首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Most drug-metabolizing phase I and phase II enzymes, including the glutathione S-transferases (GST), exhibit a zonated expression in the liver, with lower expression in the upstream, periportal region. To elucidate the involvement of pituitary-dependent hormones in this zonation, the effect of hypophysectomy and 3,3',5-triiodo-L-thyronine (T3) on the distribution of GST was studied in rats. Hypophysectomy increased total GST activity both in the periportal and perivenous liver region. Subsequent T3 treatment counteracted this effect in the perivenous zone. However, analysis for either mu class M1/M2-specific (1,2-dichloro-4-nitrobenzene) or alpha class A1/A2-specific (7-chloro-4-nitrobenzo-2-oxa-1,3-diazole) GST activity revealed that T3 treatment did not significantly affect the perivenous activity of these GST classes. In contrast, T3 was found to significantly counteract the increase of alpha class GST activity caused by hypophysectomy in the periportal zone. To establish whether this effect was T3-specific, hepatocytes were isolated from either the periportal and perivenous zone by digitonin/collagenase perfusion and cultured either as pyruvate-supplemented monolayer or as co-culture with rat liver epithelial cells. Only in the latter it was found that T3 suppressed the A1/A2-specific GST activity and alpha class proteins predominantly in periportal cells. The data demonstrate that T3 is an important factor responsible for the low expression of alpha GST in the periportal region. T3 may be involved in the periportal downregulation of other phase I and II enzymes as well.  相似文献   

2.
A clone coding for glutathione S-transferase (GST) CL2 was isolated from a chicken liver cDNA library. This clone (819 bp) encodes a polypeptide comprising 219 amino acids with a molecular weight of 25,717, excluding the initiator methionine. The primary amino acid sequence of the enzyme has 47% identical sequence with other class mu GSTs.  相似文献   

3.
Kim YG  Kim SK  Kwon JW  Park OJ  Kim SG  Kim YC  Lee MG 《Life sciences》2003,72(10):1171-1181
The changes in amino acid concentrations and transsulfuration enzyme activities in liver were investigated after 4-week fed on 23% casein diet (control group) and 5% casein diet without (protein-calorie malnutrition, PCM group) or with (PCMC group) oral administration of cysteine, 250 mg/kg (twice daily, starting from the fourth week) using rats as an animal model. By supplementation with cysteine in PCM rats (PCMC group), cysteine level was elevated almost close to the control level, and glutathione (GSH), aspartic acid and serine levels were restored greater than the control levels. The measurement of transsulfuration enzyme activities exhibited that gamma-glutamylcysteine ligase (gamma-GCL) activity was up-regulated in rats with protein restriction (PCM group), and cysteine supplementation (PCMC group) down-regulated to the control level. One-week supplementation of cysteine (PCMC group) significantly down-regulated the cysteine sulfinate decarboxylase activity. These results indicate that the availability of sulfur amino acid(s) especially cysteine appears to play a role in determining the flux of cysteine between cysteine catabolism and GSH synthesis.  相似文献   

4.
In Chinese hamster fibroblasts, we previously detected an expressed gene located near the AMP deaminase gene. This gene was named Y1. Upon selection for resistance to coformycin, an inhibitor of AMP deaminase activity, both genes were amplified in several mutants. We have determined the complete nucleotide sequence of Y1 cDNA and identified the Y1 gene as a mu class glutathione S-transferase gene by comparison with sequences present in a data bank. Accordingly, Y1-amplified mutants express an increased glutathione S-transferase activity toward 1-chloro-2,4-dinitrobenzene; this activity, as well as the abundance of the corresponding RNA, appears, however, to reach a limit despite further increase in the Y1 gene copy number during successive amplification steps. Southern blot experiments showed that Y1 belongs to a multigene family, all or part of which has been amplified in mutant lines. These data provide a method to amplify and to overexpress the mu class of the glutathione S-transferase gene family on the basis of its linkage with the AMP deaminase gene.  相似文献   

5.
The rat placental glutathione S-transferase (GST-P), an isozyme of glutathione S-transferase, is not expressed in normal liver but is highly induced at an early stage of chemical hepatocarcinogenesis and in hepatomas. Recently, we reported that the NF-E2 p45-related factor 2 (Nrf2)/MafK heterodimer binds to GST-P enhancer 1 (GPE1), a strong enhancer of the GST-P gene, and activates this gene in preneoplastic lesions and hepatomas. In addition to the positive regulation during hepatocarcinogenesis, negative regulatory mechanisms might work to repress GST-P in normal liver, but this remains to be clarified. In this work, we identify the CCAAT enhancer-binding protein alpha (C/EBPalpha) as a negative regulator that binds to GPE1 and suppresses GST-P expression in normal liver. C/EBPalpha binds to part of the GPE1 sequence, and the binding of Nrf2/MafK and C/EBPalpha to GPE1 is mutually exclusive. In a transient-transfection analysis, C/EBPalpha activated GPE1 in F9 embryonal carcinoma cells but strongly inhibited GPE1 activity in hepatoma cells. The expression of C/EBPalpha was specifically suppressed in GST-P-positive preneoplastic foci in the livers of carcinogentreated rats. A chromatin immunoprecipitation analysis showed that C/EBPalpha bound to GPE1 in the normal liver in vivo but did not bind in preneoplastic hepatocytes. Introduction of the C/EBPalpha gene fused with the estrogen receptor ligand-binding domain into hepatoma cells, and subsequent activation by beta-estradiol led to the suppression of endogenous GST-P expression. These results indicate that C/EBPalpha is a negative regulator of GST-P gene expression in normal liver.  相似文献   

6.
7.
Chick liver glutathione S-transferase CL 3-3, expressed using a baculovirus system in Spodoptera frugiperda (SF9) cells, contains a single cysteine residue per subunit. This enzyme was modified with iodoacetamide. Amino acid analysis indicates that 0.85 +/- 0.10 cysteine residue was modified per enzyme subunit. GST CL 3-3 modified with iodo[14C]acetamide was further digested with trypsin and the isotope-labelled fragments were isolated. The fragment containing the cysteine residue accounts for 53% of the total labels. The S-carbaminomethylated protein retains the glutathione conjugating activity. Therefore, the cysteine residue is not essential for the enzymatic activity of CL 3-3.  相似文献   

8.
Selenium (Se) deficiency in rats produced significant increases in the activity of hepatic glutathione S-transferase (GST) with 1-chloro-2,4-dinitrobenzene as substrate and in various GST isoenzymes when determined by radioimmunoassay. These changes is GST activity and concentration were associated with Se deficiency that was severe enough to provoke decreases of over 98% in hepatic Se-containing glutathione peroxidase activity (Se-GSHpx). However, decreases in hepatic Se-GSHpx of 60% induced by copper (Cu) deficiency had no effect on GST activity or concentration. Increased GST activity in Se deficiency has previously been postulated to be a compensatory response to loss of Se-GSHpx, since some GSTs have a non-Se-glutathione peroxidase (non-Se-GSHpx) activity. However, the GST isoenzymes determined in this study, GST Yb1Yb1, GST YcYc and GST YaYa, are known to have up to 30-fold differences in non-Se-GSHpx activity, but they were all significantly increased to a similar extent in the Se-deficient rats.  相似文献   

9.
An expression plasmid for isoenzyme 3-3 of rat liver glutathione S-transferase has been constructed from the cDNA clone pGTA/C44 and the pAS expression vector pMG27NS, and used for the efficient production of the enzyme in the Escherichia coli strain M5219. The plasmid has also been manipulated, through the use of synthetic linkers, to encode chimeric polypeptides in which short sequences of the closely related isoenzyme 4-4 have been substituted into the N-terminal and C-terminal variable domains of isoenzyme 3-3. The chimeric polypeptides designated 4(9)3(208), 3(209)4(8), and 4(9)3(200)4(8) are expressed with varying degrees of efficiency in E. coli. The active dimeric holoenzymes 3-3, (4(9)3(208]2, (3(209)4(8]2, and (4(9)3(200)4(8]2 can be isolated. The spectroscopic and kinetic properties of the chimeric enzymes are significantly different than the native enzyme.  相似文献   

10.
OBJECTIVE: To determine whether tumor marker pi glutathione transferase (GST-pi) is expressed in hepatocellular carcinoma (HCC) and other chronic liver diseases and to compare its expression with that of alpha-fetoprotein (AFP). STUDY DESIGN: Samples used were formalin-fixed, paraffin-embedded liver tissues: normal (n = 3), chronic hepatitis B (n = 15), cirrhosis (n = 15) and HCC (n = 30). The expression of AFP and GST-pi was detected by using immunohistochemistry with the peroxidase-antiperoxidase method. AFP immunoreactivity was based on the cytoplasm of the hepatocytes, while GST-pi immunoreactivity was based on the nuclei of hepatocytes. RESULTS: In normal liver tissues, AFP was not expressed. However, there was strong staining of GST-pi in bile duct epithelium cells and weak staining in hepatocytes. Our results showed higher AFP immunoreactivity in cases of HCC (36.7%) as compared to cirrhosis (6.7%) and hepatitis B (0%), whereas GST-pi immunoreactivity was lower in cases of HCC (53.3%) as compared to cases of cirrhosis (100.0%) and hepatitis B (93.3%). Percent sensitivity of AFP determination for HCC was 36.7% as compared to 53.3% for GST-pi, thus making GST-pi a more sensitive marker for detection of HCC. This study showed a significant relationship between the intensity and percentage of cells stained in hepatitis B, cirrhosis and HCC for GST-pi immunoreactivity (P < .001, .001 and .05, respectively) but not for AFP (P > .05). Statistical analysis showed that there was no significant relationship between expression of AFP and GST-pi in cirrhosis and HCC cases. Hepatitis B virus infection in HCC cases showed a positive rate of 46.7%, with AFP staining positively in 42.9% of tissues and GST-pi staining positively in 57.1% of tissues. CONCLUSION: AFP is a diagnostic but rather insensitive tissue marker for HCC. However, the absence of AFP in benign chronic liver disease makes this marker useful in differentiating between HCC and other chronic liver diseases, whereas GST-pi can be used as a diagnostic marker for HCC as well as in detecting other chronic liver diseases.  相似文献   

11.
昆虫谷胱甘肽S-转移酶的基因结构及其表达调控   总被引:2,自引:0,他引:2  
陈凤菊  高希武 《昆虫学报》2005,48(4):600-608
谷胱甘肽S-转移酶(glutathione S-transferases, GSTs)属于一个超家族,目前已从20多种昆虫中克隆得到了近百个GSTs基因序列。这些基因分属于至少3个类别,Ⅰ(Delta)类,Ⅱ类和Ⅲ(Epsilon)类,其中Ⅰ类和Ⅲ类是昆虫特异性的类别。昆虫Ⅰ类GSTs基因通常由多基因家族编码,基因多态性在不同昆虫种类中差异很大。Ⅱ类基因的种类较少,基因的结构较简单,通常是单拷贝基因。Ⅲ类基因是最近才鉴定出来的新类别,目前仅在黑腹果蝇和冈比亚按蚊中明确了其在染色体上的定位。基因簇、可变剪接和基因融合等机制是导致昆虫GSTs基因多态性的主要原因。在抗性昆虫种群中,GSTs表达量的增加有mRNA水平的提高和基因扩增两种机制,但后一种机制的报道很少。GSTs活性的增加是由于属于一类或多类的多个同工酶的增量调控,也有少数是由于单个同工酶的增量调控。GSTs的表达受反式调控元件和顺式调控元件的调控。目前仅有少数含有调节基因的染色体大致位点和可能的调控元件得到鉴定。  相似文献   

12.
Ahn CY  Kim EJ  Kwon JW  Chung SJ  Kim SG  Shim CK  Lee MG 《Life sciences》2003,73(14):1783-1794
Effects of cysteine on the pharmacokinetics of clarithromycin were investigated after intravenous administration of the drug at a dose of 20 mg/kg to control rats (4-week fed on 23% casein diet) and rats with PCM (protein-calorie malnutrition, 4-week fed on 5% casein diet) and PCMC (PCM treated with 250 mg/kg for oral cysteine twice daily during the fourth week). Clarithromycin has been reported to be metabolized via hepatic microsomal cytochrome P450 (CYP) 3A4 to 14-hydroxyclarithromycin (primary metabolite of clarithromycin) in human subjects. It has also been reported that in rats with PCM, CYP3A23 level decreased to 40-50% of control level, but decreased CYP3A23 level in rats with PCM completely returned to control level by oral cysteine supplementation (rats with PCMC). Human CYP3A4 and rat CYP3A23 proteins have 73% homology. In rats with PCM, the area under the plasma concentration-time curve from time zero to time infinity, AUC (567, 853 and 558 microg min/ml for control rats and rats with PCM and PCMC, respectively) and percentage of clarithromycin remaining after incubation with liver homogenate (69.6, 83.9 and 71.7%) were significantly greater than those in control rats and rats with PCMC. Moreover, in rats with PCM, the total body clearance, CL (35.3, 23.4 and 35.8 ml/min/kg), nonrenal clearance, CL(NR) (21.3, 15.2 and 24.1 ml/min/kg) and maximum velocity for the disappearance of clarithromycin after incubation with hepatic microsomal fraction, V(max) (351, 211 and 372 pmol/min/mg protein) were significantly slower than those in control rats and rats with PCMC. However, above mentioned each parameter was not significantly different between control rats and rats with PCMC. The above data suggested that metabolism of clarithromycin decreased significantly in rats with PCM as compared to control due to significantly decreased level of CYP3A23 in the rats. By cysteine supplementation (rats with PCMC), some pharmacokinetic parameters of clarithromycin (AUC, CL, CL(NR) and V(max)) were restored fully to control levels because CYP3A23 level was completely returned to control level in rats with PCMC.  相似文献   

13.
Glutathionyl S-[4-(succinimidyl)benzophenone] (GS-Succ-BP), an analogue of the product of glutathione and electrophilic substrate, acts as a photoaffinity label of dimeric rat liver glutathione S-transferase (GST), isoenzyme 1-1. A time-dependent loss of enzyme activity is observed upon irradiation of the enzyme with long wavelength UV light in the presence of the reagent. The initial rate of inactivation exhibits nonlinear dependence on the concentration of the reagent, characterized by an apparent dissociation constant of the enzyme-reagent complex (K(R)) of 99 +/- 2 microM and k(max) of 0.082 +/- 0.005 min(-1). Protection against this inactivation is provided by the electrophilic substrate (ethacrynic acid), electrophilic substrate analogue (dinitrophenol), and product analogues (S-hexylglutathione and p-nitrobenzylglutathione) but not by steroids (Delta(5)-androstene-3,17-dione and 17beta-estradiol-3, 17-disulfate). These results suggest that GS-Succ-BP binds and reacts with the enzyme within the xenobiotic substrate binding site, and this reaction site is distinct from the substrate and nonsubstrate steroid binding sites of the enzyme. About 1 mol of reagent is incorporated into 1 mol of enzyme dimer when the enzyme is completely inactivated. Met-208 is the only amino acid target of the reagent, and modification of this residue in one enzyme subunit of the GST 1-1 dimer completely abolishes the enzyme activity of both subunits. In order to evaluate the role of subunit interactions in the Alpha class glutathione S-transferases, inactive GS-Succ-BP-modified GST 1-1 was mixed with unlabeled, active GST 2-2. The enzyme subunits were dissociated in dilute trifluoroacetic acid and then renatured at pH 7.8 and separated by chromatofocusing into GST 1-1, 1-2, and 2-2. The specific activities of the heterodimer toward several substrates indicate that the loss of catalytic activity in the unmodified subunit of the modified GST 1-1 is the indirect result of the interaction between the two enzyme subunits and that this subunit interaction is absent in the heterodimer GST 1-2.  相似文献   

14.
Isozyme characterization of glutathione S-transferase (GST) isolated from bovine ocular tissue was undertaken. Two isozymes of lens, GST 7.4 and GST 5.6, were isolated and found to be homodimers of a Mr 23,500 subunit. Amino acid sequence analysis of a 20-residue region of the amino terminus was identical for both isozymes and was identical to GST psi and GST mu of human liver. Antibodies raised against GST psi cross-reacted with both lens isozymes. Although lens GST 5.6 and GST 7.4 demonstrated chemical and immunological relatedness, they were distinctly different as evidenced by their pI and comparative peptide fingerprint. A corneal isozyme, GST 7.2, was also isolated and established to be a homodimer of Mr 24,500 subunits. Sequence analysis of the amino-terminal region indicated it to be about 67% identical with the GST pi isozyme of human placenta. Antibodies raised against GST pi cross-reacted with cornea GST 7.2. Another corneal isozyme, GST 8.7, was found to be homodimer of Mr 27,000 subunits. Sequence analysis revealed it to have a blocked amino-terminus. GST 8.7 immunologically cross-reacted with the antibodies raised against cationic isozymes of human liver indicating it to be of the alpha class. Two isozymes of retina, GST 6.8 and GST 6.3, were isolated and identified to be heterodimers of subunits of Mr 23,500 and 24,500. Amino-terminal sequence analysis gave identical results for both retina GST 6.8 and GST 6.3. The sequence analysis of the Mr 23,500 subunit was identical to that obtained for lens GSTs. Similarly, sequence analysis of the Mr 24,500 subunit was identical to that obtained for the cornea GST 7.2 isozyme. Both the retina isozymes cross-reacted with antibodies raised against human GST psi as well as GST pi. The results of these studies indicated that all three major classes of GST isozymes were expressed in bovine eye but the GST genes were differentially expressed in lens, cornea, and retina. In lens only the mu class of GST was expressed, whereas cornea expressed alpha and pi classes and retina expressed mu and pi classes of GST isozymes.  相似文献   

15.
Glutathione disulfide stimulates the activity of rat liver microsomal glutathione S-transferase 2-fold after incubation at 25 degrees C for 10 min. When the microsomes were incubated with the disulfide for over 20 min, the transferase activity increased to the same extent as in the case of N-ethylmaleimide (6-fold). Even in the presence of reduced glutathione, some enhancement of the transferase activity was observed. The data presented here are evidence that increase in glutathione disulfide level, e.g. by lipid peroxidation, on endoplasmic reticulum causes the upregulation of microsomal glutathione S-transferase activity.  相似文献   

16.
In order to examine the roles of cysteine and histidine residues in the activity of human class Pi glutathione S-transferase (GST pi), site-directed mutagenesis was used to replace each of the four cysteine residues (at positions 14, 47, 101 and 169) with serine and each of the two histidine residues (at positions 71 and 162) with asparagine using a cDNA for the enzyme (Kano, T. et al. (1987) Cancer Res., 47, 5626-5630) and an E. coli expression system. The replacements of Cys101, Cys169, His71 and His162 did not affect the GSH-conjugating activity toward 1-chloro-2,4-dinitrobenzene and ethacrynic acid. On the other hand, the activities were partly decreased by the replacements of Cys47 and Cys14. These results indicated that the cysteine and histidine residues in GST pi are not essential for the catalytic activity, although Cys47 and Cys14 may contribute to some extent to the catalytic efficiency.  相似文献   

17.
Glutathione S-transferase (GST) protein in gastrointestinal (GI) tracts of 16 organ donors, from whom all or substantial portions of the GI tract (stomach-colon) were available, was quantitated by HPLC and examined for interindividual variability/consistency of organ-specific patterns of expression. GSTP1, GSTA1, and GSTA2 were major components, and GSTM1 and GSTM3 were minor components. Consistent patterns of organ-specific expression were evident despite a high degree of interindividual variation of expression. GSTP1 was expressed throughout the GI tract and showed a decrease of expression from stomach to colon. GSTA1 and GSTA2 were expressed at high levels in duodenum and small intestine and expression decreased from proximal to distal small intestine. In contrast, GSTA1 and GSTA2 expression in colon and stomach of all subjects was low, particularly for colon where GSTA1 expression was 20- to 800-fold lower than that in corresponding small intestine. These consistent patterns of expression would suggest that compared to duodenum and small intestine, colon and to a lesser extent stomach always have low potential for GST-dependent detoxification of chemical carcinogens and are therefore at greater risk of genotoxic effects, particularly via substrates that are specific for GSTA1. This may be a factor in the greater susceptibility of stomach and colon to cancers compared to duodenum/small intestine.  相似文献   

18.
Normal rat liver expresses Ya (Mr 25,500), Yc (Mr 27,500) and Yk (Mr 25,000) Class Alpha glutathione S-transferase (GST) subunits. The Ya-type subunit can be resolved into two separate polypeptides, designated Ya1 and Ya2, by reverse-phase h.p.l.c. In rat livers that possess aflatoxin B1-induced pre-neoplastic nodules, a marked increase is observed in the expression of Ya1, Ya2, Yc and Yk; of these subunits, Ya2 exhibited the greatest increase in concentration. The Ya1 and Ya2 subunits isolated from nodule-bearing livers were cleaved with CNBr, and the purified peptides were subjected to automated amino-acid-sequence analysis. Differences in the primary structures of the two Ya GST subunits were found at positions 31, 34, 107 and 117. These data demonstrate that Ya1 and Ya2 are distinct polypeptides and are the products of separate genes. The amino acid sequences obtained from Ya1 and Ya2 were compared with the cloned cDNAs pGTB 38 [Pickett, Telakowski-Hopkins, Ding, Argenbright & Lu (1984) J. Biol. Chem. 259, 4112-4115] and pGTR 261 [Lai, Li, Weiss, Reddy & Tu (1984) J. Biol. Chem. 259, 5182-5188], which encode rat Ya-type subunits. From these comparisons it appears probable that Ya1 represents the GST subunit encoded by pGTR 261, whereas Ya2 represents the subunit encoded by pGTB 38. It is likely that the over-expression of Ya1 and Ya2 in nodule-bearing livers is of major significance in the acquired resistance of nodules to aflatoxin B1, since previous work [Coles, Meyer, Ketterer, Stanton & Garner (1985) Carcinogenesis 6, 693-697] has shown that the Ya-type GST subunit has high activity towards aflatoxin B1 8,9-epoxide.  相似文献   

19.
A previously uncharacterized glutathione S-transferase isoenzyme which is absent from normal adult rat livers has been isolated from fetal rat livers. The enzyme was purified using a combination of affinity chromatography, CM-cellulose column chromatography and chromatofocusing. It is composed of two non-identical subunits, namely, subunit Yc (Mr 28,000) and a subunit (Mr 25,500) recently reported by us to be uniquely present in fetal rat livers and which we now refer to as subunit 'Yfetus'. The enzyme which we term glutathione S-transferase YcYfetus has an isoelectric point of approx. 8.65 and has glutathione S-transferase activity towards a number of substrates. The most significant property of the fetal isozyme is its high glutathione peroxidase activity towards the model substrate cumene hydroperoxide. We suggest that this isozyme serves a specific function in protecting fetuses against the possible teratogenic effects of organic peroxides.  相似文献   

20.
The major proportion of rat liver glutathione S-transferase is cytosolic. Carefully washed mitochondria contain 0.25-0.47% of the cytosolic activity. Subfractionation of washed mitochondria using digitonin treatment revealed that glutathione S-transferase release did not parallel that of any of the mitochondrial marker enzymes. Glutathione S-transferase release paralleled that of lactate dehydrogenase, suggesting that these 'mitochondrial' activities are due to loosely bound cytoplasmic forms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号