共查询到20条相似文献,搜索用时 0 毫秒
1.
Kamiya H Yakushiji H Dugué L Tanimoto M Pochet S Nakabeppu Y Harashima H 《Journal of molecular biology》2004,336(4):843-850
To examine the substrate recognition mechanism of the human MTH1 protein, which hydrolyzes 2-hydroxy-dATP, 8-hydroxy-dATP, and 8-hydroxy-dGTP, ten nucleotide analogs (8-bromo-dATP, 8-bromo-dGTP, deoxyisoinosine triphosphate, 8-hydroxy-dITP, 2-aminopurine-deoxyriboside triphosphate, 2-amino-dATP, deoxyxanthosine triphosphate, deoxyoxanosine triphosphate, dITP, and dUTP) were incubated with the MTH1 protein. Of these, the former five nucleotides were hydrolyzed with various efficiencies. The fact that the syn-oriented brominated nucleotides were hydrolyzed suggests that the MTH1 protein binds to deoxynucleotides adopting the syn-conformation. However, 8-hydroxy-dITP, which lacks the 2-amino group of 8-hydroxy-dGTP, was degraded with tenfold less efficiency as compared with 8-hydroxy-dGTP. In addition, deoxyisoinosine triphosphate, lacking the 6-amino group of 2-hydroxy-dATP, was hydrolyzed as efficiently as 8-hydroxy-dGTP, but less efficiently than 2-hydroxy-dATP. These results clarify the effects of the anti/syn conformation and the functional groups on the 2 and 6 positions of the purine ring on the recognition by the human MTH1 protein. 相似文献
2.
Cai JP Ishibashi T Takagi Y Hayakawa H Sekiguchi M 《Biochemical and biophysical research communications》2003,305(4):1073-1077
MutT-related proteins degrade 8-oxo-7,8-dihydrodeoxyguanosine triphosphate (8-oxo-dGTP), a mutagenic substrate for DNA synthesis, in the nucleotide pool, thereby preventing DNA replication errors. During a search of GenBank EST database, we found a new member of MutT-related protein, MTH2, which possesses the 23-amino acid MutT module. The cloned mouse MTH2 (mMTH2) cDNA was expressed in Escherichia coli mutT(-) cells and the protein was purified. mMTH2 protein hydrolyzes 8-oxo-dGTP to 8-oxo-dGMP, with Km of 32 microM. Expression of cDNA for mMTH2 reduced significantly the elevated level of spontaneous mutation frequency of E. coli mutT(-) cells. Thus, MTH2 has a potential to protect the genetic material from the untoward effects of endogenous oxygen radicals. MTH2 could act as an MTH1 redundancy factor. 相似文献
3.
《DNA Repair》2015
MTH1 protein sanitizes the nucleotide pool so that oxidized 2′-deoxynucleoside triphosphates (dNTPs) cannot be used in DNA replication. Cancer cells require MTH1 to avoid incorporation of oxidized dNTPs into DNA that results in mutations and cell death. Inhibition of MTH1 eradicates cancer, validating MTH1 as an anticancer target. By overexpressing MTH1, cancer cells may mediate cancer growth and resist therapy. To date, there is unreliable evidence suggesting that MTH1 is increased in cancer cells, and available methods to measure MTH1 levels are indirect and semi-quantitative. Accurate measurement of MTH1 in disease-free tissues and malignant tumors of patients may be essential for determining if the protein is truly upregulated in cancers, and for the development and use of MTH1 inhibitors in cancer therapy. Here, we present a novel approach involving liquid chromatography–isotope-dilution tandem mass spectrometry to positively identify and accurately quantify MTH1 in human tissues. We produced full length 15N-labeled MTH1 and used it as an internal standard for the measurements. Following trypsin digestion, seven tryptic peptides of both MTH1 and 15N-MTH1 were identified by their full scan and product ion spectra. These peptides provided a statistically significant protein score that would unequivocally identify MTH1. Next, we identified and quantified MTH1 in human disease-free breast tissues and malignant breast tumors, and in four human cultured cell lines, three of which were cancer cells. Extreme expression of MTH1 in malignant breast tumors was observed, suggesting that cancer cells are addicted to MTH1 for their survival. The approach described is expected to be applicable to the measurement of MTH1 levels in malignant tumors vs. surrounding disease-free tissues in cancer patients. This attribute may help develop novel treatment strategies and MTH1 inhibitors as potential drugs, and guide therapies. 相似文献
4.
《DNA Repair》2019
Unlike normal tissues, tumor cells possess a propensity for genomic instability, resulting from elevated oxidant levels produced by oncogenic signaling and aberrant cellular metabolism. Thus, targeting mechanisms that protect cancer cells from the tumor-inhibitory consequences of their redox imbalance and spontaneous DNA-damaging events is expected to have broad-spectrum efficacy and a high therapeutic index. One critical mechanism for tumor cell protection from oxidant stress is the hydrolysis of oxidized nucleotides. Human MutT homolog 1 (MTH1), the mammalian nudix (nucleoside diphosphate X) pyrophosphatase (NUDT1), protects tumor cells from oxidative stress-induced genomic DNA damage by cleansing the nucleotide pool of oxidized purine nucleotides. Depletion or pharmacologic inhibition of MTH1 results in genomic DNA strand breaks in many cancer cells. However, the mechanisms underlying how oxidized nucleotides, thought mainly to be mutagenic rather than genotoxic, induce DNA strand breaks are largely unknown. Given the recent therapeutic interest in targeting MTH1, a better understanding of such mechanisms is crucial to its successful translation into the clinic and in identifying the molecular contexts under which its inhibition is likely to be beneficial. Here we provide a comprehensive perspective on MTH1 function and its importance in protecting genome integrity, in the context of tumor-associated oxidative stress and the mechanisms that likely lead to irreparable DNA strand breaks as a result of MTH1 inhibition. 相似文献
5.
MTH1 是一种 DNA 氧化损伤修复酶,主要负责“清理”核苷酸池中氧化损伤的脱氧核苷三磷酸(dNTPs),以防其掺入 DNA 复 制中而造成碱基错配。研究表明,MTH1 与肿瘤细胞的生存密切相关,而正常细胞的生长与存活则不依赖于 MTH1。所以,以 MTH1 为靶 点开展抗肿瘤新药研发,已逐渐受到人们的关注。抑制 MTH1,为肿瘤治疗开辟了一条新途经。简介 MTH1 的结构和功能及其与肿瘤的关联, 着重对近年来 MTH1 抑制剂的发现过程和研究进展作一综述,探究小分子 MTH1 抑制剂与 MTH1 蛋白的作用模式,为 MTH1 抑制剂的设 计提供思路。 相似文献
6.
7.
Significance of the conserved amino acid sequence for human MTH1 protein with antimutator activity. 总被引:1,自引:0,他引:1 下载免费PDF全文
J P Cai H Kawate K Ihara H Yakushiji Y Nakabeppu T Tsuzuki M Sekiguchi 《Nucleic acids research》1997,25(6):1170-1176
8-Oxo-7,8-dihydro-2'-deoxyguanosine 5'-triphosphate (8-oxo-dGTP) is produced during normal cellular metabolism, and incorporation into DNA causes transversion mutation. Organisms possess an enzyme, 8-oxo-dGTPase, which catalyzes the hydrolysis of 8-oxo-dGTP to the corresponding nucleoside monophosphate, thereby preventing the occurrence of mutation. There are highly conserved amino acid sequences in prokaryotic and eukaryotic proteins containing this and related enzyme activities. To elucidate the significance of the conserved sequence, amino acid substitutions were introduced by site- directed mutagenesis of the cloned cDNA for human 8-oxo-dGTPase, and the activity and stability of mutant forms of the enzyme were examined. When lysine-38 was replaced by other amino acids, all of the mutants isolated carried the 8-oxo-dGTPase-negative phenotype. 8-Oxo-dGTPase-positive revertants, isolated from one of the negative mutants, carried the codon for lysine. Using the same procedure, the analysis was extended to other residues within the conserved sequence. At the glutamic acid-43, arginine-51 and glutamic acid-52 sites, all the positive revertants isolated carried codons for amino acids identical to those of the wild type protein. We propose that Lys-38, Glu-43, Arg-51 and Glu-52 residues in the conserved region are essential to exert 8-oxo-dGTPase activity. 相似文献
8.
《DNA Repair》2019
Cellular homeostasis is dependent on a balance between DNA damage and DNA repair mechanisms. Cells are constantly assaulted by both exogenous and endogenous stimuli leading to high levels of reactive oxygen species (ROS) that cause oxidation of the nucleotide dGTP to 8-oxodGTP. If this base is incorporated into DNA and goes unrepaired, it can result in G > T transversions, leading to genomic DNA damage. MutT Homolog 1 (MTH1) is a nucleoside diphosphate X (Nudix) pyrophosphatase that can remove 8-oxodGTP from the nucleotide pool before it is incorporated into DNA by hydrolyzing it into 8-oxodGMP. MTH1 expression has been shown to be elevated in many cancer cells and is thought to be a survival mechanism by which a cancer cell can stave off the effects of high ROS that can result in cell senescence or death. It has recently become a target of interest in cancer because it is thought that inhibiting MTH1 can increase genotoxic damage and cytotoxicity. Determining the role of MTH1 in normal and cancer cells is confounded by an inability to reliably and directly measure its native enzymatic activity. We have used the chimeric ATP-releasing guanine-oxidized (ARGO) probe that combines 8-oxodGTP and ATP to measure MTH1 enzymatic activity in colorectal cancer (CRC), non-small cell lung cancer (NSCLC) and pancreatic ductal adenocarcinoma (PDAC) along with patient-matched normal tissue. MTH1 8-oxodGTPase activity is significantly increased in tumors across all three tissue types, indicating that MTH1 is a marker of cancer. MTH1 activity measured by ARGO assay was compared to mRNA and protein expression measured by RT-qPCR and Western blot in the CRC tissue pairs, revealing a positive correlation between ARGO assay and Western blot, but little correlation with RT-qPCR in these samples. The adoption of the ARGO assay will help in establishing the level of MTH1 activity in model systems and in assessing the effects of MTH1 modulation in the treatment of cancer. 相似文献
9.
J. M. Jean C. Clerte K. B. Hall 《Protein science : a publication of the Protein Society》1999,8(10):2110-2120
Tryptophan residues have been introduced into two domains of the human U1A protein to probe solution dynamics. The full length protein contains 282 residues, separated into three distinct domains: the N-terminal RBD1 (RNA Binding Domain I), consisting of amino acids 1-101; the C-terminal RBD2, residues 202-282; and the intervening linker region. Tryptophan residues have been substituted for specific phenylalanine residues on the surface of the beta-sheet of either RBD1 or RBD2, thus introducing a single solvent exposed tryptophan as a fluorescence reporter. Both steady-state and time-resolved fluorescence measurements of the isolated RBD domains show that each tryptophan experiences a unique environment on the beta-sheet surface. The spectral properties of each tryptophan in RBD1 and RBD2 are preserved in the context of the U1A protein, indicating these domains do not interact with each other or with the linker region. The rotational correlation times of the isolated RBDs and the whole U1A, determined by dynamic polarization measurements, show that the linker region is highly flexible such that each RBD exhibits uncorrelated motion. 相似文献
10.
Long-sen Chang Ehr-ya Wen Jen-jung Hung Chung-chang Chang 《Journal of Protein Chemistry》1994,13(7):635-640
The binding of the apolar fluorescent dye 8-anilinonaphthalene-1-sulfonate (ANS) to bovine serum albumin (BSA), phospholipase A2 (PLA2), ovalbumin, lysozyme, cobrotoxin and N-acetyltryptophanamide was used to assess the factors affecting the efficiency of energy transfer from Trp residues to the ANS molecule. We found that the efficiency of energy transfer from Trp residues to ANS was associated with the ability of proteins to enhance the ANS fluorescence. At the same molar concentration of protein, BSA enhanced ANS fluorescence most among these proteins; its Trp fluorescence was drastically quenched by the addition of ANS. Fluorescence enhancement of ANS in PLA2-ANS complex increased upon addition of Ca2+ or change of the buffer to acidicpH, resulting in a higher efficiency of energy transfer from Trp residues to ANS. There was limited ANS fluorescence enhancement with ovalbumin, lysozyme, cobrotoxin, and N-acetyltryptophanamide and a less efficient quenching in Trp fluorescence. The capabilities of proteins for binding with ANS correlated with the decrease in their Trp fluorescence being quenching by ANS. However, the microenvironment surrounding Trp residues of proteins did not affect the energy transfer. Based on these results, the factors that affected the energy transfer from Trp residues to ANS are discussed. 相似文献
11.
Hitoshi Ueda Hiromi Iyo Mitsunobu Doi Masatoshi Inoue Toshimasa Ishida Hiroshi Morioka Toshiki Tanaka Satoshi Nishikawa Seiichi Uesugi 《FEBS letters》1991,280(2):207-210
Four mutants of the human cap binding protein (hCBP), in which Trp-102, Glu-103, Asp-104 or Glu-105 was changed to the aliphatic Leu or Ala, were prepared, and their cap binding abilities were examined. Cap binding abilities of two mutants. W102L (Trp-102→Leu) and E105A (Glu-105→Ala), were significantly decreased in comparison with the wild-type hCBP. This result suggest that Trp-102 and Glu-105 are both necessary for the cap binding, and the most probable binding mode with the m7G of cap structure is the combination of the stacking by Trp-102 and the hydrogen-bond pairing by Glu-105, as was already proposed from the model studies. 相似文献
12.
Role of conserved residues in structure and stability: tryptophans of human serum retinol-binding protein, a model for the lipocalin superfamily 下载免费PDF全文
Greene LH Chrysina ED Irons LI Papageorgiou AC Acharya KR Brew K 《Protein science : a publication of the Protein Society》2001,10(11):2301-2316
Serum retinol binding protein (RBP) is a member of the lipocalin family, proteins with up-and-down beta-barrel folds, low levels of sequence identity, and diverse functions. Although tryptophan 24 of RBP is highly conserved among lipocalins, it does not play a direct role in activity. To determine if Trp24 and other conserved residues have roles in stability and/or folding, we investigated the effects of conservative substitutions for the four tryptophans and some adjacent residues on the structure, stability, and spectroscopic properties of apo-RBP. Crystal structures of recombinant human apo-RBP and of a mutant with substitutions for tryptophans 67 and 91 at 1.7 A and 2.0 A resolution, respectively, as well as stability measurements, indicate that these relatively exposed tryptophans have little influence on structure or stability. Although Trp105 is largely buried in the wall of the beta-barrel, it can be replaced with minor effects on stability to thermal and chemical unfolding. In contrast, substitutions of three different amino acids for Trp24 or replacement of Arg139, a conserved residue that interacts with Trp24, lead to similar large losses in stability and lower yields of native protein generated by in vitro folding. The results and the coordinated nature of natural substitutions at these sites support the idea that conserved residues in functionally divergent homologs have roles in stabilizing the native relative to misfolded structures. They also establish conditions for studies of the kinetics of folding and unfolding by identifying spectroscopic signals for monitoring the formation of different substructures. 相似文献
13.
Resolution of the fluorescence equilibrium unfolding profile of trp aporepressor using single tryptophan mutants. 总被引:2,自引:1,他引:2 下载免费PDF全文
C. A. Royer C. J. Mann C. R. Matthews 《Protein science : a publication of the Protein Society》1993,2(11):1844-1852
Single tryptophan mutants of the trp aporepressor, tryptophan 19-->phenylalanine (W19F) and tryptophan 99-->phenylalanine (W99F), were used in this study to resolve the individual steady-state and time-resolved fluorescence urea unfolding profiles of the two tryptophan residues in this highly intertwined, dimeric protein. The wild-type protein exhibits a large increase in fluorescence intensity and lifetime, as well as a large red shift in the steady-state fluorescence emission spectrum, upon unfolding by urea (Lane, A.N. & Jardetsky, O., 1987, Eur. J. Biochem. 164, 389-396; Gittelman, M.S. & Matthews, C.R., 1990, Biochemistry 29, 7011-7020; Fernando, T. & Royer, C.A., 1992, Biochemistry 31, 6683-6691). Unfolding of the W19F mutant demonstrated that Trp 99 undergoes a large increase in intensity and a red shift upon exposure to solvent. Lifetime studies revealed that the contribution of the dominant 0.5-ns component of this tryptophan tends toward zero with increasing urea, whereas the longer lifetime components increase in importance. This lifting of the quenching of Trp 99 may be due to disruption of the interaction between the two subunits upon denaturation, which abolishes the interaction of Trp 99 on one subunit with the amide quenching group of Asn 32 on the other subunit (Royer, C.A., 1992, Biophys. J. 63, 741-750). On the other hand, Trp 19 is quenched in response to unfolding in the W99F mutant. Exposure to solvent of Trp 19, which is buried at the hydrophobic dimer interface in the native protein, results in a large red shift of the average steady-state emission.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
14.
The human dopamine (DA) transporter (hDAT) contains multiple tryptophans and acidic residues that are completely or highly conserved among Na(+)/Cl(-)-dependent transporters. We have explored the roles of these residues using non-conservative substitution. Four of 17 mutants (E117Q, W132L, W177L and W184L) lacked plasma membrane immunostaining and were not functional. Both DA uptake and cocaine analog (i.e. 2beta-carbomethoxy-3beta-(4-fluorophenyl)tropane, CFT) binding were abolished in W63L and severely damaged in W311L. Four of five aspartate mutations (D68N, D313N, D345N and D436N) shifted the relative selectivity of the hDAT for cocaine analogs and DA by 10-24-fold. In particular, mutation of D345 in the third intracellular loop still allowed considerable [(3)H]DA uptake, but caused undetectable [(3)H]CFT binding. Upon anti-C-terminal-hDAT immunoblotting, D345N appeared as broad bands of 66-97 kDa, but this band could not be photoaffinity labeled with cocaine analog [(125)I]-3beta-(p-chlorophenyl)tropane-2beta-carboxylic acid ([(125)I]RTI-82). Unexpectedly, in this mutant, cocaine-like drugs remained potent inhibitors of [(3)H]DA uptake. CFT solely raised the K(m) of [(3)H]DA uptake in wild-type hDAT, but increased K(m) and decreased V(max) in D345N, suggesting different mechanisms of inhibition. The data taken together indicate that mutation of conserved tryptophans or acidic residues in the hDAT greatly impacts ligand recognition and substrate transport. Additionally, binding of cocaine to the transporter may not be the only way by which cocaine analogs inhibit DA uptake. 相似文献
15.
16.
Zhang Zhongjian Zhao Sumin Deans-Zirattu Stephen Bai Ge Lee Ernest Y. C. 《Molecular and cellular biochemistry》1993,127(1):113-119
We have generated site-directed mutants of the catalytic subunit of rabbit muscle ppase-1. Since it is known that ppase-1 and ppase-2A are highly susceptible to inactivation by sulfhydryl reagents, we have mutagenized the six cysteine residues conserved between these two enzymes to serines. The six mutants were purified to near homogeneity by affinity chromatography on inhibitor-2-Sepharose and characterized. All six exhibited enzymatic activity. These results indicate that the catalytic mechanism of ppase-1 is different from that of the protein tyrosine phosphatases which involve a cysteinyl phosphate intermediate. 相似文献
17.
Christine Manoharan Christine Manoharan Marieangela C. Wilson Christine Manoharan Marieangela C. Wilson Richard B. Sessions 《Molecular membrane biology》2013,30(6):486-498
Monocarboxylate transporters MCT1-MCT4 require basigin (CD147) or embigin (gp70), ancillary proteins with a glutamate residue in their single transmembrane (TM) domain, for plasma membrane (PM) expression and activity. Here we use site-directed mutagenesis and expression in COS cells or Xenopus oocytes to investigate whether this glutamate (Glu218 in basigin) may charge-pair with a positively charged TM-residue of MCT1. Such residues were predicted using a new molecular model of MCT1 based upon the published structure of the E. coli glycerol-3-phosphate transporter. No evidence was obtained for Arg306 (TM 8) of MCT1 and Glu218 of basigin forming a charge-pair; indeed E218Q-basigin could replace WT-basigin, although E218R-basigin was inactive. No PM expression of R306E-MCT1 or D302R-MCT1 was observed but D302R/R306D-MCT1 reached the PM, as did R306K-MCT1. However, both were catalytically inactive suggesting that Arg306 and Asp302 form a charge-pair in either orientation, but their precise geometry is essential for catalytic activity. Mutation of Arg86 to Glu or Gln within TM3 of MCT1 had no effect on plasma membrane expression or activity of MCT1. However, unlike WT-MCT1, these mutants enabled expression of E218R-basigin at the plasma membrane of COS cells. We propose that TM3 of MCT1 lies alongside the TM of basigin with Arg86 adjacent to Glu218 of basigin. Only when both these residues are positively charged (E218R-basigin with WT-MCT1) is this interaction prevented; all other residue pairings at these positions may be accommodated by charge-pairing or stabilization of unionized residues through hydrogen bonding or local distortion of the helical structure. 相似文献
18.
Occurrence and accommodation of charged amino acid residues in proteins that are structurally equivalent to buried non-polar residues in homologues have been investigated. Using a dataset of 1,852 homologous pairs of crystal structures of proteins available at 2A or better resolution, 14,024 examples of apolar residues in the structurally conserved regions replaced by charged residues in homologues have been identified. Out of 2,530 cases of buried apolar residues, 1,677 of the equivalent charged residues in homologues are exposed and the rest of the charged residues are buried. These drastic substitutions are most often observed in homologous protein pairs with low sequence identity (<30%) and in large protein domains (>300 residues). Such buried charged residues in the large proteins are often located in the interface of sub-domains or in the interface of structural repeats, Beyond 7A of residue depth of buried apolar residues, or less than 4% of solvent accessibility, almost all the substituting charged residues are buried. It is also observed that acidic sidechains have higher preference to get buried than the positively charged residues. There is a preference for buried charged residues to get accommodated in the interior by forming hydrogen bonds with another sidechain than the main chain. The sidechains interacting with a buried charged residue are most often located in the structurally conserved regions of the alignment. About 50% of the observations involving hydrogen bond between buried charged sidechain and another sidechain correspond to salt bridges. Among the buried charged residues interacting with the main chain, positively charged sidechains form hydrogen bonds commonly with main chain carbonyls while the negatively charged residues are accommodated by hydrogen bonding with the main chain amides. These carbonyls and amides are usually located in the loops that are structurally variable among homologous proteins. 相似文献
19.
Tyrosine phosphorylation in plants could be performed only by dual-specificity kinases. Arabidopsis thaliana dual-specificity protein kinase (AtSTYPK) exhibited strong preference for manganese over magnesium for its kinase activity. The kinase autophosphorylated on serine, threonine and tyrosine residues and phosphorylated myelin basic protein on threonine and tyrosine residues. The AtSTYPK harbors manganese dependent serine/threonine kinase domain, COG3642. His248 and Ser265 on COG3642 are conserved in AtSTYPK and the site-directed mutant, H248A showed loss of serine/threonine kinase activity. The protein kinase activity was abolished when Thr208 in the TEY motif and Thr293 of the activation loop were converted to alanine. The conversion of Thr284 in the activation loop to alanine resulted in an increased phosphorylation. This study reports the first identification of a manganese dependent dual-specificity kinase and the importance of Thr208, Thr284, and Thr293 residues in the regulation of kinase activity. 相似文献
20.
Siemiarczuk A Petersen CE Ha CE Yang J Bhagavan NV 《Cell biochemistry and biophysics》2004,40(2):115-122
Tryptophan 214, the only tryptophan residue in human serum albumin, is located in the physiologically important subdomain
2A ligand binding site. In the present study the fluorescence lifetime of tryptophan 214 in the following human serum albumin
(HSA) mutants with substitutions in subdomain 2A were determined: K195M, K199M, F211V, R218M, R218H, R218A, R222M, H242V,
and R257M. An HSA mutant in which tryptophan was moved from subdomain 2A to subdomain 3A (W214L/Y411W) was also examined.
Additionally, the fluorescence lifetime of tryptophan 214 in an HSA fragment consisting of subdomains 1A, 1B, and 2A (1A-1B-2A
HSA) was determined. For those species expected to have the most dramatic changes in tryptophan microenvironment, W214L/Y411W
and 1A-1B-2A HSA, clear changes in tryptophan lifetimes were observed. Significant changes were also seen for those species
with mutations at position 218, which is next to tryptophan in the X-ray structure of HSA. However, significant changes were
also observed for H242V and R257M, which contain substitutions at positions not immediately adjacent to tryptophan 214, highlighting
the conformational flexibility of subdomain 2A. 相似文献