首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 606 毫秒
1.
1. Ascorbate oxidase has been isolated from the green squash Cucurbita pepo medullosa by a new purification method. Furthermore a low-molecular-weight copper protein containing one type-1 copper/20000 Mr could be separated during the purification of the oxidase. The six-step procedure developed improved the yield of ascorbate oxidase by a factor of 2.5. The method is well reproducible and a constant value of 8 Cu (7.95 +/- 0.1/140000 Mr) has been established. By ultracentrifugal and electrophoretic criteria the enzyme preparations have been found to be homogeneous. They exhibited a specific activity of 3930 +/- 50 units/mg protein or 1088 +/- 15 units/microgram copper. 2. The pure enzyme is characterized by the following optical purity indices: A280/A610 = 25 +/- 0.5, A330/A610 = 0.65 +/- 0.05 and A610/A500 = 7.0 +/- 0.25. The molar absorption coeffient of the characteristic absorption maximum at 610 nm (oxidized minus reduced) amounts of 9700 M-1 cm-1 . 3. Computer simulations of the electron paramagnetic resonance (EPR) spectra of the oxidized enzyme reveal the following parameters: for the type-1 (blue) copper gz = 2.227, gy = 2.058, gx = 2.036; Az = 5.0 mT, Ay = Ax = 0.5 mT, for the type-2 (non-blue) copper g parallel to = 2.242, g perpendicular = 2.053; A parallel to = 19.0 mT, A perpendicular 0.5 mT. Out of the eight copper atoms present in the oxidase four are detectable by EPR. Of these, three belong to the type-1 class, and one to the type-2 class, as demonstrated by computer simulations of the EPR spectra. 4. To achieve full reduction of the enzyme, as measured by bleaching of the blue chromophore, four equivalents of L-ascorbate or reductase must be added in the absence of molecular oxygen. Upon reduction of the enzyme the fluorescence at 330 nm (lambda max ex = 295 nm) is enhanced by a factor of 1.5 to 1.75. The reduced enzyme is readily reoxidized by dioxygen, ferricyanide or hydrogen peroxide. It binds two molecules of hydrogen peroxide in the oxidized state (1/type-3 Cu pair), which can be monitored by a characteristic increase of the absorbance around 310 nm (delta epsilon = 1000 +/- 50 M-1 cm-1). Corresponding changes in EPR and fluorescence spectra have not been detected.  相似文献   

2.
The low temperature (77 K) irradiation of oxidized ceruloplasmin and Rhus vernicifera laccase at the 330 nm absorption which arises from type 3 copper leads to the reduction of type 1 copper as demonstrated by bleaching of the 610 nm chromophore and the decrease of the EPR signal associated with this species. Type 2 copper remains unaffected. Concomitant with the type 1 copper reduction, a new EPR signal which is possibly that of a biradical appears. Upon thawing, type 1 copper is reversibly oxidized and the radical signal disappears. Irradiation of oxidized protein at the absorption band of type 1 copper produces no spectral change. An EPR study at room temperature confirms the wave-length specificity and reversibility of the photoreduction of type 1 copper and radical formation. Radical appearance and disappearance at room temperature are extremely slow (tau1/2 approximately 30 min). Optical studies at room temperature show that upon anaerobic irradiation of laccase in the 330 nm absorption band, both type 3 and type 1 chromophores are slowly reduced. Upon return to the dark and in the presence of O2, both type 3 and type 1 centers are reoxidized. Oxidizing equivalents either from O2 or K3Fe(CN)6 are required for the reoxidation reaction. These studies demonstrate that there is a direct energy transfer between type 3 and type 1 copper sites in blue copper oxidases.  相似文献   

3.
1. The copper protein mavicyanin has been isolated and purified from the green squash Cucurbita pepo medullosa. 2. Mavicyanin contains one type-1 copper/18000 Mr, which can be characterized by: intense absorption maximum at 600 nm (epsilon = 5000 M-1 cm-1/Cu, A280/A600 = 8.0 +/- 0.5, A600/A403 = 7.0 +/- 0.25, maximum of fluorescence emission at 335 nM. 3. In the oxidized state the copper of mavicyanin is 100% detectable by electron paramagnetic resonance (EPR). Computer simulation of the rhombic EPR signal gives gz = 2.287, gy = 2.077, gx = 2.025, Az = 3.5 mT, Ay = 2.9 mT and Ax = 5.7 mT. 4. Like other simple type-1 copper proteins, such as stellacyanin, azurin or plastocyanin, mavicyanin is readily reduced by hydroquinone or L-ascorbic acid. Its midpoint potential E'm was determined to be + 285 mV. The reduced protein reacts rather slowly with dioxygen, but is rapidly reoxidized by ferricyanide.  相似文献   

4.
The inhibition of caeruloplasmin by cyanide   总被引:3,自引:2,他引:1       下载免费PDF全文
1. The reversible inhibition of the oxidase activity of caeruloplasmin by cyanide was investigated. 2. The kinetics are unusual, being competitive but with the inhibited complex formed only during cycling. 3. Inhibitory concentrations of cyanide are comparable with that of caeruloplasmin. 4. One azide group completely inhibits a caeruloplasmin molecule but two cyanide groups are required. 5. The results suggest that azide binds to a half-reduced or fully reduced conformational isomer of the enzyme whereas cyanide binds to completely reoxidized isomers, and that inhibited complexes contain ligand bridges between copper atoms.  相似文献   

5.
1. Techniques and experiments are described concerned with the millisecond kinetics of EPT-detectable changes brought about in cytochrome c oxidase by reduced cytochrome c and, after reduction with various agents, by reoxidation with O2 or ferricyanide. Some experiments in the presence of ligands are also reported. Light absorption was monitored by low-temperature reflectance spectroscopy. 2. In the rapid phase of reduction of cytochrome c oxidase by cytochrome c (less than 50 ms) approx. 0.5 electron equivalent per heme a is transferred mainly to the low-spin heme component of cytochrome c oxidase and partly to the EPR-detectable copper. In a slow phase (less than 1 s) the copper is reoxidized and high-spin ferric heme signals appear with a predominant rhombic component. Simultaneously the absorption band at 655 nm decreases and the Soret band at 444 nm appears between the split Soret band (442 and 447 nm) of reduced cytochrome a. 3. On reoxidation of reduced enzyme by oxygen all EPR and optical features are restored within 6 ms. On reoxidation by O2 in the presence of an excess of reduced cytochrome c, states can be observed where the low-spin heme and copper signals are largely absent but the absorption at 655 nm is maximal, indicating that the low-spin heme and copper components are at the substrate side and the component(s) represented in the 655 nm absorption at the O2 side of the system. On reoxidation with ferricyanide the 655 nm absorption is not readily restored but a ferric high-spin heme, represented by a strong rhombic signal, accumulates. 4. On reoxidation of partly reduced enzyme by oxygen, the rhombic high-spin signals disappear within 6 ms., whereas the axial signals disappear more slowly, indicating that these species are not in rapid equilibrium. Similar observations are made when partly reduced enzyme is mixed with CO. 5. The results of this and the accompanying paper are discussed and on this basis an assignment of the major EPR signals and of the 655 nm absorption is proposed, which in essence is that published previously (Hartzell, C.R., Hansen, R.E. and Beinert, H. (1973) Proc. Natl. Acad. Sci. U.S. 70, 2477-2481). Both the low-spin (g=o; 2.2; 1.5) and slowly appearing high-spin (g=6; 2) signals are attributed to ferric cytochrome a, whereas the 655 nm absorption is thought to arise from ferric cytochrome a3, when it is present in a state of interaction with EPR-undectectable copper. Alternative possibilities and possible inconsistencies with this proposal are discussed.  相似文献   

6.
The Type 3 copper site is intact but labile in Type 2-depleted laccase   总被引:1,自引:0,他引:1  
We report results of experiments designed to characterize the Type 1 and Type 3 copper sites in Rhus laccase depleted of Type 2 copper (T2D). Use of the Lowry method for determining protein concentration yielded the value 5620 +/- 570 M-1 cm-1 for the extinction of the 615-nm absorption band of this protein. Anaerobic reductive titrations with Ru(NH)3)6(2)+ and Cr(II)aq ions established the presence of three electron-accepting centers, which are reduced in a complex manner. Treatment of T2D laccase with a 70-fold excess of H2O2 induced a new shoulder at 330 nm (delta epsilon = 660 M-1 cm-1), as well as intensity perturbations at 280 and 615 nm. Comparison of difference spectra show that this 330-nm band derives from a Type 3 copper-bound peroxide and not from a reoxidized Type 3 site. Dioxygen reoxidation of ascorbate-reduced T2D laccase produced new difference bands at 330 nm (delta epsilon = 770 M-1 cm-1) and 270 nm (delta epsilon = 13,000 M-1 cm-1), the former assigned to a bound peroxide which is a dioxygen reduction intermediate. In the corresponding epr spectrum of this material new Cu(II) g parallel features (A parallel approximately 130 G) indicative of an isolated copper ion and a triplet signal near 3,400 G were observed, originating from the Type 3 sites of separate T2D laccase molecules. Reoxidation by ferricyanide or by dioxygen as mediated by iron hexacyanide did not produce these changes. Thus the magnetism of the reoxidized Type 3 site in T2D laccase can be perturbed as a consequence of aerobic turnover. The suggestion is advanced that there are presently three forms of T2D laccase, possibly metastable conformational isotypes, accounting for the apparently contradictory reports on the properties of this protein.  相似文献   

7.
The interactions of one-electron reduced metronidazole (ArNO2.-) and O2.- with native and Type-2-copper-depleted Vietnamese- and Japanese-lacquer-tree laccases were studied in aqueous solution at pH 6.0 and 7.4 by using the technique of pulse radiolysis. On reaction with ArNO2.-, in the absence of O2, the holo- and the Type-2-copper-depleted proteins accept, with reduction of Type 1 copper, 2 and 1 reducing equivalents respectively. On reaction with O2.- of both holo- and Type-2-copper-depleted Vietnamese-lacquer-tree laccase, almost complete reduction of Type 1 copper was observed and, after completion of the reaction, some (less than 20%) reoxidation of Type 1 copper occurs. Reduction of Type 1 copper of the laccases by these one-electron donors occurs via a bimolecular step; however, the rate of reduction of Vietnamese-lacquer-tree laccase is over 10 times that of Japanese-lacquer-tree laccase. It is inferred that electrons enter the protein via Type 1 copper with, in the case of the holoprotein, subsequent rapid intramolecular transfer of 1 reducing equivalent within the protein. Furthermore it is suggested that intra-molecular electron transfer to Type 3 copper atoms is slow and, in the case of Type-2-copper-depleted protein, may not occur. This slow process may partially account for the variation of the catalytic activities of 'blue' oxidases.  相似文献   

8.
The interaction of one-electron reduced metronidazole (ArNO2.-) with native and Type-2-copper-depleted ascorbate oxidase were studied in buffered aqueous solution at pH 6.0 and 7.4 by using the technique of pulse radiolysis. With ArNO2.-, reduction of Type 1 copper of the native enzyme and of the Type-2-copper-depleted ascorbate oxidase occurs via a bimolecular step and at the same rate. Whereas the native protein accepts, in the absence of O2, 6-7 reducing equivalents, Type-2-copper-depleted ascorbate oxidase accepts only 3 reducing equivalents with stoichiometric reduction of Type 1 copper. On reaction of O2.- with ascorbate oxidase under conditions of [O2.-] much greater than [ascorbate oxidase], removal of Type 2 copper results in reduction of all the Type 1 copper atoms, in contrast with reduction of the equivalent of only one Type 1 copper atom in the holoprotein. From observations at 610 nm, the rate of reduction of ascorbate oxidase by O2.- is not dependent on the presence of Type 2 copper. For the holoprotein, no significant optical-absorption changes were observed at 330 nm. It is proposed that electrons enter the protein via Type 1 copper in a rate-determining step followed by a fast intramolecular transfer of electrons within the protein. For the Type-2-copper-depleted protein, intramolecular transfer within the protein, however, is slow or does not occur. In the presence of O2, it is also suggested that re-oxidation of the partially reduced holoprotein occurs at steady state, as inferred from the observations at 330 nm and 610 nm. The role of Type 2 copper in ascorbate oxidase is discussed in terms of its involvement in redistribution of electrons within the protein or structural considerations.  相似文献   

9.
The mechanism of action of the flavoprotein D-aspartate oxidase (EC 1.4.3.1) has been investigated by steady-state and stopped flow kinetic studies using D-aspartate and O2 as substrates in 50 mM KPi, 0.3 mM EDTA, pH 7.4, 4 degrees C. Steady-state results indicate that a ternary complex containing enzyme, O2, and substrate (or product) is an obligatory intermediate in catalysis. The kinetic parameters are turnover number = 11.1 s-1, Km(D-Asp) = 2.2 x 10(-3) M, Km(O2) = 1.7 x 10(-4) M. Rapid reaction studies show that 1) the reductive half reaction is essentially irreversible with a maximum rate of reduction of 180 s-1; 2) the free reduced enzyme cannot be the species which is reoxidized during turnover since its reoxidation by oxygen (second order rate constant equal to 5.3 x 10(2) M-1 s-1) is too slow to be of relevance in catalysis; 3) reduced enzyme can bind a ligand rapidly and be reoxidized as a complex at a rate faster than that observed for the free reduced enzyme; 4) the rate of reoxidation of reduced enzyme by oxygen during turnover is dependent on both O2 and D-aspartate concentrations (second order rate constant of reaction between O2 and reduced enzyme-substrate complex equal to 6.2 x 10(4) M-1 s-1); and 5) the rate-limiting step in catalysis occurs after reoxidation of the enzyme and before its reduction in the following turnover. A mechanism involving reduction of enzyme by substrate, dissociation of product from reduced enzyme, binding of a second molecule of substrate to the reduced enzyme, and reoxidation of the reduced enzyme-substrate complex is proposed for the enzyme-catalyzed oxidation of D-aspartate.  相似文献   

10.
Laccase uses three types of Cu(II) sites to catalyze the reduction of O2 to H2O. Fluoride binds to the type 2 site. The effects of F- on the kinetics of O2 reduction were examined to determine the catalytic roles of the copper sites. Under steady-state conditions, F- rapidly inhibits the oxidation of dimethylphenylenediamine. Both reductant-dependent and -independent steps are inhibited. Rapid-freeze ESR spectra under steady-state conditions showed that F- decreased the steady-state concentrations of oxidized type 1 copper and oxidized type 2 copper while increasing the concentration of an oxygen radical intermediate. Stopped-flow kinetic experiments were used to determine the catalytic step(s) affected by F-. The most significant effect of F- was on the reductant-dependent rate of reduction of the type 3 site. While a strictly first-order dependence was observed in the absence of F-, a hyperbolic dependence was detected in the presence of F- indicating a limiting reductant-independent step. The steady-state kinetic rapid-freeze ESR and stopped-flow kinetic data are consistent with the implicated step being the reduction of the oxygen radical in an intermediate containing reduced type 1 and reduced type 2 copper. The results suggest a role for the type 2 Cu(I) site in binding the oxygen radical and catalyzing its reduction to H2O.  相似文献   

11.
The molybdenum centre of spinach (Spinacia oleracea) nitrate reductase has been investigated by e.p.r. spectroscopy of molybdenum(V) in reduced forms of the enzyme. The resting enzyme gives no signals attributable to Mo(V). However, on reduction with NADH, Mo(V) signals appeared at relatively short reaction times but decreased again on prolonged exposure to excess of the substrate as the enzyme was further reduced. On brief treatment of such samples with nitrate, Mo(V) signals reappeared but disappeared again on longer exposure to excess nitrate as the enzyme became fully reoxidized. Detailed investigation of the signals carried out in both 1H2O and 2H2O revealed the presence of two signal-giving species, referred to as 'signal A' and 'signal B', analogous to corresponding signals from nitrate reductase from Escherichia coli and from liver sulphite oxidase. Signal A has gav. 1.9767 and shows coupling to a single proton, exchangeable with the solvent, with A(1H)av. 1.3mT, whereas signal B shows no more than weak coupling to protons. Investigation of interconversion between the two species indicated that decreasing the pH from 8.0 to 6.7 had little effect, but that signal A was favoured by the presence of Cl-. This suggests, by analogy with recent work on sulphite oxidase by Bray, Gutteridge, Lamy & Wilkinson [Biochem. J. (1983) 211, 227-236] that Cl- is a ligand of molybdenum in the species giving signal A.  相似文献   

12.
Pseudomonas aureofaciens truncates the respiratory reduction of nitrate (denitrification) at the level of N2O. The nitrite reductase from this organism was purified to apparent electrophoretic homogeneity and found to be a blue copper protein. The enzyme contained 2 atoms of copper/85 kDa, both detectable by electron paramagnetic resonance (EPR) spectroscopy. The protein was dimeric, with subunits of identical size (40 +/- 3 kDa). Its pI was 6.05. The EPR spectrum showed an axial signal g at 2.21(8) and g at 2.04(5). The magnitude of the hyperfine splitting (A parallel = 6.36 mT) indicated the presence of type 1 copper only. The electronic spectrum had maxima at 280 nm, 474 nm and 595 nm (epsilon = 7.0 mM-1 cm-1), and a broad shoulder around 780 nm. A copper protein of low molecular mass (15 kDa), with properties similar to azurin, was also isolated from P. aureofaciens. The electronic spectrum of this protein showed a maximum at 624 nm in the visible range (epsilon = 2.5 mM-1 cm-1) and pronounced structures in the ultraviolet region. The EPR parameters were g parallel = 2.26(6) and g perpendicular = 2.05(6), with A parallel = 5.8 mT. The reduced azurin transferred electrons efficiently to nitrite reductase; the product of nitrite reduction was nitric oxide. The specific nitrite-reducing activity with ascorbate-reduced phenazine methosulfate as electron donor was 1 mumol substrate min-1 mg protein-1. The reaction product again was nitric oxide. Nitrous oxide was the reaction product from hydroxylamine and nitrite and from dithionite-reduced methyl viologen and nitrite. No 'oxidase' activity could be demonstrated for the enzyme. Our data disprove the presumed exclusiveness of cytochrome cd1 as nitrite reductase within the genus Pseudomonas.  相似文献   

13.
Purification and properties of bovine caeruloplasmin.   总被引:3,自引:1,他引:2       下载免费PDF全文
A novel method is reported for isolation of bovine caeruloplasmin from plasma; it involves a rapid and mild procedure, namely two column chromatographies with stepwise elution and one (NH4)2SO4 precipitation, and results in a proteolytically undegraded homogeneous protein. The general structure of the protein, as evaluated by molecular-weight determination and amino acid composition, is very similar to that established for human and rat caeruloplasmin. Copper determination and e.p.r. spectral analysis on the native and NO-treated protein gave a metal-to-protein stoichiometry of six atoms of copper per molecule. Three copper atoms were detectable by e.p.r., with Type 2/Type 1 ratio = 1 : 3 in most samples. The protein is very sensitive to storage and/or handling. A component was isolated from aged samples, which was found to contain approximately four copper atoms per 125000 daltons, two of which were detectable by e.p.r. with the characters of Type 2 copper. However, the same component was found to be present, although to a lesser extent, in the fresh preparation and does not seem to be related to proteolytic degradation. This component has no oxidase activity. On the basis of these results it is suggested that caeruloplasmin molecules are intrinsically heterogeneous with respect to both copper content and copper type, and this can explain the intriguing stoichiometry regarding the different types of copper centres.  相似文献   

14.
1. In anaerobic reduction studies on fungal laccase B (p-diphenol:O2 oxidoreductase, EC 1.14.18.1) with the EPR and stopped-flow techniques it was found that the type 2 copper of the enzyme is rapidly undergoing a reduction-oxidation cycle which is followed by a slower reduction in a couple of seconds. An intermediate EPR signal of unknown origin is formed in the same time-range as the initial reduction of type 2 copper and disappears again when this copper ion is reoxidized. 2. The rate of the anaerobic reoxidation of type 2 copper is similar to the reduction rate of the two-electron acceptor, suggesting that they are interacting in the electron transfer of the enzyme. 3. The changes in the reaction rates of both type 2 and type 3 copper appear to be affected in a similar way by changes in pH. 4. The EPR signal of the type 2 Cu2+ suggests that this ion is liganded to one or more nitrogens.  相似文献   

15.
Nitrous oxide reductase from the denitrifying bacterium Pseudomonas perfectomarina has been isolated and purified to homogeneity. The enzyme contained about eight copper atoms/120 kDa and was composed of two presumably identical subunits. The isoelectric point was 5.1. Several spectroscopically distinct forms of the enzyme were identified. A 'pink' form of the enzyme was obtained when the purification was done aerobically. The specific activity of this species was around 30 nkat/mg protein as measured by the nitrous-oxide-dependent oxidation of photochemically reduced benzyl viologen. A 'purple' form of the enzyme, whose catalytic activity was 2-5-fold higher, was obtained when the purification was done anaerobically. The activity of both forms of the enzyme was substantially increased by dialyzing the protein against 2-(N-cyclohexylamino)ethanesulfonate buffer at pH approximately equal to 10. A maximal activity of 1000 nkat/mg protein has been obtained for the purple form using this procedure. A 'blue', enzymatically inactive form of the enzyme resulted when either the pink or the purple species was exposed to excess dithionite or ascorbate. Anaerobic, potentiometric titrations of both the purple and the pink form of the enzyme gave a Nernst factor, n540, of 0.95 and a midpoint potential, E'0,540 of +260 mV (vs SHE, 25 degrees C, Tris/HCl buffer, pH 7.5). Electron paramagnetic resonance (EPR) and optical spectra of N2O reductase suggested the presence of an unusual type 1 copper center. Type 2 copper was absent. The hyperfine splitting in the g parallel region consisted of a seven-line pattern. In the presence of excess of reductant, a broad EPR signal with g values at 2.18 and 2.06 was observed. The EPR spectra of the pink and purple forms of the enzyme were similar; however, the spectrum of the purple form was better resolved with g parallel = 2.18 (A parallel = 3.83 mT) and g perpendicular = 2.03 (A perpendicular = 2.8 mT). Most of the copper in N2O reductase was removed by anaerobic dialysis against KCN. Reaction of the apoprotein with Cu(en)2SO4 partially regenerated the optical and EPR spectra of the holoprotein; the resulting protein was enzymatically inactive. Monospecific antibodies against the copper protein strongly inhibited the N2O reductase activity of purified samples and cell-free extracts.  相似文献   

16.
The reactivity with dioxygen of a mammalian (sheep) ceruloplasmin, anaerobically reduced with ascorbate, was found to depend on the state of the Type 2 and Type 3 copper centers, as monitored by EPR and optical spectroscopy. A complete reoxidation by air after anaerobic reduction with ascorbate was observed with samples (A) purified by the single-step procedure described for chicken ceruloplasmin (Calabrese, L., Carbonaro, M., and Musci, G. (1988) J. Biol. Chem. 263, 6480-6483), while samples prepared by traditional multistep procedure (B) or subjected to freeze-thawing (C) displayed partial and very slow reoxidation, reflecting the functional nonequivalence of blue coppers which is considered a typical property of mammalian ceruloplasmin. The rate of reduction of the 330 nm chromophore was found to increase as a function of the extent and rate of reoxidation of different samples, while the 610 nm band displayed an opposite trend. Samples B and C showed a Type 2 copper signal in the EPR spectrum, while sample A showed practically no Type 2 copper in the oxidized protein, and a transient Type 2-like signal during reduction. The presence of a trinuclear Type 2-Type 3 cluster can therefore be proposed for all ceruloplasmins, and the integrity of the copper-copper coupling is essential for efficient oxidase behavior.  相似文献   

17.
The mechanism of inhibition of the veratryl alcohol oxidase activity of lignin peroxidase H2 (LiPH2) by EDTA was investigated. It was found that EDTA was decarboxylated and that cytochrome c, nitro blue tetrazolium, ferric iron, and molecular oxygen were reduced in a reaction mixture containing LiPH2, H2O2, veratryl alcohol, and EDTA. The reductive activity observed with LiPH2 followed first order kinetics with respect to the concentration of EDTA. Stoichiometry studies showed that in the presence of sufficient EDTA, 1.7 mol of ferric iron were reduced per mole of H2O2 added to the reaction mixture. Superoxide- and EDTA-derived radicals were detected by ESR spin trapping upon incubation of LiPH2 with H2O2, veratryl alcohol, and EDTA. The Km values of veratryl alcohol and H2O2 remained the same for both the oxidative and reductive activities of LiPH2. Reductive activity was also observed with LiPH2 and EDTA using other free radical mediators in the place of veratryl alcohol, such as 1,4-dimethoxybenzene, 1,2,3- and 1,2,4-trimethoxybenzenes, and 1,2,4,5-tetramethoxybenzene. EDTA reduced the cation radical of 1,2,4,5-tetramethoxybenzene formed by LiPH2 in the presence of H2O2. Hence, it is proposed that the apparent inhibition of the veratryl alcohol oxidase activity of LiPH2 by EDTA is due to the reduction of the veratryl alcohol cation radical intermediate back to veratryl alcohol by EDTA. The reduction of cytochrome c, nitro blue tetrazolium, ferric ion, and molecular oxygen appears to be mediated by the EDTA radical formed by reduction of the veratryl alcohol cation radical.  相似文献   

18.
A semidefined medium based on Casamino Acids allowed Lactococcus lactis ATCC 19435 to grow in the presence of oxygen at a slow rate (0.015 h(-1)). Accumulation of H(2)O(2) in the culture prevented a higher growth rate. Addition of asparagine to the medium increased the growth rate, whereby H(2)O(2) accumulated only temporarily during the lag phase. H(2)O(2) is an inhibitor for several glycolytic enzymes, glyceraldehyde-3-phosphate dehydrogenase being the most sensitive. Strain ATCC 19435 contained NADH oxidase (maximum specific rate under aerobic conditions, 426 nmol of NADH min(-1) mg of protein(-1)), which reduced oxygen to water, whereby superoxide was formed as a by-product. H(2)O(2) originated from the dismutation of superoxide by superoxide dismutase. Although H(2)O(2) was rapidly destroyed under high metabolic fluxes, neither NADH peroxidase nor any other enzymatic H(2)O(2)-reducing activity was detected. However, pyruvate, the end product of glycolysis, reacted nonenzymatically and rapidly with H(2)O(2) and hence was a potential alternative for scavenging of this oxygen metabolite intracellularly. Indeed, intracellular concentrations of up to 93 mM pyruvate were detected in aerobic cultures growing at high rates. It is hypothesized that self-generated pyruvate may serve to protect L. lactis strain ATCC 19435 from H(2)O(2).  相似文献   

19.
Nitrite reductase of Alcaligenes xylosoxidans contains three blue type 1 copper centers with a function in electron transfer and three catalytic type 2 copper centers. The mutation H139A, in which the solvent-exposed histidine ligand of the type 1 copper ion was changed to alanine, resulted in the formation of a colorless protein containing 4.4 Cu atoms per trimer. The enzyme was inactive with reduced azurin as the electron donor, and in contrast to the wild-type enzyme, no EPR features assignable to type 1 copper centers were observed. Instead, the EPR spectrum of the H139A enzyme, with parameters of g(1) = 2.347 and A(1) = 10 mT, was typical of type 2 copper centers. On the addition of nitrite, the EPR features developed spectral features with increased rhombicity, with g(1) = 2.29 and A(1) = 11 mT, arising from the type 2 catalytic site. As assessed by visible spectroscopy, ferricyanide (E degree = +430 mV) was unable to oxidize the H139A enzyme, and this required a 30-fold excess of K(2)IrCl(6) (E degree = +867 mV). Oxidation resulted in the EPR spectrum developing additional axial features with g(1) = 2.20 and A(1) = 9.5 mT, typical of type 1 copper centers. The oxidized enzyme after separation from the excess of K(2)IrCl(6) by gel filtration was a blue-green color with absorbance maxima at 618 and 420 nm. The instability of the protein prevented the precise determination of the midpoint potential, but these properties indicate that it is in the range 700-800 mV, an increase of at least approximately 470 mV compared with the native enzyme. This high potential, which is consistent with a trigonal planar geometry of the Cu ion, effectively prevents azurin-mediated electron transfer from the type 1 center to the catalytic type 2 Cu site. However, with dithionite as reductant, 20% of the activity of the wild-type enzyme was observed, indicating that the direct reduction of the catalytic site by dithionite can occur. When CuSO(4) was added to the crude extract before isolation of the enzyme, the Cu content of the purified H139A enzyme increased to 5.7 Cu atoms per trimer. The enzyme remained colorless, and the activity with dithionite as a donor was not significantly increased. The additional copper in such preparations was associated with an axial type 2 Cu EPR signal with g(1) = 2.226 and A(1) = 18 mT, and which were not changed by the addition of nitrite, consistent with the activity data.  相似文献   

20.
The oxidation-reduction and spectroscopic properties of various forms of nitrous oxide reductase from Pseudomonas stutzeri were investigated. The high-activity form I of the enzyme (purple, 8 Cu, Mr 140,000) was reduced by a large variety of cationic, anionic and photochemically generated agents. The blue form III was the only product found in these experiments under anaerobic conditions. Reductive (dithionite) and oxidative (ferricyanide) titrations showed that the conversion of the purple form I to the blue species III was fully reversible in the absence of dioxygen. Two kinetically different phases of the reaction of form I with a stoichiometric amount of dithionite (1e- -equivalent/Cu) were detected: in the fast phase (seconds), the purple chromophore with lamba max at 540 nm disappeared almost completely, whereas in the slower phase (minutes) the blue species with lambda max around 650 nm was generated. Irrespective of the nature of the reductant the blue species did not react even at large excess of reductant. It was reoxidized by ferricyanide, hydrogen peroxide and nitric oxide. A new, catalytically inactive derivative of nitrous oxide reductase (form V, 2 Cu, Mr 140,000) was isolated from a transposon Tn5-induced mutant with defective chromophore biosynthesis. The pink color of the mutant protein faded almost completely after addition of 0.5e- -equivalent/Cu. In this case no blue species was found, similar to earlier observations for the regenerated, catalytically inactive protein. Varying with the sample and the pH, 50-80% of the total copper of form I was in an electron-paramagnetic-resonance-(EPR)-silent state as compared to 47% in the mutant protein. The broad, featureless EPR signal recorded at 9.32 GHz for the blue, reduced form III of nitrous oxide reductase represented approximately 20% of the total copper. For the blue species no resolution enhancement was achieved at 34 GHz. At this frequency both forms I and V showed similar EPR signals with apparent g-values at 2.16 and 1.99. At 9.32 GHz, form V had an EPR signal with gII at 2.18, AII = 3.55 mT (4 or 5 lines, in contrast to form I) and gI at 2.03. Above 100 K the splitting of the gII region into seven equidistant lines in the EPR signal of the high-activity form I and the hyperfine structure of the perpendicular transition disappeared. Carbon monoxide and nitric oxide, but not nitrous oxide, had marked effects on the spectroscopic properties of the purple form I. Marked effects were also obtained for the exogenous ligands nitrite, azide, cyanate and thiocyanate.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号