共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Simon R Dunn John C BythellMartin D.A Le Tissier William J BurnettJeremy C Thomason 《Journal of experimental marine biology and ecology》2002,272(1):29-53
Different cell death pathways were investigated during bleaching in the sea anemone Aiptasia sp. in response to hyperthermic treatment. Using a suite of techniques, (haematoxylin and eosin staining of paraffin wax-embedded tissue sections, in-situ end labelling (ISEL) of fragmented DNA, agarose gel electrophoresis electron microscopy) both necrotic and programmed cell death (PCD) activity were indicated. After a treatment period of 4 days, the host endoderm tissues underwent necrotic cell death. This was indicated by widespread cellular degradation, dilation of cell cytoplasm and organelles, cell swelling and rupture, irregular pyknotic condensation of nuclear chromatin, and abundant cell debris. Host cell necrosis was associated with the release of zooxanthellae with a normal, healthy appearance into the coelenteron. Longer periods of hyperthermic treatment (7 days) were correlated with further animal cell degradation and the in-situ degradation of zooxanthellae remaining within the degraded endoderm. Within the same degraded endoderm tissue, the degradation of zooxanthellae resulted from two forms of cell death occurring simultaneously, which were identified as programmed cell death and cell necrosis. Programmed cell death of zooxanthellae was characterised by condensation of the cytoplasm and organelles, cell shrinkage, formation of accumulation bodies at the periphery of the cell wall, and DNA fragmentation. Cell necrosis of zooxanthellae was characterised by dilation of the cytoplasm and organelles, cell swelling and lysis, dispersion of cell component debris, and DNA fragmentation. The existence of a programmed cell death pathway within zooxanthellae is important to the understanding of coral bleaching events, raising interesting questions regarding the evolution of this process and the activation of the cellular trigger mechanisms involved. 相似文献
3.
Maura Farinacci 《Cytotechnology》2007,54(3):149-155
Neutrophil apoptosis is critical for final resolution of the inflammation in the tissues and for maintenance of neutrophil homeostasis under normal condition. An early hallmark of apoptotic cells is translocation of phosphatidylserine (PS) residues, normally located in the inner leaflet of cellular membrane, to the external cell surface; exposed PS is recognized by specific PS receptors on disposing cells. Here we report an improved procedure to detect neutrophil apoptosis by simultaneous staining for exposed PS with Cy3-labeled annexin V (Cy3) and for membrane integrity with the vital dye 6-carboxyfluorescein diacetate (6-CFDA) based on the APOAC apoptosis detection kit (Sigma). Spontaneous apoptosis was evaluated in ovine neutrophils cultured ex vivo for 18 h. We investigated the multiple parameters involved in the assay, i.e. the type of fixative (methanol, paraformaldehyde, or no fixation) and the type of slide (coated with Vectabond, polylysine or Parafilm®). Results indicated that both the adhesion to the slide and the fixation can modify neutrophil functional status and morphology, which result in misleading apoptosis detection. In order to minimize these artifacts, we have developed an improved APOAC assay procedure, staining cells while in suspension and using Parafilm® coated slides. 相似文献
4.
Xi-Min Hu Qi Zhang Rui-Xin Zhou Yan-Lin Wu Zhi-Xin Li Dan-Yi Zhang Yi-Chao Yang Rong-Hua Yang Yong-Jun Hu Kun Xiong 《World journal of stem cells》2021,13(5):386-415
Stem cell-based therapy raises hopes for a better approach to promoting tissue repair and functional recovery. However, transplanted stem cells show a high death percentage, creating challenges to successful transplantation and prognosis. Thus, it is necessary to investigate the mechanisms underlying stem cell death, such as apoptotic cascade activation, excessive autophagy, inflammatory response, reactive oxygen species, excitotoxicity, and ischemia/hypoxia. Targeting the molecular pathways involved may be an efficient strategy to enhance stem cell viability and maximize transplantation success. Notably, a more complex network of cell death receives more attention than one crucial pathway in determining stem cell fate, highlighting the challenges in exploring mechanisms and therapeutic targets. In this review, we focus on programmed cell death in transplanted stem cells. We also discuss some promising strategies and challenges in promoting survival for further study. 相似文献
5.
6.
Patrick Gonzalez 《Biochemical and biophysical research communications》2009,378(4):816-57
Galig, an internal gene to the galectin-3 gene, encodes two proteins and induces cell death in human cells. Mitogaligin, one of these proteins, contains a mitochondrial targeting sequence and promotes the release of cytochrome c into the cytosol. Here, we show that mitogaligin can also localize to nucleus. The nuclear form of mitogaligin induced cell death through a pathway exhibiting typical properties of apoptosis. These observations indicate for the first time that mitogaligin expresses cytotoxic properties not only when addressed to mitochondria but also when targeted to the nucleus. 相似文献
7.
《Cell calcium》2018
The plasma membrane Ca2+-ATPase (PMCA) is a ubiquitously expressed, ATP-driven Ca2+ pump that is critical for maintaining low resting cytosolic Ca2+ ([Ca2+]i) in all eukaryotic cells. Since cytotoxic Ca2+ overload has such a central role in cell death, the PMCA represents an essential “linchpin” for the delicate balance between cell survival and cell death. In general, impaired PMCA activity and reduced PMCA expression leads to cytotoxic Ca2+ overload and Ca2+ dependent cell death, both apoptosis and necrosis, whereas maintenance of PMCA activity or PMCA overexpression is generally accepted as being cytoprotective. However, the PMCA has a paradoxical role in cell death depending on the cell type and cellular context. The PMCA can be differentially regulated by Ca2+-dependent proteolysis, can be maintained by a localised glycolytic ATP supply, even in the face of global ATP depletion, and can be profoundly affected by the specific phospholipid environment that it sits within the membrane. The major focus of this review is to highlight some of the controversies surrounding the paradoxical role of the PMCA in cell death and survival, challenging the conventional view of ATP-dependent regulation of the PMCA and how this might influence cell fate. 相似文献
8.
The outline of the adult wing of lepidopteran insects (butterflies and moths) emerges as a result of disappearance of a group of cells at the periphery of the pupal wing. Histological observation of the pupal wing of Pieris rapae showed that, just after apolysis of the wing epithelium from the pupal cuticle, there occurs a rapid and localized decrease of the number of cells at the periphery of the wing. This decrease occurs through cell death, which lasts 1–1.5 days at 20°C. Dying cells lose contact with the neighbouring cells and show condensation of chromatin and cytoplasm. They then appear to be phagocytosed by neighbouring epithelial cells or discharged through the basal surface of the epithelium into the lumen within the wing and taken up by phagocytes. Fragmentation of DNA in the nuclei was detected in the dead cells or their debris. These results indicate that programmed cell death in the lepidopteran wing proceeds through a mechanism closely similar to that of apoptosis in the vertebrate. 相似文献
9.
The blastogenic cycle of the colonial ascidian Botryllus schlosseri concludes in a phase of selective cell and zooid death called takeover. Every week, all asexually derived parental zooids synchronously regress over a 30-h period and are replaced by a new generation. Here we document the sequential ultrastructural changes which accompany cell death during zooid degeneration. The principal mode of visceral cell death during takeover occurred by apoptosis, the majority of cells condensing and fragmenting into multiple membrane-bounded apoptotic bodies. Cytoplasmic organelles (mitochondria, basal bodies, striated rootlets) within apoptotic bodies retained ultrastructural integrity. Dying cells and fragments were then swiftly ingested by specialized blood macrophages or intraepithelial phagocytes and subsequently underwent secondary necrotic lysis. Certain organs (stomach, intestine) displayed a combination of necrotic and apoptotic changes. Lastly, the stomach, which demonstrated some of the earliest regressive changes, exhibited intense cytoplasmic immunostaining with a monoclonal antibody to ubiquitin at the onset of takeover. Affinity-purified rabbit antiserum against sodium dodecyl sulfate-denatured ubiquitin detected a characteristic 8.6-kDa mono-ubiquitin band by Western blot analysis. Collectively, these findings raise the possibility that cell death during takeover is a dynamic process which requires active participation of cells in their own destruction. 相似文献
10.
11.
《Cell calcium》2018
Cytosolic Ca2+ concentration levels fluctuate in an ordered manner along the cell cycle, in line with the fact that Ca2+ is involved in the regulation of cell proliferation. Cell proliferation should be an error-free process, yet is endangered by mistakes. In fact, a complex network of proteins ensures that cell cycle does not progress until the previous phase has been successfully completed. Occasionally, errors occur during the cell cycle leading to cell cycle arrest. If the error is severe, and the cell cycle checkpoints work perfectly, this results into cellular demise by activation of apoptotic or non-apoptotic cell death programs. Cancer is characterized by deregulated proliferation and resistance against cell death. Ca2+ is a central key to these phenomena as it modulates signaling pathways that control oncogenesis and cancer progression. Here, we discuss how Ca2+ participates in the exogenous and endogenous signals controlling cell proliferation, as well as in the mechanisms by which cells die if irreparable cell cycle damage occurs. Moreover, we summarize how Ca2+ homeostasis remodeling observed in cancer cells contributes to deregulated cell proliferation and resistance to cell death. Finally, we discuss the possibility to target specific components of Ca2+ signal pathways to obtain cytostatic or cytotoxic effects. 相似文献
12.
Ghosh Roy S Sadigh B Datan E Lockshin RA Zakeri Z 《World journal of biological chemistry》2014,5(2):93-105
Flaviviruses, ss(+) RNA viruses, include many of mankind's most important pathogens. Their pathogenicity derives from their ability to infect many types of cells including neurons, to replicate, and eventually to kill the cells. Flaviviruses can activate tumor necrosis factor α and both intrinsic(Bax-mediated) and extrinsic pathways to apoptosis. Thus they can use many approaches for activating these pathways. Infection can lead to necrosis if viral load is extremely high or to other types of cell death if routes to apoptosis are blocked. Dengue and Japanese Encephalitis Virus can also activate autophagy. In this case the autophagy temporarily spares the infected cell, allowing a longer period of reproduction for the virus, and the autophagy further protects the cell against other stresses such as those caused by reactive oxygen species. Several of the viral proteins have been shown to induce apoptosis or autophagy on their own, independent of the presence of other viral proteins. Given the versatility of these viruses to adapt to and manipulate the metabolism, and thus to control the survival of, the infected cells, we need to understand much better how the specific viral proteins affect the pathways to apoptosis and autophagy. Only in this manner will we be able to minimize the pathology that they cause. 相似文献
13.
Participation of the mitochondrial permeability transition pore in nitric oxide-induced plant cell death 总被引:13,自引:0,他引:13
Elzira E. Saviani Cintia H. Orsi Jusceley F. P. Oliveira Cecília A. F. Pinto-Maglio Ione Salgado 《FEBS letters》2002,510(3):136-140
In the present study, we investigated the involvement of the mitochondrial permeability transition pore (PTP) in nitric oxide (NO)-induced plant cell death. NO donors such as sodium nitroprusside (SNP) and S-nitroso-N-acetylpenicillamine inhibited growth and caused death in suspension-cultured cells of Citrus sinensis. Cells treated with SNP showed chromatin condensation and fragmentation, characteristic of apoptosis. SNP caused loss of the mitochondrial membrane electrical potential, which was prevented by cyclosporin A (CsA), a specific inhibitor of PTP formation. CsA also prevented the nuclear apoptosis and subsequent Citrus cell death induced by NO. These findings indicate that mitochondrial PTP formation is involved in the signaling pathway by which NO induces apoptosis in cultured Citrus cells. 相似文献
14.
Apoptosis: Programmed cell death in health and disease 总被引:3,自引:0,他引:3
Apoptosis is a normal physiological cell death process of eliminating unwanted cells from living organisms during embryonic and adult development. Apoptotic cells are characterised by fragmentation of nuclear DNA and formation of apoptotic bodies. Genetic analysis revealed the involvement of many death and survival genes in apoptosis which are regulated by extracellular factors. There are multiple inducers and inhibitors of apoptosis which interact with target cell specific surface receptors and transduce the signal by second messengers to programme cell death. The regulation of apoptosis is elusive, but defective regulation leads to aetiology of various ailments. Understanding the molecular mechanism of apoptosis including death genes, death signals, surface receptors and signal pathways will provide new insights in developing strategies to regulate the cell survival/death. The current knowledge on the molecular events of apoptotic cell death and their significance in health and disease is reviewed. 相似文献
15.
Programmed cell death is an important physiological response to many forms of cellular stress. The signaling cascades that result in programmed cell death are as elaborate as those that promote cell survival, and it is clear that coordination of both protein- and lipid-mediated signals is crucial for proper cell execution. Sphingolipids are a large class of lipids whose diverse members share the common feature of a long-chain sphingoid base, e.g., sphingosine. Many sphingolipids have been shown to play essential roles in both death signaling and survival. Ceramide, an N-acylsphingosine, has been implicated in cell death following a myriad of cellular stresses. Sphingosine itself can induce cell death but via pathways both similar and dissimilar to those of ceramide. Sphingosine-1-phosphate, on the other hand, is an anti-apoptotic molecule that mediates a host of cellular effects antagonistic to those of its pro-apoptotic sphingolipid siblings. Extraordinarily, these lipid mediators are metabolically juxtaposed, suggesting that the regulation of their metabolism is of the utmost importance in determining cell fate. In this review, we briefly examine the role of ceramide, sphingosine, and sphingosine-1-phosphate in programmed cell death and highlight the potential roles that these lipids play in the pathway to apoptosis. 相似文献
16.
Bakhshi J Weinstein L Poksay KS Nishinaga B Bredesen DE Rao RV 《Apoptosis : an international journal on programmed cell death》2008,13(7):904-914
The microenvironment of cancerous cells includes endoplasmic reticulum (ER) stress the resistance to which is required for
the survival and growth of tumors. Acute ER stress triggers the induction of a family of ER stress proteins that promotes
survival and/or growth of the cancer cells, and also confers resistance to radiation and chemotherapy. Prolonged or severe
ER stress, however, may ultimately overwhelm the cellular protective mechanisms, triggering cell death through specific programmed
cell death (pcd) pathways. Thus, downregulation of the protective stress proteins may offer a new therapeutic approach to
cancer treatment. In this regard, recent reports have demonstrated the roles of the phytochemical curcumin in the inhibition
of proteasomal activity and triggering the accumulation of cytosolic Ca2+ by inhibiting the Ca2+-ATPase pump, both of which enhance ER stress. Using a mouse melanoma cell line, we investigated the possibility that curcumin
may trigger ER stress leading to programmed cell death. Our studies demonstrate that curcumin triggers ER stress and the activation
of specific cell death pathways that feature caspase cleavage and activation, p23 cleavage, and downregulation of the anti-apoptotic
Mcl-1 protein. 相似文献
17.
18.
Apoptosis provides metazoans remarkable developmental flexibility by (1) eliminating damaged undifferentiated cells early in development and then (2) sculpting, patterning, and restructuring tissues during successive stages thereafter. We show here that apoptotic programmed cell death is infrequent and not obligatory during early embryogenesis of the purple sea urchin, Strongylocentrotus purpuratus. During the first 30 h of urchin development, fewer than 20% of embryos exhibit any cell death. Cell death during the cleavage stages consists of necrotic or pathological cell death, while cell death during the blastula and gastrula stages is random and predominantly caspase-mediated apoptosis. Apoptosis remains infrequent during the late blastula stage followed by a gradual increase in frequency during gastrulation. Even after prolonged exposure during the cleavage period to chemical stress, apoptosis occurs in less than 50% of embryos and always around the pre-hatching stage. Embryonic suppression of apoptosis through caspase inhibition leads to functionally normal larvae that can survive to metamorphosis, but in the presence of inducers of apoptosis, caspase inhibition leads to deformed larvae and reduced survival. Remarkably, however, pharmacological induction of apoptosis, while reducing overall survival, also significantly accelerates development of the survivors such that metamorphosis occurs up to a week before controls. 相似文献
19.
肠道病毒 71型(enterovirus type 71,EV71)感染常可引起婴幼儿手足口病(hand,foot and mouth disease,HFMD),还可引起中枢神经系统并发症等重症,甚至死亡。研究认为,EV71诱发重症的原因主要与病毒感染诱导细胞程序性死亡(programmed cell death,PCD)及诱导细胞产生大量炎症因子有关。病毒感染可通过激活不同的信号通路触发细胞程序性死亡,主要包括含半胱氨酸的天冬氨酸蛋白水解酶(cysteinyl aspartate specific proteinase,caspase)依赖的细胞凋亡、细胞焦亡,以及非caspase依赖的细胞坏死性凋亡。本研究旨在探讨EV71感染诱导细胞程序性死亡的形态学和分子生物学特征,利用显微镜和免疫荧光技术检测EV71感染后细胞形态变化,JC-1染色检测感染后细胞线粒体膜电位变化,流式细胞术及Annexin V-FITC/PI双染法、乳酸脱氢酶释放量法检测感染细胞的细胞膜损伤程度,结合蛋白免疫印迹法检测病毒感染后细胞中多聚ADP核糖聚合酶[poly(ADP-ribose) polymerase,PARP]、caspase-9、caspase-3等凋亡因子,以及细胞焦亡关键效应蛋白Gasdermin D、坏死性凋亡效应蛋白MLKL的磷酸化情况。结果显示,EV71感染后细胞主要呈现凋亡特征,并伴随少量细胞坏死。与细胞凋亡相关的PARP被剪切,caspase-9和caspase-3等相关因子被激活。经泛caspase抑制剂处理后,细胞程序性死亡被抑制,但仍有部分细胞坏死。结果提示,EV71感染以细胞凋亡为主,也可能存在非caspase依赖的细胞程序性死亡。 相似文献
20.
Matrine induces programmed cell death and regulates expression of relevant genes based on PCR array analysis in C6 glioma cells 总被引:1,自引:0,他引:1
Matrine, one of the main components extracted from Sophora flavescens Ait, has a wide range of pharmacological effects including anti-tumor activities on a number of cancer cell lines. This study
has investigated whether matrine could also display anti-tumor action on rat C6 glioma cells. Exposure of C6 cells to matrine
resulted in inhibition of proliferation and induction of apoptosis in a dose-dependent manner, as measured by the MTT assay
and Flow cytometry. The Annexin V/PI staining further detected the apoptotic cells at both early and late phases of apoptosis.
We used AO/EB staining to examine the programmed cell death of matrine-treated C6 cells, and showed that the death rate detected
by AO/EB staining was higher than the apoptosis rate measured by Annexin V/PI staining, suggesting that autophagy, the Type
II programmed cell death, may be involved in matrine-induced cell death, which was further confirmed by electronic microscopy.
To explore the molecular mechanism, an apoptosis real-time PCR array was performed, which has demonstrated that 57 genes were
at least 2-fold upregulated, and 11 genes were at least 2-fold downregulated in matrine-treated C6 cells, compared with untreated
cells. However, the gene expression profiles could only partly and roughly explain molecular mechanisms of apoptosis and autophagy
in matrine-treated C6 cells, thus further investigations are required to confirm the specific molecular pathways and related
molecules responsible for the programmed cell death. 相似文献