首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Two sequential half-fraction designs were applied to studying the alpha-toxin partition produced by Clostridium perfringens type A in aqueous two phase systems (ATPS), as a function of four factors: PEG molar mass and concentration, phosphate concentration and pH. The highest purification factor, yield and partition coefficient results were obtained with PEG 8000 (15%, w/w), phosphate at 20% (w/w) and pH 8.0. This system allows, in a single step, an alpha-toxin purification of 4.6-fold with final activity yield of 230% and partition coefficient of 113.9 in the PEG rich phase.  相似文献   

2.
The effect of protein concentration in partitioning in PEG/salt aqueous two-phase systems has been investigated. PEG 4000/phosphate systems in the presence of 0% w/w and 8.8% w/w NaCl have been evaluated using amyloglucosidase, subtilisin, and trypsin inhibitor. Also, a PEG 4000/phosphate system with 3% w/w NaCl was used for alpha-amylase. The concentration of the protein in each of the phases affected its partition behavior. The pattern for the individual proteins was dependent on their physicochemical properties. In the top phase, maximum protein concentration was determined mainly by a steric exclusion effect of PEG, and hydrophobic interaction between PEG and proteins. In the bottom phase, maximum concentration was determined mainly by a salting-out effect of the salts present. As the ionic strength was increased in the systems the concentration in the top phase increased for all proteins. In the bottom phase an increase in ionic strength increased the salting-out effect. Amyloglucosidase had a very low maximum concentration in the PEG-rich top phase which was probably due to its large size (steric exclusion) and low hydrophobicity, and a high concentration in the salt-rich bottom phase due to its high hydrophilicity. In the case of subtilisin and trypsin inhibitor, their high concentrations in the top phase were due to their hydrophobic nature (hydrophobic interaction with PEG) and small size (negligible steric exclusion). The maximum concentration in the bottom phase for trypsin inhibitor was lower than that of subtilisin which was probably due to its higher hydrophobicity and, hence, a stronger salting-out effect. The protein concentration in each of the two phases was correlated with a "saturation"-type equation. The partition coefficient could be satisfactorily predicted, as a function of the overall protein concentration, by the ratio between the "saturation" equations of the two individual phases. Better correlations were obtained when an empirical sigmoidal Boltzmann equation was fitted to the data, since in virtually all cases the partition coefficient is constant at low protein concentration (true partitioning) and changes to a different constant value at a high overall protein concentration. (c) 1996 John Wiley & Sons, Inc.  相似文献   

3.
The partitioning behaviour of endo-polygalacturonase (endo-PG) and total protein from a clarified Kluyveromyces marxianus fermentation broth in polyethylene glycol (PEG)-ammonium sulfate and PEG-potassium phosphate (pH=7) aqueous two-phase systems was experimentally investigated. Both the enzyme and total protein partitioned in the bottom phase for these two kinds of systems. The enzyme partitioning coefficient can be lower than 0.01 in PEG8000-(NH4)2SO4 ATPS with a large phase volume ratio and a moderate tie-line length, which implies the possibility of concentration operation using aqueous two phase partitioning. An ion-exchange separation of high purification efficiency was applied to analyze the clarified and dialyzed fermentation broth. A total purification factor of only 2.3 was obtained, which indicated the high enzyme protein content in the total protein of the fermentation broth. Consequently, the main purpose for separating endo-PG is concentration rather than purification. A separation scheme using an aqueous two-phase extraction process with polymer recycling and a dialysis was proposed to recover endo-PG from the fermentation supernatant of K. marxianus for commercial purpose. A high enzyme recovery up to 95% and a concentration factor of 5 to 8 with a purification factor of about 1.25 were obtained using the single aqueous two-phase extraction process. More than 95% polymer recycled will not affect the enzyme recovery and purification factor. Dialysis was used mainly to remove salts in the bottom phase. The dialysis step has no enzyme loss and can further remove small bulk proteins. The total purification factor for the scheme is about 1.7.  相似文献   

4.
Abstract

Aqueous two-phase systems have been studied for almost a century to separate biomolecules in harmless conditions. Proteases produced by Aspergillus tamarii URM 4634 were extracted in polyethylene glycol (PEG)/phosphate aqueous two-phase system under discontinuous and continuous (perforated rotative discs column) process. On the discontinuous process, it was evaluated the effect of operational conditions (PEG molar mass and its concentration, phosphate concentration and pH) over the partition coefficient, activity yield and purification factor. Protease partitioned to PEG-phase with partition coefficients up to 55.73. The best process parameters were 17.5% of PEG, with molar mass 8000?g·mol?1, 15% of phosphate salt at pH 6, with 113.15% of activity yield and purification factor of 2.62. Under continuous extraction, hold up data showed that 57.1% of the discontinuous phase was available for protein extraction. Further, separation achieved 90.0% of efficiency. The yields surpassed 100% in almost all runs, and the best purification factor was 1.84, with both flows of 2?mL·min?1. Thus, the best operational conditions reached an activity yield of 95.3% and 90.0% of separation efficiency. Hence, aqueous two-phase system PEG/phosphate extraction is an efficient process for separation of proteases produced by Aspergillus tamarii URM 4634, under continuous extraction likewise under discontinuous process.  相似文献   

5.
Thermostable a-amylase with temperature optimum at 80 °C, molecular mass 58 kDa and pI point 6.9 was purified from a catabolite resistant Bacillus licheniformis strain. The enzyme was sensitive to inhibition by metal ions and N-bromosuccinimide. The partition behaviour of this enzyme in aqueous two-phase systems (ATPS) of the polymer-polymer-water type was investigated and some effects of type, molecular weight and concentration of phase components were studied. Up to 100% retention in the bottom phase of polyethylene glycol 10,000—20,000/dextran 200 system was reached. Best partition conditions were obtained in PEG 10,000—20,000/polyvinyl alcohol 200 systems, where the partition coefficient K increased 750 times to 7.5. Simultaneous production and purification of a-amylase and serine proteinase in PEG-polymer-water ATPS were examined. In the system PEG 6,000/ficoll, up to 90% of the amylase was retained in the bottom phase, whereas about 95% of the total protein (K = 22.8) and 60—75% of the proteinase were in the top phase. Similar separation of the enzymes from laboratory supernatant was obtained in system PEG/Na2SO4.  相似文献   

6.
This work evaluates the influences of five parameters (pH, PEG molecular mass, PEG concentration, concentration of buffer K2HPO4–KH2PO4 and NaCl concentration) on xylanolitic complex partitioning produced by P. janthinellum in aqueous two-phase systems, using a 25 factorial experimental design. A mathematical model to quantify the influence of these parameters was attained and statistically tested. The optimum point for total protein extraction was obtained under the following conditions: pH 7.0, PEG 10 000, 3.67% PEG, 10% potassium phosphate and 12.4% NaCl. The partition coefficient (K) value experimentally obtained was 5.25 and that predicted by the model was 5.89.  相似文献   

7.
This report continues or examination of the effect of genetically engineered charge modifications on the partitioning behavior of proteins in aqueous two-phase extration. The genetic modifications consisted of the fusion of charged peptide tails to beta-galactosidase and charge-change point mutations to T4 lysozyme. Our previous article examined the influence of these charge modifications on partitioning as a function of interfacial potential difference. In this study, we examined charge directed partitioning behavior in PEG/dextran systems containing small amounts of the charged polymers diethylaminoethyl-dextran (DEAE-dextran) or dextran sulfate. The best results were obtained when attractive forces between the protein and polymer were present. Nearly 100% of the beta-galactosidase, which carries a net negative charge, partitioned to the DEAE-dextran-rich phase regardless of whether the phase was dextran or PEG. In these cases, cloudiness of the protein-rich phases suggest that strong charge interactions resulted in protein/polymer aggregation, which may have contributed to the extreme partitioning. Unlike the potentialdriven partitioning reported previously, consistent partitioning trends were observed as a result of the fusion tails, with observed shifts in partition coefficient (K(p)) of up to 37-fold. However, these changes could not be solely attributed to charge-based interactions. Similarly, T4 lysozyme, carrying a net positive charge, partitioned to the dextran sulfate-containing phase, and displayed four- to sevenfold shifts in K(p) as a result of the point mutations. These shifts were two to four times stronger than those observed for potential driven partitioning. Little effect on partitioning was observed when the protein and polymer had the same charge, with the exception of beta-galactosidase with polyarginine tails. The high positive charge density of these tails provided for a localized interaction with the dextran sulfate, and resulted in 2- to 15-fold shifts in K(p). (c) 1995 John Wiley & Sons, Inc.  相似文献   

8.
Gündüz U 《Bioseparation》2000,9(5):277-281
Partitioning of proteins in aqueous two-phase systems has been shown to provide a powerful method for separating and purifying mixtures of biomolecules by extraction. These systems are composed of aqueous solutions of either two water-soluble polymers, usually polyethylene glycol (PEG) and dextran (Dx), or a polymer and a salt, usually PEG and phosphate or sulfate. There are many factors which influence the partition coefficient K, the ratio of biomolecule concentration in the top phase to that in the bottom phase, in aqueous two-phase systems. The value of the partition coefficient relies on the physico-chemical properties of the target biomolecule and other molecules and their interactions with those of the chosen system. In this work, the partition behavior of pure bovine serum albumin in aqueous two-phase systems was investigated in order to see the effects of changes in phase properties on the partition coefficient K. The concentration of NaCl and pH were considered to be the factors having influence on K. Optimal conditions of these factors were obtained using the Box-Wilson experimental design. The optimum value of K was found as 0.0126 when NaCl concentration and pH were 0.14 M and 9.8, respectively, for a phase system composed of 8% (w/w) polyethylene glycol 3,350 - 9 (% w/w) dextran 37,500 - 0.05 M phosphate at 20 °C.  相似文献   

9.
10.
A simple method for calculating the productivity of chromatography processes was proposed based on the iso-resolution curve concept. The model separation system was polyphenol separations by polystyrene divinylbenzene resins with the ethanol–water mixture mobile phase. The distribution coefficient K was determined as a function of ethanol concentration I by linear gradient elution experiments. The HETP-mobile phase velocity u curves were determined as a function of I. Using K and HETP, the iso-resolution curve was calculated, from which the productivity was determined as a function of I. It was found that there is an optimum I, where the highest productivity with the minimum amount of mobile phase consumption is obtained.  相似文献   

11.
The partitioning of pristinamycins was studied in dextran and polyethylene glycol (PEG) aqueous two-phases systems. Pristinamycins partitioned preferentially into the PEG-rich top phase. The partition coefficient was independent of molar mass of PEG and dextran and of antibiotic concentration, but, increased exponentially with the tieline length of the system. Partition of pristinamycins was greatly improved when fatty acids esters of PEG were mixed with PEG. In such mixtures, the partition of coefficient increased up to a value of 24, dependent on the carbon chain length of fatty acids and the modified PEG concentrations. Moreover, in such system, the two groups of pristinamycins, I and II, were extracted in accordance with their hydrophobicity. Recovery of pristinanamycins produced by Streptomyces pritinaespiralis in a fermentation broth was achieved with a dextran/PEG system. Cells were confined into the bottom phase and pristinamycins partitioned in the top phase. However, due to binding of the pristinamycins to the cells, the partition coefficient was slightly lower than of pure antibiotics solutions. (c) 1994 John Wiley & Sons, Inc.  相似文献   

12.
Antimicrobial peptide P34 is a promising biopreservative for utilization in the food industry. In this work, aqueous biphasic systems (ABS) and aqueous biphasic micellar systems (ABMS) were studied as prestep for purification of peptide P34. The ABS was prepared with polyethylene glycol (PEG) and inorganic salts and the ABMS with Triton X-114 was chosen as the phase-forming surfactant. Results indicate that peptide P34 partitions preferentially to PEG-rich phase and extraction with ammonium sulfate [(NH4)2SO4], yielding a 75% recovery of the antimicrobial activity, specific activity of 1,530 antimicrobial units per mg of protein, and purification fold of 2.48. Protein partition coefficient and partition coefficient for the biological activity with (NH4)2SO4 system were 0.48 and 64, respectively. Addition of sodium chloride did not affect recovery, but decreased protein amount in the PEG-rich phase, indicating a higher partition of biomolecules. ABMS did not yield good recovery of antimicrobial activity. Purification fold using PEG–(NH4)2SO4 and 1.0?mol l?1 sodium chloride was twice higher than that obtained by conventional protocol, indicating a successful utilization of ABS as a step for purification of peptide P34.  相似文献   

13.
《Process Biochemistry》2014,49(12):2305-2312
The partitioning of proteases expressed by Penicillium restrictum from Brazilian Savanna in an inexpensive aqueous two-phase system composed of poly (ethylene glycol) (PEG) and sodium polyacrylate (NaPA) was studied. The effects of PEG molecular weight and concentration, as well as NaPA concentration and the concentration of fermented broth on protease partitioning were studied. Partitioning into the top PEG-rich phase was increased in systems with smaller PEG-molecular weight, higher NaPA concentration and lower PEG concentration. For most systems studied, purification has been achieved by directing the biomolecule partition to the opposite phase of the other proteins, providing the enzyme purification. The highest partition coefficient was obtained using 20 wt% NaPA, 4 wt% PEG 2000 g mol−1 and 45 wt% fermented broth, leading to a purification factor of 1.98 and partition coefficient of 37.73. The system showed high mass balances and yield, indicating enzyme stability and applicability for industrial processes. The partitioning results using the PEG/NaPA/NaCl system show that this method could be used to purify or concentrate protease from fermented broth.  相似文献   

14.
The principle that the antigen and the antibody prefer different phases in an aqueous two-phase system is the analytical basis of the work presented here. The antigen horseradish peroxidase, which is bound to a monoclonal antibody (mAb), is separated from free Ag in an aqueous phase system (polyethylene glycol (PEG)/dextran) as a function of the concentration of mAb. The plot of the partition coefficient kappa of horseradish peroxidase versus the concentration of mAb yields a sigmoidal curve similar to the curve obtained by enzyme-linked immunosorbent assay (ELISA). Comparing the plots normally used for ELISA in order to determine the apparent binding constant of mAb and the number of epitopes on the Ag we derived a relationship between the difference in partitioning of the free Ag and the bound Ag (delta kappa) and the concentration of mAb. The new linear plot of reciprocal delta kappa versus reciprocal concentration of mAb gives the apparent binding constant of mAb, which is evaluated from the slope. From the intercept at the ordinate the maximum difference of the partition coefficient of the free and bound antigen is derived and the apparent partition coefficient of the free monoclonal antibody can be calculated.  相似文献   

15.
The effect of pH and salt concentration on the partitioning behavior of bovine serum albumin (BSA) and cytochrome c in an aqueous two-phase polymer system containing a novel pH-responsive copolymer that mimics the structure of proteins and poly(ethylene glycol) (PEG) was investigated. The two-phase system has low viscosity. Depending on pH and salt concentration, the cytochrome c was found to preferentially partition into the pH-responsive copolymer-rich (bottom) phase under all conditions of pH and salt concentrations considered in the study. This was caused by the attraction between the positively charged protein and negatively charged copolymer. BSA partitioning showed a more complex behavior and partitioned either to the PEG phase or copolymer phase depending on the pH and ionic strength. Extremely high partitioning levels (partition coefficient of 0.004) and very high separation ratios of the two proteins (up to 48) were recorded in the new systems. This was attributed to strong electrostatic interactions between the proteins and the charged copolymer.  相似文献   

16.
17.
Correlations to describe the effect of surface hydrophobicity and charge of proteins with their partition coefficient in aqueous two-phase systems were investigated. Polyethylene glycol (PEG) 4000/phosphate, sulfate, citrate, and dextran systems in the presence of low (0.6% w/w) and high (8.8% w/w) levels of NaCl were selected for a systematic study of 12 proteins. The surface hydrophobicity of the proteins was measured by ammonium sulfate precipitation as the inverse of their solubility. The hydrophobicity values measured correlated well with the partition coefficients, K, obtained in the PEG/salt systems at high concentration of NaCl (r = 0.92-0.93). In PEG/citrate systems the partition coefficient correlated well with protein hydrophobicity at low and high concentrations of NaCl (r = 0.81 and 0.93, respectively). The PEG/citrate system also had a higher hydrophobic resolution than other systems to exploit differences in the protein's hydrophobicity. The surface charge and charge density of the proteins was determined over a range of pH (3-9) by electrophoretic titration curves; PEG/salt systems did not discriminate well between proteins of different charge or charge density. In the absence of NaCl, K decreased slightly with increased positive charge. At high NaCl concentration, K increased as a function of positive charge. This suggested that the PEG-rich top phase became more negative as the concentration of NaCl in the systems increased and, therefore, attracted the positively charged proteins. The effect of charge was more important in PEG/dextran systems at low concentrations of NaCl. In the PEG/dextran systems at lower concentration of NaCl, molecular weight appeared to be the prime determinant of partition, whereas no clear effect of molecular weight could be found in PEG/salt systems.  相似文献   

18.
The characterization of Bovine Serum Albumin mass transfer mechanisms in a spray column using an aqueous two-phase system composed of poly(ethylene glycol) and a modified starch-Reppal PES 100-is done. The poly(ethylene glycol) rich phase is used as the dispersed phase and protein transfer takes place from the dispersed phase to the continuous phase. The effect of dispersed phase superficial velocity, system composition, continuous phase height and distribution system design on either overall protein mass transfer coefficient or column hold-up is described. It is shown that continuous phase superficial velocity and phase composition are the main controlling factors for protein transfer. It is also observed that, with the tested system, only at very low dispersed phase superficial velocities is it possible to operate the spray column as an extraction column. In this system the upper operating limit of the dispersed phase velocity is ten times smaller than in other aqueous two-phase systems.List of Symbols ATPS Aqueous Two-Phase System - BSA Bovine Serum Albumin - C i kg m–3 inlet dispersed phase protein concentration - C 0 kg m–3 outlet dispersed phase protein concentration - C d kg m–3 dispersed phase protein concentration - C c kg m–3 continuous phase protein concentration - D m column internal diameter - H hold-up - h, h d m dispersion height - h 0 m initial dispersion height (initial continuous phase height) - k da s–1 overall mass transfer coefficient - m protein partition coefficient - n number of holes of distribution system - PEG Poly(ethylene glycol) - Q m3 s–1 dispersed phase volumetric flow rate - S m2 column internal area - V m3 dispersion volume A. Venâncio was supported by a JNICT (Junta Nacional de Investigaçäo Científica e Tecnológica) grant.  相似文献   

19.
The effective elimination of phycobiliproteins from crude enzyme preparation of the red alga Caloglossa continua (Okamura) King et Puttock (Ceramiales, Florideophyceae) was investigated in an aqueous two‐phase partitioning system (ATPS) by changing the concentrations of polyethylene glycol (PEG) and ammonium sulfate (AS). The phycobiliproteins shifted from the AS‐rich lower phase to the PEG‐rich upper phase in high PEG and AS concentrations. The best ATPS condition for the elimination of phycobiliproteins from the lower phase was obtained by the combination of 20% (weight/volume; w/v) PEG and 16% (w/v) AS. However, the recovery of aldolase and mannitol‐1‐phos‐phatase activities was significantly reduced. For purification of the enzymes, a combination of 15% (w/v) PEG and 16% (w/v) AS was the best ATPS condition, because a high specific activity and recovery of the enzymes were obtained. Under these conditions, 98% of the phycobiliproteins were removed from the lower phase. Therefore, the ATPS proved to be a very useful method as a first step in the purification of enzymes from red algae.  相似文献   

20.
In order to reduce the toxicity of Clostridium perfringens fermentation broths used in vaccine preparation, we developed two-phase aqueous systems for removal of toxin-activating proteases. Removal of the proteases inhibits the conversion of protoxin to active toxin. In order to establish the conditions under which the phase separation occurs, binodal curves, formed by poly(ethylene glycol) (PEG) and sodium citrate, were investigated at different values of pH and PEG molar mass. A 24-experimental design was used to evaluate the influence of PEG molar mass and concentration, citrate concentration and pH on protease partition coefficient, removal factor and protease removal yield. It has been found that simultaneous increase in PEG molar mass and decrease in citrate concentration remarkably improved the removal factor, whereas the protease removal yield showed an opposite trend. The best conditions for the system under consideration (removal factor of 2.69 and yield of 116%) were obtained at pH 8.0 using PEG molar mass of 8000 g mol−1 and concentrations of PEG and citrate of 24 and 15%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号