首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
《Biomass》1990,21(3):207-218
The anaerobic treatment of baker's yeast wastewater was studied using an anaerobic biological contact reactor (AnRBC) and a fixed-film reactor. The AnRBC had an active biomass developed within the reactor before this study commenced; however, the fixed-film reactor was started without attached biomass in a support structure. The gas production rates obtained for the AnRBC were between 0·55 and 0·61 litre methane per litre reactor per day. However, a gas production rate of only 0·46 litre methane per litre reactor per day was achieved after a four-month operating period for the fixed-film reactor. Higher chemical oxygen demand reduction was also found in the AnRBC. The results indicated that the presence of high sulfate concentration in baker's yeast wastewater affected teh start-up process. The reactor with fully developed active biomass was less susceptible to sulfate inhibition and showed improved anaerobic digestion. Results indicate that the reactor should be innoculated by feeding nutrient-balanced substrate before it was subjected to the digestion of baker's yeast wastewater. The fixed-film reactor was also fed with the substrate contianing sodium molybdate, an inhibitor of sulfate-reducing bacteria. The results indicated that both methanogenic and sulfate-reducing bacteria were inhibited.  相似文献   

2.
Optimal steady-state performance of any biofilm reactor requires a fully developed and mature biofilm. During fixed-film reactor startup phase, biofilm is in process of development and accordingly, process performance is difficult to quantify. Environmental, cellular and surface factors greatly influence the process of biofilm formation during reactor startup. Improved knowledge of nutritional, toxicological and environmental requirements of wastewater degrading microorganisms has helped define optimal microbial growth conditions. In case of anaerobic fixed film reactors the startup is hindered by low microbial growth rates, strict environmental requirements and limited ability of methanogens to adhere and form fixed biofilms. These obstacles could be overcome by proper support media selection and formulation of appropriate inoculation procedures and startup strategies.  相似文献   

3.
污泥厌氧发酵生产挥发性脂肪酸相较产甲烷,是更具应用价值的污泥稳定途径及资源化利用方式,得到国内外学者的普遍重视。考虑到产酸量低和产酸过程的不稳定性是限制污泥发酵产酸的主要问题,采用生物强化方法实现挥发性脂肪酸的大量积累,与物理和化学方法相比,具有成本低、无二次污染等优点。根据生物强化制剂的类型,归纳了微生物纯培养物、微生物混合培养物及生物酶强化对污泥厌氧发酵产酸的影响,并在此基础上对生物强化技术控制污泥定向产酸、调控奇偶数碳比率等方面的应用进行讨论。此外,分析了影响挥发性脂肪酸产量和组分的因素,如pH、温度、底物、水力停留时间和污泥龄等。最后对生物强化技术的发展方向进行了展望,以期为深入探究污泥资源化利用提供借鉴。  相似文献   

4.
Waste-grown microalgae are a potentially important biomass for wastewater treatment. The lipid accumulated in microalgae could be utilized as feedstocks for biodiesel production. The algal residues, as major by-products derived from lipid extraction, mainly consist of carbohydrate and protein, making anaerobic digestion an efficient way to recover energy. The conversion of lipid-extracted algal residues into methane plays dual role in renewable energy production and sustainable development of microalgal biodiesel industry. Therefore, an anaerobic fermentation process for investigation of the methane production potential of algal residues was conducted in this paper. The effect of inoculum to substrate ratios (ISRs) on the methane production by anaerobic digestion of Chlorella sp. residue in a single stage was evaluated. The maximum methane yield of 195.6 ml CH4/g volatile solid (VS) was obtained at an ISR of 1:1. The stability and progress of the reaction from algal residues to methane were monitored by measuring the pH, volatile fatty acids (VFAs), total ammoniacal nitrogen (TAN), and methane volume. Based on the results of one-stage experiments, two-stage technology was proposed and was found to be more suitable for high organic load. The optimum conditions for acidogenesis and methanogenesis are indicated in this paper.  相似文献   

5.
Cellulose degradation to methane under continuous fermentation conditions was compared using fully mixed, fully mixed with solids return, sludge-blanket, and fixed-film fermenters. In fully mixed fermenters, a decrease in hydraulic retention time (HRT) of two weeks or less caused the wash out of anaerobes capable of converting volatile fatty acids to methane, while at increased feeding rates over 1 g/L day the rapid growth of cellulolytic anaerobes upset the balance between acid formation and its conversion to CH(4). Circulation of cellulose and difficulty in settling of cellulose with attached bacteria imposed problems in the use of other types of fermenters. On the basis of information obtained from this study, a fermenter which combined a fully mixed phase for cellulose degradation and a fixed-film phase with pre-immobilized bacteria for converting fatty acids to CH(4) in one vessel, was devised. Using this fermenter, a mixed culture converted cellulose to CH(4) at 4.8 g/L day at a HRT of six days as compared to 0.7 g/L day at a HRT of 28 days in the fully mixed fermenter.  相似文献   

6.
Straw was evaluated as a biofilm carrier in the methanogenic stage of the two-stage anaerobic digestion of crop residues. Three reactor configurations were studied, a straw-packed-bed reactor, a glass packed-bed reactor and a reactor containing suspended plastic carriers. The reactor with the packed straw bed showed the best results. It had the highest methane production, 5.4 11(-1) d(-1), and the chemical oxygen demand (COD) removal ranged from 73-50% at organic loading rates from 2.4-25 g COD l(-1) d(-1). The degradation pattern of volatile fatty acids showed that the degradation of propionate and longer-chain fatty acids was limiting at higher organic loading rates. A stable effluent pH showed that the packed-bed reactors had good ability to withstand the variations in load and volatile fatty acid concentrations that can occur in the two-stage process. The conclusion is that straw would work very well in the intended application. A further benefit is that straw is a common agricultural waste product and requires only limited resources concerning handling and cost.  相似文献   

7.
The technical feasibility of adopting the fixed-film reactor concept for biogas production from screened dairy manure was investigated. The methane production capability of laboratory-scale 4-L anaerobic reactors (conventional and fixed-film) receiving screened dairy manure and operated at 35 degrees C was compared. Dairy manure filtrate with 4.4% total solids (TS) and 3.4% volatile solids (VS) (average value) was prepared from 1:1 manure-water slurry. The feed material was added intermittently at loading rates ranging from 2.34 to 25 and 2.25 to 785 g VS/L d, respectively, for the conventional and fixed-film reactors. Maximum methane production rate (L CH(4)/L d) for the conventional reactor was 0.63 L CH(4)/L d achieved at a 6-day hydraulic retention time (HRT). For the fixed-film reactor the maximum production rate was 3.53 L CH(4)/L d when operated at a loading rate of 262 g VS/L d (3 h HRT). The fixed-film reactor was capable of sustaining a loading of 785 g VS/L d (1 h HRT). The fixed-film reactor performed much better than the conventional reactors. These results indicate that a large reduction of required reactor volume is possible through application of a fixed-film concept combined with a liquid-solid separation pretreatment of dairy manure.  相似文献   

8.
资源化利用是应对餐厨垃圾(Kitchen waste,KW)和剩余污泥(Excess sludge,ES)快速增加的有效方法,而厌氧发酵获得挥发性脂肪酸(Volatile fatty acids,VFAs)是其中的重要方式之一,但单一底物限制了VFAs的高效生产。近年来,不同底物厌氧共发酵产生VFAs被广泛研究与应用,文中分析了KW和ES单独和协同发酵产酸过程的特点,总结了厌氧发酵产酸过程及其生物代谢机制,阐述了环境因子及微生物群落结构对厌氧发酵产物类型及系统产物回收效率的影响。并进一步提出了针对区域饮食习惯、接种外源微生物构建稳定高效的定向产酸发酵体系以及KW和ES与原位污水间的耦联作用的研究方向。以期减少垃圾回收站及污水处理厂的运行成本,为实现城市有机固体垃圾处理与污水处理共赢提供参考。  相似文献   

9.
Granular sludge from an upflow anaerobic sludge blanket reactor treating synthetic waste water containing a mixture of volatile fatty acids and nitrate showed a removal efficiency of nearly 100% for both nitrogen and carbon. This activity was achieved by a combined process of denitrification and methanogenesis under conditions of surplus carbon. Under batch conditions the two processes proceeded clearly separated in time with first denitrification dominating and excluding methanogenesis. However, as soon as nitrate was depleted, methane production was initiated, showing that the inhibition of methanogenesis by nitrate was reversible. Of the volatile fatty acids supplied to the reactor, i.e. acetate, propionate, and butyrate, the denitrifying population clearly preferred butyrate and propionate even though acetate could also be metabolized. Consequently, growth of syntrophic volatile fatty acid degraders was suppressed by the denitrifiers in cases of low C:N ratios in the medium, leaving acetate as the major substrate for methanogenesis.Abbreviations UASB upflow anaerobic sludge blanket - COD chemical oxygen demand - VFA volatile fatty  相似文献   

10.
An acetic-acid-based synthetic wastewater of different organic concentrations was successfully treated at 35 degrees C in anaerobic downflow fixed-film reactors operated at high organic loading rates and short hydraulic retention times (HRTs). Substrate removal and methane production rates close to theoretical values of complete volumetric chemical oxygen demand (COD) removal and maximum methane conversion were obtained. A high concentration of biofilm biomass was retained in the reactor. Steady-state biofilm concentration increased with increased organic loading rate and decreased HRTs, reaching a maximum of 8.3 kg VFS/m(3) at a loading rate of 17 kg COD/m(3) day. Biofilm substrate utilization rates of up to 1.6 kg COD/kg VFS day were achieved. Soluble COD utilization rates at various COD concentrations can be described by half-order reaction kinetics.  相似文献   

11.
Performance and characteristics of an anaerobic baffled reactor   总被引:20,自引:0,他引:20  
The performance and the characteristics of a laboratory scale anaerobic baffled reactor (ABR) were investigated using synthetic wastewater. The experimental results showed that among different volatile fatty acids (VFAs), acetate was the main intermediate of acidogenic degradation of glucose. The VFA concentration decreased longitudinally down the reactor. The analysis of the biogas composition revealed that methane concentration increased steadily from compartment 1 to 5, while hydrogen content decreased in the first compartments. There was no detectable hydrogen in the last two compartments. The methane-producing activity of anaerobic sludge in different compartments depended on the substrate, which suggests that the proper anaerobic consortium in each separate compartment was developed according to the substrate(s) availability and the specific environmental conditions. The ABR has the potential to provide a higher efficiency at higher loading rates and be applicable for extreme environmental conditions and inhibitory compounds.  相似文献   

12.
The conversion of acetic acid to methane and carbon dioxide by a mixed methanogenic population from an anaerobic fixed-film digestor was stimulated by the addition of nickel (100 nM) and cobalt (50 nM) and especially by the addition of these elements in combination. Molybdenum addition (50 nM) was only slightly stimulatory when added in combination with both nickel and cobalt. The addition of these trace metals to anaerobic fixed-film digestors, which treat food processing waste, greatly enhanced reactor performance. Total gas and methane productions were increased 42%, greater volumes of waste could be effectively treated, and reactor residence time was shortened. However, the lag period for reactor start-up was not reduced. Tests showed that reactor performance was increased because trace nutrient addition allowed accumulation of a thicker methanogenic fixed film.  相似文献   

13.
We determined the effect of different mixing intensities on the performance, methanogenic population dynamics, and juxtaposition of syntrophic microbes in anaerobic digesters treating cow manure from a dairy farm. Computer automated radioactive particle tracking in conjunction with computational fluid dynamics was performed to quantify the shear levels locally. Four continuously stirred anaerobic digesters were operated at different mixing intensities of 1,500, 500, 250, and 50 revolutions per min (RPM) over a 260-day period at a temperature of 34 +/- 1 degrees C. Animal manure at a volatile solids (VS) concentration of 50 g/L was fed into the digesters daily at five different organic loading rates between 0.6 and 3.5 g VS/L day. The different mixing intensities had no effect on the biogas production rates and yields at steady-state conditions. A methane yield of 0.241 +/- 0.007 L CH(4)/g VS fed was obtained by pooling the data of all four digesters during steady-state periods. However, digester performance was affected negatively by mixing intensity during startup of the digesters, with lower biogas production rates and higher volatile fatty acids concentrations observed for the 1,500-RPM digester. Despite similar methane production yields and rates, the acetoclastic methanogenic populations were different for the high- and low-intensity mixed digesters with Methanosarcina spp. and Methanosaeta concilii as the predominant methanogens, respectively. For all four digesters, epifluorescence microscopy revealed decreasing microbial floc sizes beginning at week 4 and continuing through week 26 after which no microbial flocs remained. This decrease in size, and subsequent loss of microbial flocs did not, however, produce any long-term upsets in digester performance.  相似文献   

14.
A mathematical model has been developed for a fixed-film biological process (film flow over a flat plate) that describes bulk liquid transport, diffusional transport of oxygen and organics across a stagnant film, diffusional transport of oxygen and organics into the biofilm, biochemical reactions by the individual cells within the biofilm, biofilm growth, and cell density changes within the biofilm due to cellular decay. Simulation studies are presented to show how contact time and diffusion layer thickness affect process performance.  相似文献   

15.
厌氧消化酸抑制研究进展   总被引:4,自引:1,他引:3  
厌氧消化工艺目前已广泛应用于各类废水的处理处置过程中,但在实际运行中,受消化条件和物料性质的影响,消化系统经常遭受由挥发性脂肪酸积累过多导致的酸抑制问题,引发产气量下降、产甲烷率降低等问题。近年来,有研究者发现,挥发性脂肪酸的种类和浓度及pH、温度是影响酸抑制的主要因素。基于此,相关研究者分别尝试了添加碱性化学药剂和微量元素及利用生物强化技术与微生物电化学技术来解除酸抑制的尝试,并都取得了不错的效果。本文综述了厌氧消化过程中酸抑制的产生过程、抑制机理及恢复方法,以期为解决厌氧消化酸抑制问题提供参考。  相似文献   

16.
Up-flow anaerobic sludge blanket (UASB) reactors are being used with increasing regularity all over the world, especially in India, for a variety of wastewater treatment operations. Consequently, there is a need to develop methodologies enabling one to determine UASB reactor performance, not only for designing more efficient UASB reactors but also for predicting the performance of existing reactors under various conditions of influent wastewater flows and characteristics. This work explores the feasibility of application of an artificial neural network-based model for simulating the performance of an existing UASB reactor. Accordingly, a neural network model was designed and trained to predict the steady-state performance of a UASB reactor treating high-strength (unrefined sugar based) wastewater. The model inputs were organic loading rate, hydraulic retention time, and influent bicarbonate alkalinity. The output variables were one or more of the following, effluent substrate concentration (Se), reactor bicarbonate alkalinity, reactor pH, reactor volatile fatty acid concentration, average gas production rate, and percent methane content of the gas. Training of the neural network model was achieved using a large amount of experimentally obtained reactor performance data from the reactor mentioned above as the training set. Training was followed by validation using independent sets of performance data obtained from the same UASB reactor. Subsequently, simulations were performed using the validated neural network model to determine the impact of changes in parameters like influent chemical oxygen demand (COD) concentration and hydraulic retention time on the reactor performance. Simulation results thus obtained were carefully analyzed based on qualitative understanding of UASB process and were found to provide important insights into key variables that were responsible for influencing the working of the UASB reactor under varying input conditions.  相似文献   

17.
《Biomass》1987,12(1):1-6
An anaerobic fixed-film reactor receiving screened dairy manure filtrate and supernatants was operated at 35°C and a hydraulic retention time (HRT) of 1 day. Methane production rates were very similar for both the screened slurry and supernatants. The results indicated that using supernatants from the sedimentation process could simplify the operational procedure in a methane production system. The utilization of a fixed-film reactor in methane production process could accommodate a hydraulically flushed dairy waste treatment system.  相似文献   

18.
Anaerobic enrichment cultures acclimated for 2 years to use a 14C-labeled, lignin-derived substrate with a molecular weight of 600 as a sole source of carbon were characterized by capillary and packed column gas chromatography. After acclimation, several of the active methanogenic consortia were inhibited with 2-bromoethanesulfonic acid, which suppressed methane formation and enhanced accumulation of a series of metabolic intermediates. Volatile fatty acids levels in 2-bromoethanesulfonic acid-amended cultures were 10 times greater than those in the uninhibited, methane-forming consortia with acetate as the predominant component. Furthermore, in the 2-bromoethanesulfonic acid-amended consortia, almost half of the original substrate carbon was metabolized to 10 monoaromatic compounds, with the most appreciable quantities accumulated as cinnamic, benzoic, caffeic, vanillic, and ferulic acids. 2-Bromoethanesulfonic acid seemed to effectively block CH4 formation in the anaerobic food chain, resulting in the observed buildup of volatile fatty acids and monoaromatic intermediates. Neither fatty acids nor aromatic compounds were detected in the oligolignol substrate before its metabolism, suggesting that these anaerobic consortia have the ability to mediate the cleavage of the β-aryl-ether bond, the most common intermonomeric linkage in lignin, with the subsequent release of the observed constituent aromatic monomers.  相似文献   

19.
With increasing concerns of microalgal-biodiesel, algal residues after lipid extraction are raising great attention for energy production. A batch test of 15 days under mesophilic condition was conducted to evaluate the effects of inoculum to substrate ratios (ISRs) on the methane production by anaerobic digestion of Chlorella sp. residue. The stability and progress of the reaction from algal residue to methane were monitored by measuring the pH, volatile fatty acids (VFAs), total ammoniacal nitrogen (TAN), methane volume on a daily basis. The results indicated that the values obtained were 26.6, 191.6, 195.6 and 210.6 ml CH4/g volatile solid (VS) for ISRs of 1:2, 1:1, 2:1 and 3:1. The methane production was significantly decreased as the ISR was lower than 1:1, which was resulting from the poor methanogenesis inhibited by NH4 +-N. It would be of great importance that determination of ISRs might provide useful information on how to initialize a batch digester with algal residue as material.  相似文献   

20.
The effects of incubations conditions (dilution, mixing, incubation time and inoculum amount and origin) on the determination of the maximum methane producing capacity (B(0)) from various livestock slurries were evaluated. For this purpose, the methane yields of different livestock slurries were determined using batch anaerobic incubations performed at 30 degrees C as regard these different conditions. The B(0) and the methane (CH(4)) generation as a function of time were used to study the processes and to determine the best incubation conditions. Methanogenesis was identified as the major rate-limiting step during the anaerobic degradation of slurries, probably due to inhibition by volatile fatty acids. In some cases, high free NH(3) concentrations were suspected to inhibit the hydrolysis process. The addition of inoculum and/or the dilution of the substrate reduced the inhibition and allowed to reach the B(0) more rapidly. However, the addition of inoculum must be minimized to reduce the possible errors made by considering a similar production by the inoculum with and without the substrate. All experiments performed during this study allowed to define the incubation conditions required for the determination of the B(0) from livestock slurries. Applying these conditions, the B(0) values determined for swine slurries varied from 244 to 343L CH(4)kg V(added)(-1), from 204 to 296L CH(4)kg V(added)(-1) for dairy cattle slurries and equalled 386 and 319L CH(4)kg VS(added)(-1) respectively for calves and duck slurries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号