首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aromatic 1H NMR resonances of the insulin monomer are assigned at 500 MHz by comparative studies of chemically modified and genetically altered variants, including a mutant insulin (PheB25----Leu) associated with diabetes mellitus. The two histidines, three phenylalanines, and four tyrosines are observed to be in distinct local environments; their assignment provides sensitive markers for studies of tertiary structure, protein dynamics, and protein folding. The environments of the tyrosine residues have also been investigated by photochemically induced dynamic nuclear polarization (photo-CIDNP) and analyzed in relation to packing constraints in the crystal structures of insulin. Dimerization involving specific B-chain interactions is observed with increasing protein concentration and is shown to depend on temperature, pH, and solvent composition. In the monomer large variations are observed in the line widths of amide resonances, suggesting intermediate exchange among conformational substates; such substates may relate to conformational changes observed in different crystal states and proposed to occur in the hormone-receptor complex. Additional evidence for multiple conformations in solution is provided by comparative studies of an insulin analogue containing a peptide bond between residues B29 and A1 (mini-proinsulin). This analogue forms dimers and higher-order oligomers under conditions in which native insulin is monomeric, suggesting that the B29-A1 peptide bond stabilizes a conformational substate favorable for dimerization. Such stabilization is not observed in corresponding studies of native proinsulin, in which a 35-residue connecting peptide joins residues B30 and A1; this extended tether is presumably too flexible to constrain the conformation of the B-chain. The differences between proinsulin and mini-proinsulin suggest a structural mechanism for the observation that the fully reduced B29-A1 analogue folds more efficiently than proinsulin to form the correct pattern of disulfide bonds. These results are discussed in relation to molecular mechanics calculations of insulin based on the available crystal structures.  相似文献   

2.
This paper reports on an insulin analogue with 12.5-fold receptor affinity, the highest increase observed for a single replacement, and on its solution structure, determined by NMR spectroscopy. The analogue is [D-AlaB26]des-(B27-B30)-tetrapeptide-insulin-B26-amide. C-terminal truncation of the B-chain by four (or five) residues is known not to affect the functional properties of insulin, provided the new carboxylate charge is neutralized. As opposed to the dramatic increase in receptor affinity caused by the substitution of D-Ala for the wild-type residue TyrB26 in the truncated molecule, this very substitution reduces it to only 18% of that of the wild-type hormone when the B-chain is present in full length. The insulin molecule in solution is visualized as an ensemble of conformers interrelated by a dynamic equilibrium. The question is whether the "active" conformation of the hormone, sought after in innumerable structure/function studies, is or is not included in the accessible conformational space, so that it could be adopted also in the absence of the receptor. If there were any chance for the active conformation, or at least a predisposed state to be populated to a detectable extent, this chance should be best in the case of a superpotent analogue. This was the motivation for the determination of the three-dimensional structure of [D-AlaB26]des-(B27-B30)-tetrapeptide-insulin-B26-amide. However, neither the NMR data nor CD spectroscopic comparison of a number of related analogues provided a clue concerning structural features predisposing insulin to high receptor affinity. After the present study it seems more likely than before that insulin will adopt its active conformation only when exposed to the force field of the receptor surface.  相似文献   

3.
Insulin provides an important model for the application of genetic engineering to rational protein design and has been well characterized in the crystal state. However, self-association of insulin in solution has precluded complementary 2D NMR study under physiological conditions. We demonstrate here that such limitations may be circumvented by the use of a monomeric analogue that contains three amino acid substitutions on the protein surface (HisB10----Asp, ProB28----Lys, and LysB29----Pro); this analogue (designated DKP-insulin) retains native receptor-binding potency. Comparative 1H NMR studies of native human insulin and a series of three related analogues--(i) the singly substituted analogue [HisB10----Asp], (ii) the doubly substituted analogue [ProB28----Lys; LysB29----Pro], and (iii) DKP-insulin--demonstrate progressive reduction in concentration-dependent line-broadening in accord with the results of analytical ultracentrifugation. Extensive nonlocal interactions are observed in the NOESY spectrum of DKP-insulin, indicating that this analogue adopts a compact and stably folded structure as a monomer in overall accord with crystal models. Site-specific 2H and 13C isotopic labels are introduced by semisynthesis as probes for the structure and dynamics of the receptor-binding surface. These studies confirm and extend under physiological conditions the results of a previous 2D NMR analysis of native insulin in 20% acetic acid [Hua, Q. X., & Weiss, M. A. (1991) Biochemistry 30, 5505-5515]. Implications for the role of protein flexibility in receptor recognition are discussed with application to the design of novel insulin analogues.  相似文献   

4.
The role of three highly conserved insulin residues PheB24, PheB25, and TyrB26 was studied to better understand the subtleties of the structure-function relationship between insulin and its receptor. Ten shortened insulin analogues with modifications in the beta-strand of the B-chain were synthesized by trypsin-catalyzed coupling of des-octapeptide (B23-B30)-insulin with synthetic peptides. Insulin analogues with a single amino acid substitution in the position B26 and/or single N-methylation of the peptide bond at various positions were all shortened in the C-terminus of the B-chain by four amino acids. The effect of modifications was followed by two types of in vitro assays, i.e., by the binding to the receptor of rat adipose plasma membranes and by the stimulation of the glucose transport into the isolated rat adipocytes. From our results, we can deduce several conclusions: (i) the replacement of tyrosine in the position B26 by phenylalanine has no significant effect on the binding affinity and the stimulation of the glucose transport of shortened analogues, whereas the replacement of TyrB26 by histidine affects the potency highly positively; [HisB26]-des-tetrapeptide (B27-B30)-insulin-B26-amide and [NMeHisB26]-des-tetrapeptide (B27-B30)-insulin-B26-amide show binding affinity 529 and 5250%, respectively, of that of human insulin; (ii) N-methylation of the B24-B25 peptide bond exhibits a disruptive effect on the potency of analogues in both in vitro studies regardless the presence of amino acid in the position B26; (iii) N-methylation of the B23-B24 peptide bond markedly reduces the binding affinity and the glucose transport of respective analogue [NMePheB24]-des-tetrapeptide (B27-B30)-insulin-B26-amide.  相似文献   

5.
Q X Hua  M A Weiss 《Biochemistry》1990,29(46):10545-10555
2D 1H NMR studies are presented of des-pentapeptide-insulin, an analogue of human insulin lacking the C-terminal five residues of the B chain. Removal of these residues, which are not required for function, is shown to reduce conformational broadening previously described in the spectrum of intact insulin [Weiss et al. (1989) Biochemistry 28, 9855-9873]. This difference presumably reflects more rapid internal motions in the fragment, which lead to more complete averaging of chemical shifts on the NMR time scale. Sequential 1H NMR assignment and preliminary structural analysis demonstrate retention in solution of the three alpha-helices observed in the crystal state and the relative orientation of the receptor-binding surfaces. These studies provide a foundation for determining the solution structure of insulin.  相似文献   

6.
Destripeptide (B28-B30) insulin (DTRI) is an insulin analogue that has much weaker association ability than native insulin but keeps most of its biological activity. It can be crystallized from a solution containing zinc ions at near-neutral pH. Its crystal structure has been determined by molecular replacement and refined at 1.9 A resolution. DTRI in the crystal exists as a loose hexamer compared with 2Zn insulin. The hexamer only contains one zinc ion that coordinates to the B10 His residues of three monomers. Although residues B28-B30 are located in the monomer-monomer interface within a dimer, the removal of them can simultaneously weaken both the interactions between monomers within the dimer and the interactions between dimers. Because the B-chain C-terminus of insulin is very flexible, we take the DTRI hexamer as a transition state in the native insulin dissociation process and suggest a possible dissociation process of the insulin hexamer based on the DTRI structure.  相似文献   

7.
Q X Hua  S E Shoelson  M A Weiss 《Biochemistry》1992,31(47):11940-11951
Insulin's mechanism of receptor binding is not well understood despite extensive study by mutagenesis and X-ray crystallography. Of particular interest are "anomalous" analogues whose bioactivities are not readily rationalized by crystal structures. Here the structure and dynamics of one such analogue (GlyB24-insulin) are investigated by circular dichroism (CD) and isotope-aided 2D-NMR spectroscopy. The mutant insulin retains near-native receptor-binding affinity despite a nonconservative substitution (PheB24-->Gly) in the receptor-binding surface. Relative to native insulin, GlyB24-insulin exhibits reduced dimerization; the monomer (the active species) exhibits partial loss of ordered structure, as indicated by CD studies and motional narrowing of selected 1H-NMR resonance. 2D-NMR studies demonstrate that the B-chain beta-turn (residues B20-23) and beta-strand (residues B24-B28) are destabilized; essentially native alpha-helical secondary structure (residues A3-A8, A13-A18, and B9-B19) is otherwise maintained. 13C-Isotope-edited NOESY studies demonstrate that long-range contacts observed between the B-chain beta-strand and the alpha-helical core in native insulin are absent in the mutant. Implications for the mechanism of insulin's interaction with its receptor are discussed.  相似文献   

8.
Using the crystal structure of Despentapeptide (B26-B30) insulin (DPI as the search model, the crystal structure of DesB1-B2 Despentapeptide (B26-B30) insulin (DesB1-2 DPI) has been studied by the molecular replacement method. There is one DesB1-2 DPI molecule in each crystallographic asymmetric unit. The cross rotation function search and the translation function search show apparent peaks and thus determine the orientation and position of DesB1-2 DPI molecule in the cell respectively. The subsequent three-dimensional structural rebuilding and refinement of DesB1-2 DPI molecule confirm the results by molecular replacement method.  相似文献   

9.
FTIR studies of secondary structures of bovine insulin and its derivatives   总被引:2,自引:0,他引:2  
The amide I bands of the deconvolved FTIR spectrum of bovine insulin, despentapeptide (B26-B30) insulin and desoctapeptide (B23-B30) insulin in D2O solution have been assigned to alpha-helix, the 3(10) helix, irregular helix, extended chains, beta-turns and other secondary structures. From the peak areas the relative contents of these structures obtained are in general agreement with those calculated from the known structures of porcine insulin and DPI in the crystalline state. The main difference in the structure of DOI with those of insulin and DPI is the shortening of the helix segment and an extended chain for the C terminal segment in the B chain.  相似文献   

10.
Using the crystal structure of Despentapeptide (B26-B30) insulin (DPI) as the search model, the crystal structure of DesBl-B2 Despentapeptide (B26-B30) insulin (DesBl-2 DPI) has been studied by the molecular replacement method. There is one DesBl-2 DPI molecule in each crystallographic asymmetric unit. The cross rotation function search and the translation function search show apparent peaks and thus determine the orientation and position of DesBl-2 DPI molecule in the cell respectively. The subsequent three-dimensional structural rebuilding and refine-ment of DesBl-2 DPI molecule confirm the results by molecular replacement method.  相似文献   

11.
Mutagenesis of the dimer- and hexamer-forming surfaces of insulin yields analogues with reduced tendencies to aggregate and dramatically altered pharmacokinetic properties. We recently showed that one such analogue, HisB10----Asp, ProB28----Lys, LysB29----Pro human insulin (DKP-insulin), has enhanced affinity for the insulin receptor and is useful for studying the structure of the insulin monomer under physiologic solvent conditions [Weiss, M. A., Hua, Q. X., Lynch, C. S., Frank, B. H., & Shoelson, S. E. (1991) Biochemistry 30, 7373-7389]. DKP-insulin retains native secondary and tertiary structure in solution and may therefore provide an appropriate baseline for further studies of related analogues containing additional substitutions within the receptor-binding surface of insulin. To test this, we prepared a family of DKP analogues having potency-altering substitutions at the B24 and B25 positions using a streamlined approach to enzymatic semisynthesis which negates the need for amino-group protection. For comparison, similar analogues of native human insulin were prepared by standard semisynthetic methods. The DKP analogues show a reduced tendency to self-associate, as indicated by 1H-NMR resonance line widths. In addition, CD spectra indicate that (with one exception) the native insulin fold is retained in each analogue; the exception, PheB24----Gly, induces similar perturbations in both native insulin and DKP-insulin backgrounds. Notably, analogous substitutions exhibit parallel trends in receptor-binding potency over a wide range of affinities: D-PheB24 greater than unsubstituted greater than GlyB24 greater than SerB24 greater than AlaB25 greater than LeuB25 greater than SerB25, whether the substitution was in a native human or DKP-insulin background. Such "template independence" reflects an absence of functional interactions between the B24 and B25 sites and additional substitutions in DKP-insulin and demonstrates that mutations in discrete surfaces of insulin have independent effects on protein structure and function. In particular, the respective receptor-recognition (PheB24, PheB25), hexamer-forming (HisB10), and dimer-forming (ProB28, LysB29) surfaces of insulin may be regarded as independent targets for protein design. DKP-insulin provides an appropriate biophysical model for defining structure-function relationships in a monomeric template.  相似文献   

12.
To gain an understanding of the causes of decreased biological activity in insulins bearing amino acid substitutions at position B25 and the importance of the PheB25 side chain in directing hormone-receptor interactions, we have prepared a variety of insulin analogs and have studied both their interactions with isolated canine hepatocytes and their abilities to stimulate glucose oxidation by isolated rat adipocytes. The semisynthetic analogs fall into three structural classes: (a) analogs in which the COOH-terminal 5, 6, or 7 residues of the insulin B-chain have been deleted, but in which the COOH-terminal residue of the B-chain has been derivatized by alpha-carboxamidation; (b) analogs in which PheB25 has been replaced by unnatural aromatic or natural L-amino acids; and (c) analogs in which the COOH-terminal 5 residues of the insulin B-chain have been deleted and in which residue B25 has been replaced by selected alpha-carboxamidated amino acids. Our results showed that (a) insulin residues B26-B30 can be deleted without decrease in biological potency, whereas deletion of residues B25-B30 and B24-B30 causes a marked and cumulative decrease in potency; (b) replacement of PheB25 in insulin by Leu or Ser results in analogs with biological potency even less than that observed when residues B25-B30 are deleted; (c) the side chain bulk of naphthyl(1)-alanine or naphthyl(2)-alanine at position B25 is well tolerated during insulin interactions with receptor, whereas that of homophenylalanine is not; and (d) the decreased biological potency attending substitution of insulin PheB25 by Ala, Ser, Leu, or homophenylalanine is reversed, in part or in total, by deletion of COOH-terminal residues B26-B30. Additional experiments showed that the rate of dissociation of receptor-bound 125I-labeled insulin from isolated hepatocytes is enhanced by incubating cells with insulin or [naphthyl(2)-alanineB25]insulin, but not with analogs in which PheB25 is replaced by serine, leucine, or homophenylalanine; deletion of residues B26-B30, however, results in analogs that enhance the rate of dissociation of receptor-bound insulin in all cases studied. We conclude that (a) steric hindrance involving the COOH-terminal domain of the B chain plays a major role in directing the interaction of insulin with its receptor; (b) the initial negative effect of this domain is reversed upon the filling of a site reflecting interaction of the receptor and the beta-aromatic ring of the PheB25 side chain.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
The solution structure of a new B-chain mutant of bovine insulin, in which the cysteines B7 and B19 are replaced by two serines, has been determined by circular dichroism, 2D-NMR and molecular modeling. This structure is compared with that of the oxidized B-chain of bovine insulin [Hawkins et al. (1995) Int. J. Peptide Protein Res.46, 424-433]. Circular dichroism spectroscopy showed in particular that a higher percentage of helical secondary structure for the B-chain mutant is estimated in trifluoroethanol solution in comparison with the oxidized B-chain. 2D-NMR experiments confirmed, among multiple conformations, that the B-chain mutant presents defined secondary structures such as a alpha-helix between residues B9 and B19, and a beta-turn between amino acids B20 and B23 in aqueous trifluoroethanol. The 3D structures, which are consistent with NMR data and were obtained using a simulated annealing protocol, showed that the tertiary structure of the B-chain mutant is better resolved and is more in agreement with the insulin crystal structure than the oxidized B-chain structure described by Hawkins et al. An explanation could be the presence of two sulfonate groups in the oxidized insulin B-chain. Either by their charges and/or their size, such chemical groups could play a destructuring effect and thus could favor peptide flexibility and conformational averaging. Thus, this study provides new insights on the folding of isolated B-chains.  相似文献   

14.
Previous studies have suggested that the COOH-terminal pentapeptide of the insulin B-chain can play a negative role in ligand-receptor interactions involving insulin analogs having amino acid replacements at position B25 (Nakagawa, S. H., and Tager, H. S. (1986) J. Biol. Chem. 261, 7332-7341). We undertook by the current investigations to identify the molecular site in insulin that induces this negative effect and to explore further the importance of conformational changes that might occur during insulin-receptor interactions. By use of semisynthetic insulin analogs containing amino acid replacements or deletions and of isolated canine hepatocytes, we show here that (a) the markedly decreased affinity of receptor for insulin analogs in which PheB25 is replaced by Ser is apparent for analogs in which up to 3 residues of the insulin B-chain have been deleted, but is progressively reversed in the corresponding des-tetrapeptide and des-pentapeptide analogs, and (b) unlike the case for deletion of TyrB26 and ThrB27, replacement of residue TyrB26 or ThrB27 has no effect to reverse the decreased affinity of full length analogs containing Ser for Phe substitutions at position B25. Additional experiments demonstrated that introduction of a cross-link between Lys epsilon B29 and Gly alpha A1 of insulin decreases the affinity of ligand-receptor interactions whether or not PheB25 is replaced by Ser. We conclude that the negative effect of the COOH-terminal B-chain domain on insulin-receptor interactions arises in greatest part from the insulin mainchain near the site of the TyrB26-ThrB27 peptide bond and that multiple conformational perturbations may be necessary to induce a high-affinity state of receptor-bound insulin.  相似文献   

15.
How insulin binds to the insulin receptor has long been a subject of speculation. Although the structure of the free hormone has been extensively characterized, a variety of evidence suggests that a conformational change occurs upon receptor binding. Here, we employ chiral mutagenesis, comparison of corresponding d and l amino acid substitutions, to investigate a possible switch in the B-chain. To investigate the interrelation of structure, function, and stability, isomeric analogs have been synthesized in which an invariant glycine in a beta-turn (Gly(B8)) is replaced by d- or l-Ser. The d substitution enhances stability (DeltaDeltaG(u) 0.9 kcal/mol) but impairs receptor binding by 100-fold; by contrast, the l substitution markedly impairs stability (DeltaDeltaG(u) -3.0 kcal/mol) with only 2-fold reduction in receptor binding. Although the isomeric structures each retain a native-like overall fold, the l-Ser(B8) analog exhibits fewer helix-related and long range nuclear Overhauser effects than does the d-Ser(B8) analog or native monomer. Evidence for enhanced conformational fluctuations in the unstable analog is provided by its attenuated CD spectrum. The inverse relationship between stereospecific stabilization and receptor binding strongly suggests that the B7-B10 beta-turn changes conformation on receptor binding.  相似文献   

16.
To determine the conformational properties of the C-terminal region of the insulin B-chain relative to the helical core of the molecule, we have investigated the fluorescence properties of an insulin analog in which amino acids B28 and B29 have been substituted with a tryptophan and proline residue respectively, ([WB28,PB29]insulin). The biological properties and far-UV circular dichroism (CD) spectrum of the molecule indicate that the conformation is similar to that of native human insulin. Guanidine hydrochloride (GdnHCl)-induced equilibrium denaturation of the analog as monitored by CD intensity at 224 nm indicates a single cooperative transition with a midpoint of 4.9 M GdnHCl. In contrast, when the equilibrium denaturation is observed by steady-state fluorescence emission intensity at 350 nm, two distinct transitions are observed. The first transition accounts for 60% of the observed signal and has a midpoint of 1.5 M GdnHCl. The second transition roughly parallels that observed by CD measurements with an approximate midpoint of 4.5 M GdnHCl. The near-UV CD spectrum, size-exclusion, and ultracentrifugation properties of [WB28,PB29]insulin indicate that this analog does not self-associate in a concentration-dependent manner as does human insulin. Thus, the observed fluorescence changes must be due to specific conformational transitions which occur upon unfolding of the insulin monomer with the product of the first transition representing a stable folding intermediate of this molecule.  相似文献   

17.
Inactive conformation of an insulin despite its wild-type sequence.   总被引:3,自引:2,他引:1       下载免费PDF全文
The peptide group between residues B24 and B25 of insulin was replaced by an ester bond. This modification only in the backbone was meant to eliminate a structurally important H-bond between the amide proton of B25 and the carbonyl oxygen of A19, and consequently to enhance detachment of the C-terminal B-chain from the body of the molecule, exposing the underlying A-chain. According to a model derived from the effects of side-chain substitutions, main-chain shortening, and crosslinking, this conformational change is prerequisite for receptor binding. Contrary to the expectation that increased flexibility would increase receptor binding and activity, depsi-insulin ([B24-B25 CO-O]insulin) has turned out be only 3-4% potent. In search of an explanation for this observation, the solution structure of depsi-insulin was determined by two-dimensional 1H-NMR spectroscopy. It was found that the loss of the B25-A19 H-bond does not entail detachment of the C-terminal B-chain. On the contrary, it is overcompensated by a gain in hydrophobic interaction achieved by insertion of the Phe B25 side chain into the molecule's core. This is possible because of increased rotational freedom in the backbone owing to the ester bond. Distortion of the B20-B23 turn and an altered direction of the distal B-chain are consequences that also affect self-association. The exceptional position of the B25 side chain is thus the key feature of the depsi-insulin structure. Being buried in the interior, it is not available for guiding the interaction with the receptor, a crucial role attributed to it by the model. This seems to be the main reason why the structure of depsi-insulin represents an inactive conformation.  相似文献   

18.
The aromatic region of the 1H-FT-NMR spectrum of the biologically fully-potent, monomeric human insulin mutant, B9 Ser----Asp, B27 Thr----Glu has been investigated in D2O. At 1 to 5 mM concentrations, this mutant insulin is monomeric above pH 7.5. Coupling and amino acid classification of all aromatic signals is established via a combination of homonuclear one- and two-dimensional methods, including COSY, multiple quantum filters, selective spin decoupling and pH titrations. By comparisons with other insulin mutants and with chemically modified native insulins, all resonances in the aromatic region are given sequence-specific assignments without any reliance on the various crystal structures reported for insulin. These comparisons also give the sequence-specific assignments of most of the aromatic resonances of the mutant insulins B16 Tyr----Glu, B27 Thr----Glu and B25 Phe----Asp and the chemically modified species des-(B23-B30) insulin and monoiodo-Tyr A14 insulin. Chemical dispersion of the assigned resonances, ring current perturbations and comparisons at high pH have made possible the assignment of the aromatic resonances of human insulin, and these studies indicate that the major structural features of the human insulin monomer (including those critical to biological function) are also present in the monomeric mutant.  相似文献   

19.
Molecular dynamics (MD) simulations (5-10ns in length) and normal mode analyses were performed for the monomer and dimer of native porcine insulin in aqueous solution; both starting structures were obtained from an insulin hexamer. Several simulations were done to confirm that the results obtained are meaningful. The insulin dimer is very stable during the simulation and remains very close to the starting X-ray structure; the RMS fluctuations calculated from the MD simulation agree with the experimental B-factors. Correlated motions were found within each of the two monomers; they can be explained by persistent non-bonded interactions and disulfide bridges. The correlated motions between residues B24 and B26 of the two monomers are due to non-bonded interactions between the side-chains and backbone atoms. For the isolated monomer in solution, the A chain and the helix of the B chain are found to be stable during 5ns and 10ns MD simulations. However, the N-terminal and the C-terminal parts of the B chain are very flexible. The C-terminal part of the B chain moves away from the X-ray conformation after 0.5-2.5ns and exposes the N-terminal residues of the A chain that are thought to be important for the binding of insulin to its receptor. Our results thus support the hypothesis that, when monomeric insulin is released from the hexamer (or the dimer in our study), the C-terminal end of the monomer (residues B25-B30) is rearranged to allow binding to the insulin receptor. The greater flexibility of the C-terminal part of the beta chain in the B24 (Phe-->Gly) mutant is in accord with the NMR results. The details of the backbone and side-chain motions are presented. The transition between the starting conformation and the more dynamic structure of the monomers is characterized by displacements of the backbone of Phe B25 and Tyr B26; of these, Phe B25 has been implicated in insulin activation.  相似文献   

20.
Circular dichroic spectroscopy clearly reveals a solvent-induced conformational change of insulin in the presence of zinc ions. The spectral change corresponds to an increase in helix content. The transition observed in solution is an equivalent of the 2Zn----4Zn insulin transformation in the crystal. This is inferred from a series of observations. (1) The spectral effects are compatible with the refolding of the B-chain N-terminus into a helix known from crystal studies. (2) The spectral effects are induced by the very same conditions which are known to induce the 2Zn----4Zn insulin transformation in the crystal (i.e. threshold concentrations of NaCl, KSCN, NaI, for example). (3) They fail to be induced by the same conditions that fail to induce the crystal transformation (e.g. Ni2+ instead of Zn2+). It is concluded that the potential to undergo the transition resides in the hexamer since neither insulin dimers nor monomeric des-pentapeptideB26-30-insulin respond detectably to high halide concentration. Secondly the ability of zinc ions to accommodate tetrahedral coordination allows the transition which is not permitted by other divalent metal ions. Thirdly the transition is independent of the off-axial tetrahedral zinc coordination sites since it occurs in [AlaB5]insulin which lacks the B5 histidine necessary for their formation. A symmetrically rearranged hexamer thus appears possible with two tetrahedrally coordinated zinc ions on the threefold axis; this is consistent with the observation that in native insulin two zinc ions per hexamer are sufficient to produce the full spectral effect. The amount of additional helix derived from the circular dichroic spectral change, however, cannot settle whether the transition comprises only three or all six of the subunits to yield a symmetrical hexamer. Finally the transformation in solution evidently still occurs in an intramolecularly A1-B29-cross-linked insulin in spite of the partially reduced flexibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号