-1-infected individuals. While both MN-rgp120 and IIIB-rgp120 induced antibodies able to block gp120 binding to CD4, strain-specific and type-common blocking antibodies were detected. Finally, antibodies to MN-rgp120 but not to IIIB-rgp120 were effective in neutralizing a broad range of laboratory and clinical isolates of HIV-1. These studies demonstrate that susceptibility or resistance to neutralization by antibodies to gp120 correlates with the PND sequence and suggest that the problem of antigenic variation may not be insurmountable in the development of an effective AIDS vaccine.  相似文献   

20.
Genetic variation of human immunodeficiency virus (HIV-1) represents a major obstacle for AIDS vaccine development. To decrease the genetic distances between candidate immunogens and field virus strains, we have designed and synthesized an artificial group M consensus env gene (CON6 gene) to be equidistant from contemporary HIV-1 subtypes and recombinants. This novel envelope gene expresses a glycoprotein that binds soluble CD4, utilizes CCR5 but not CXCR4 as a coreceptor, and mediates HIV-1 entry. Key linear, conformational, and glycan-dependent monoclonal antibody epitopes are preserved in CON6, and the glycoprotein is recognized equally well by sera from individuals infected with different HIV-1 subtypes. When used as a DNA vaccine followed by a recombinant vaccinia virus boost in BALB/c mice, CON6 env gp120 and gp140CF elicited gamma interferon-producing T-cell responses that recognized epitopes within overlapping peptide pools from three HIV-1 Env proteins, CON6, MN (subtype B), and Chn19 (subtype C). Sera from guinea pigs immunized with recombinant CON6 Env gp120 and gp140CF glycoproteins weakly neutralized selected HIV-1 primary isolates. Thus, the computer-generated "consensus" env genes are capable of expressing envelope glycoproteins that retain the structural, functional, and immunogenic properties of wild-type HIV-1 envelopes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号