首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poor seed development in sunflower may result from insufficient assimilate supply (source limitation). To test this hypothesis, the effects of changed source–sink ratio on seed set (measured as percentage of empty achenes) and seed filling (measured as dry mass per filled achene) in individual plants were investigated. Source–sink ratio, defined as leaf area per floret (LAF), was experimentally altered using invasive (floret removal, defoliation) and non‐invasive (pulse of chilling, short days or shading during leaf or floret initiation) treatments. Shading at floret initiation proved the most effective non‐invasive method. Generally, an increase, or decrease, in LAF improved, or impaired, both seed set and filling. Increasing LAF by 2.0 cm2[95% confidence interval (1.5, 2.5)] decreased the percentage of empty achenes by 36.9%‐points (?41.9, ?30.9) and increased dry mass per filled achene by 20.1 mg (13.6, 26.7) in the capitulum centre. The effect of source–sink ratio on seed set was always strongest in the centre, whereas peripheral whorls were not affected. Achene mass was affected in all parts of the capitulum. It is concluded that source limitation is a major cause for empty achenes in sunflower plants grown under non‐stress conditions.  相似文献   

2.
Sunflower yield is determined by seed number/m–2 and by achene weight. Frequently, a high percentage of empty achenes in the inner portion of the capitulum, probably due to a reduced vascularization of that section of the flower head, decreases final yield. The objective of the present research is to determine if foliarly applied gibberellic acid (GA) and benzyladenine (BA) can enhance the vascularization in the inner portion of the capitulum, improving photoassimilate translocation. Field experiments were conducted during 1989/90 with hybrid SPS 894 and during 1990/91 with hybrid ACA 882. GA (150 mg/l–1), BA (150 and 250 mg/l–1) and GA 150+BA 150 mg/l–1 each were foliarly applied 20, 40, or 60 days after emergence. For both seasons and hybrids plant growth regulator (PGRs) applications significantly reduced the percentage of empty achenes, increased achene weight, achene weight (× 1000) and achene number in the inner portion of the capitulum and in the middle and outer portion during 1990/91. A 25% increase in seed yield was achieved due to PGR application and the capitulum partition index (achene weight/receptacle weight–1, CPI) was significantly increased due to an improvement in photoassimilate distribution. A distribution model was derived showing that preferential allocation of photoassimilates in the outer portion of the capitulum can be modified by PGR application, demonstrating that photoassimilate distribution is under hormonal control.Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)  相似文献   

3.
疏齿千里光(Senecio subdentatus)是分布在新疆北部古尔班通古特沙漠中的一种具异形瘦果的菊科一年生短命植物。将野外观测与室内实验相结合, 对该物种异形瘦果的形态、扩散和萌发特性, 以及异形瘦果产量与植株大小的关系进行了研究, 并对其生态学意义进行了探讨。结果表明: 疏齿千里光果序中的外围果和中央果均为柱形, 但前者为淡黄色, 后者为褐色, 且二者在大小、冠毛长度及果皮微形态等方面均存在明显差异。两种瘦果均以单个果实为扩散单元, 且在静止空气中的降落速度和在1 m·s-1与2 m·s-1风速下的扩散距离无显著差异, 说明虽然果实大小和冠毛长度对瘦果扩散具有不同的影响, 但对其整体扩散能力无明显影响。在各温变周期(5/2、15/2、20/10、25/15和30/15 ℃)处理中, 淡黄色外围果的萌发率均高于褐色中央果的, 且不同温度间两种瘦果的萌发率均存在显著差异, 但光照条件对其无显著影响。果序中的中央瘦果数明显多于外围果的, 且植株中外围果所占比例与植株大小间呈显著负相关关系, 而中央果所占比例与植株大小间呈显著正相关关系。这些特点说明, 该物种的小植株倾向于产生较多较易萌发的外围果, 大植株倾向于产生较多不易萌发的中央果。在古尔班通古特沙漠不可预测的极端环境中, 疏齿千里光可通过异形瘦果间的萌发差异及调节其不同大小植株中异形瘦果的比例, 来减少同胞后代之间的竞争, 增加其对不同微环境条件的生态适应性。  相似文献   

4.
《Annals of botany》1999,83(1):45-50
Apomicts provide the opportunity to investigate the variation in achene size and performance that is due to factors other than genetic differences between achenes. Achene characteristics of a single capitulum from each of 15 biotypes of apomicticTaraxacumwere investigated. Within a capitulum, achene fresh weight ranged from 4.45-fold to 13.74-fold. Overall, 59.8% of achenes germinated. The probability of any one achene germinating was influenced both by its source and by its weight and ranged from 0.049 to 0.902 between capitula and from 0.028 to 0.873 between weight classes. An investigation of the relationship between achene parts in three biotypes identified a linear trend for embryos to acquire a greater proportion of total achene weight as achene weight increases. Although the heaviest achenes showed the best germination, it is predicted that, for a given investment of maternal resources, seedling number would be maximized by producing achenes of a single intermediate weight.  相似文献   

5.
Galinsoga parviflora (gallant soldier), Asteraceae, produces two morphologically distinct achenes in a single capitulum: peripheral and central. The morphological, phenological and generative reproduction traits of the progeny derived from peripheral and central achenes that were cultivated in greenhouse conditions were analyzed. Differences between the progeny of various morph types were manifested at different stages of life. The plants of both morph types developed at a similar rate and they entered key phenological phases at the same time except for the flowering stage. The average height of the studied plants was similar on the same days of the experiment. The study showed that plants from peripheral achenes realize the generative reproduction in other pattern than plants from central achenes. The plants from central achenes produce more capitula per plant at the beginning of the fruiting stage, whereas plants from peripheral seeds achieve the highest number of capitula per plant at later stages. Finally, on day 130 of the experiment, the number of capitula per plant of both morphs equalized. At the early fruiting stage, the number of achenes per capitulum of plants from the two morphs did not differ significantly. The number of achenes within one capitulum decreases with plant age in both populations, but the rate of that decline is greater in the progeny of peripheral seeds. The number of peripheral achenes per capitulum in plants from both achene types decreases at a comparable rate. In contrast, the number of central achenes is reduced at a faster rate in plants germinated from peripheral achenes. After day 83, the individuals from peripheral diaspores intensified their reproductive effort; they produced more capitula but with fewer number of achenes than in individuals from central diaspores. On day 130, the number of dispores per plant of the two morphs equalized. The changes of fecundity of peripheral and central progeny with the age of the plant (at different stages of the life cycle of a single plant) contribute to an intensive seed rain throughout the fruiting period. By producing a large number of less fertile capitula with a stable number of peripheral achenes, plants derived from peripheral achenes are able to supply a higher share of peripheral achenes than if they would produce fewer but more fertile capitula. This strategy increases the pool of peripheral achenes.  相似文献   

6.
To assess whether foliar application of K+S as potassium sulfate (K2SO4) could alleviate the adverse effects of salt on sunflower (Helianthus annuus L. cv. SF-187) plants, a greenhouse experiment was conducted. There were two NaCl levels (0 and 150 mM) applied to the growth medium and six levels of K+S as K2SO4 (NS (no spray), WS (spray of water+0.1% Tween 20 solution), 0.5% K+0.21% S, 1.0% K+0.41% S, 1.5% K+0.62% S, and 2.0% K+0.82% S in 0.1% Tween-20 solution) applied two times foliarly to non-stressed and salt-stressed sunflower plants. Salt stress markedly repressed the growth, yield, photosynthetic pigments, water relations and photosynthetic attributes, quantum yield (Fv/Fm), leaf and root K+, Mg2+, P, Ca2+, N as well as K+/Na+ ratios, while it enhanced the cell membrane permeability, and leaf and root Na+ and Cl concentrations. Foliar application of potassium sulfate significantly improved growth, achene yield, photosynthetic and transpiration rates, stomatal conductance, water use efficiency, leaf turgor and enhanced shoot and leaf K+ of the salt-stressed sunflower plants, but it did not improve leaf and root Na+, Cl, Mg2+, P, Ca2+, N as well as K+/Na+ ratios. The most effective dose of K+S for improving growth and achene yield was found to be 1.5% K+0.62% S and 1% K+0.41% S, respectively. Improvement in growth of sunflower plants due to exogenously applied K2SO4 was found to be linked to enhanced photosynthetic capacity, water use efficiency, leaf turgor and relative water content.  相似文献   

7.
When analyzing sunflower (Helianthus annuus L.) remains, which are often carbonized, archaeobotanists commonly differentiate between wild and domesticated achenes and seeds based on the measured length (L) and width (W) or the calculated index L*W. Carbonization reduces the dimensions. To compensate for these reductions, archaeobotanists use a single correction factor proposed by Richard Yarnell (1978) for all cases. The use of a single correction factor can bias the reconstructed dimensions as carbonization is a highly variable process. The current study determines the relationship between carbonization and the dimensions of length and width. Measurements established that a decrease of 2.5-22.5% in achene length and 10-29% in achene width can occur, depending on temperature, heating rate, and variety. For seeds, temperature is of most importance, and shrinkage ranges from 0-27% for the length and from 0-20% for the width. These ranges make the use of a single correction factor problematic. A method is developed in which reflectance (an optical property applied in coal technology to determine coal rank) is used to measure the carbonization temperature, and in turn the shrinkage can be calculated. Subsequently, correction factors are calculated to reconstruct the original length and width. When applied to an assemblage of carbonized sunflower achenes, the newly developed method shows that the Yarnell single correction factor may bias the dimensions towards classifications of “wild” or “ruderal” forms of sunflower  相似文献   

8.
Sunflower is a major oil seed crop worldwide, and it is also an important crop in Mediterranean areas where salinity is an increasing problem. In this paper, the effect of saline irrigation water on seed yield and quality of sunflower was evaluated. A pot experiment was carried out over two crop seasons on two hybrids – a standard one (Carlos) and a high oleic one (Tenor) – submitted to five salinity levels of irrigation water (0.6, 3, 6, 9 and 12 dS m?1). Soil salinity was monitored over the entire crop cycle, and leaf ion content was determined at maturity. Tenor showed higher Na+ and Mg2+ content but lower K+ values. No difference between the two hybrids was observed for Cl? content. A progressive increase in leaf Na+, K+ and Cl? contents and Na+/K+ ratio with increasing salinity level was observed. Seed weight per head, 1000 achene weight, number of seeds per plant and oil yield significantly decreased under salt stress in both hybrids. The percent seed yield decrease was higher per unit increase in electrical conductivity of irrigation water, ECw (8%), than per unit increase in electrical conductivity of saturated‐soil extracts, ECe (5%). Concerning oil fatty acid composition, the main significant difference as result of salt stress was a progressive increase in oleic acid content, from 82.2% to 86.7% for Tenor and from 21.8% to 27.3% for Carlos, which was consistent with a decrease in linoleic acid content, from 5.9% to 3% for Tenor and from 66% to 61.3% for Carlos. These results confirm the possible inhibition of oleate desaturase under salt stress.  相似文献   

9.
Leaf growth responses to N supply and leaf position were studied using widely-spaced sunflower plants growing under field conditions. Both N supply (range 0.25 to 11.25 g added N per plant) and leaf position significantly (p=0.001) affected maximum leaf area (LAmax) of target leaves through variations in leaf expansion rate (LER); effects on duration of expansion were small. Specific leaf nitrogen (SLN, g N m-2) fell quite rapidly during the initial leaf expansion phase (LA < 35% LAmax) but leveled off during the final 65% increase of leaf area. This pattern held across leaf positions and N supply levels. Leaf nitrogen accumulation after 35% LAmax continued up to achievement of LAmax; reductions in the higher SLN characteristic of the initial phase were insufficient to cover the nitrogen requirements for expansion during the final phase. LER in the quasi-linear expansion phase (35 to 100% of LAmax) was strongly associated with SLN above a threshold that varied with leaf position (mean 1.79±0.225 g N m-2). This contrasts with the response of photosynthesis at high irradiance to SLN, which has previously been shown to have a threshold of 0.3 g N m-2; in the present work saturation of photosynthetic rate was evident when SLN reached 1.97 g N m-2. Thus, once the area of a leaf exceeds 35% of LAmax, expansion proceeds provided SLN values are close to the levels required for maximum photosynthesis. However, growth of leaves during the initial expansion phase ensures a minimum production of leaf area even at low N supply levels.  相似文献   

10.
Peter B. McEvoy 《Oecologia》1984,61(2):160-168
Summary Marginal and central florets of the capitula of tansy ragwort Senecio jacobaea yield different kinds of fruit. The central (disk) achenes are lighter (x±SE=199±5g), more numerous (x±SE=58±0.6 achenes per head), and are equipped with a pappus aiding wind transport and rows of trichomes aiding animal transport. The marginal (ray) achenes are heavier (x±SE=286±7g), less numerous (virtually invariant at 13 achenes per head), and lack dispersal structures. Whereas disk achenes are relased shortly after they mature, ray achenes are retained by the parent for a period of months following maturity.Germination at constant temperature (20°C) and with alternating light (12 h light: 12 h dark) demonstrated that disk and ray achenes exhibit different germination syndromes. Germination percentage increases linearly with achene fresh weight in both types; for a given weight, disk achenes have a higher germination percentage than ray achenes. Germination time decreases with increasing achene weight in disk achenes, but increases with achene weight in ray achenes.The germination percentages and germination times for disk and ray achenes diverge progressively with increasing achene weight. The divergence in behavior is a result of diverging patterns of dry matter allocation in the two achene types. Increase in the size of disk achenes favors the embryo fraction, thereby speeding germination while reducing protection. Increase in the size of the ray achenes favors the pericarp fraction, thereby increasing protection while delaying germination.Reduced germination percentage and germination speed of the ray achenes were shown by experimental manipulation to be caused by physical inhibition by their thicker pericarps.Dimorphism in ragwort likely speards germination out in space and time, thereby increasing the number of safe sites an individual parent can exploit in disseminating offspring. The syndrome in other heteromorphic composites resembles that of ragwort, generally combining reduced dispersal-delayed germination in the outer achenes and distance dispersal-quick germination in the central achenes. The outer achenes are generally less numerous and larger. Dispersal traits (large numbers, early release and light wieght) are the direct opposite of dormancy traits (small numbers, delayed release and heavier weight). Thus conflicts between the properties determining dormancy and dispersal appear to require separate dormancy and dispersal phenotypes.  相似文献   

11.
Bidens frondosa L. (Asteraceae) is a widespread invasive weed in China. By experimental observation and bagging treatment, the reproductive biological characteristics of this species, such as phenology of flowering, floral syndrome, breeding system and seed germination characteristics, were studied to assess the association of these reproductive characteristics with invasiveness. Flowers of B. frondosa bloom from September to October every year in Ji'an city, Jiangxi province. The lifespan of a single capitulum is approximately 4 to 5 days, with 30 to 60 florets per capitulum. The capitulum diameter, anthocaulus length, floret length and width, stamen length and pistil length were 6.1, 30.9, 2.2, 0.6, 3.0 and 2.7 mm, respectively. The seed set percentage of 48.5% in the treatment of bagging flowers without emasculation suggests B. frondosa is self‐compatible; meanwhile, the percentage of 63.1% in the treatment of bagging with emasculation and manual xenogamy suggests it also is cross‐compatible. P/O ratio per capitulum of this species was 450.5, which suggests that the breeding system of B. frondosa is facultative xenogamous, and it needs pollinators to some degree. The main floral visitors were insects of Hymenoptera, Diptera and Lepidoptera. The 1000‐achenes weight was 1.97 g. The achenes emerged as a small germination peak from the fourth to fifth day, and had a high accumulated germination rate of up to 84.0% on day 20 after sowing. Our experimental findings suggested that the reproductive biological characteristics, such as the versatile mating system of self‐ and cross‐pollination, high seed production, a special method of achene dispersal and germination peak, accompanied by a high accumulated germination rate, might contribute to the invasive ability of B. frondosa.  相似文献   

12.
Ecology of achene dimorphism in Leontodon saxatilis   总被引:5,自引:0,他引:5  
Brändel M 《Annals of botany》2007,100(6):1189-1197
BACKGROUND [corrected] AND AIMS: Leontodon saxatilis produces two morphologically distinct achenes (morphs) in a single capitulum: one row of dark brown achenes without a pappus lies at the edge ('peripheral achenes'; 0.74 +/- 0.18 mg) while the inner ones are light brown with a pappus ('central achenes'; 0.38 +/- 0.07 mg). The hypothesis that achene heteromorphism in L. saxatilis widens its ecological amplitude was tested. KEY RESULTS: Achenes of both morphs germinated over the same range of temperatures (6-33 degrees C) but the central achenes showed significantly higher germination percentages, and the two also differed significantly in their annual dormancy cycle, with the peripheral achenes showing greater dormancy for part of the year. Seedlings from the two morphs did not differ significantly in total biomass after 2 and 4 weeks of growth, neither did they differ significantly in root and shoot weight and root:shoot ratio. Plants from both morphs growing at different regimes of soil moisture, nutrients and competition did not differ significantly in their number of achenes per capitulum. While the number of central achenes varied, that of peripheral achenes remained constant at approx. 13. Drier soil led to an increase in the number of central achenes in plants from both morphs. CONCLUSIONS: The peripheral achenes can replace the mother plant in the following growing season, whereas the central achenes are well adapted for wind dispersal and thus for colonization of new sites. However, the extent of variation in germination characteristics was similar to that found in seed populations of homomorphic plants, which suggests that germination percentage and other growth characteristics do not contribute to widening the ecological amplitude. The habitat of most heteromorphic species, the morphs of which differ greatly in germination and/or growth characteristic, are deserts or highly disturbed areas where such differences are highly advantageous, but in the moderate habitat of L. saxatilis the differences may prove a disadvantage.  相似文献   

13.
This factorial field experiment was done based on a randomized complete block design in Urmia University, Iran, in 2013 and was repeated in 2014. Treatments included two farming systems (high input and organic) and different intercropping patterns that alternated bitter vetch (Vicia ervilia L.) and safflower (Carthamus tinctorius L.) with row ratios of 2:2, 3:2, 4:2 and 5:2. Sole cropping of bitter vetch and safflower was used as the control. In both years, the 2:2 intercropping pattern had biomass yield advantages compared to sole cropping and the other intercropping ratios, based on greater land equivalent ratio values. Safflower had higher relative crowding coef?cients, competitive ratio (CR) and aggressivity (A) values than bitter vetch. High-input farming was more effective than the organic system in both years. Safflower was the superior competitor when grown with bitter vetch, and its productivity dominated the total biomass yields. Thus, intercropping of safflower with bitter vetch has the potential to improve performance with high land-use efficiency.  相似文献   

14.
A pot experiment was conducted in a growth chamber to investigate the effects of dandelion (Taraxacum officinale) and quackgrass (Elymus repens) on the growth of hybrid poplar (Populus deltoides × Populus × petrowskyana var. Walker). Single hybrid poplar seedlings were grown in pots either alone (SHP) or with four or eight dandelion plants per pot or with one or three quackgrass plants per pot in two soils collected from sites previously managed for alfalfa and pasture near Meadow Lake, Saskatchewan, Canada. Hybrid poplar and weed species were harvested approximately 7 and 14 weeks after planting. Approximately 14 weeks after planting, hybrid poplar shoot biomass in the SHP treatment was 28 g for the pasture soil and 22 g for the alfalfa soil. Corresponding shoot biomass for hybrid poplar grown with the dandelion and quackgrass treatments varied from 0.54 to 0.81 g and 0.3 to 3.66 g, respectively. Other hybrid poplar growth parameters including stem height, root collar diameter and fresh root biomass were similarly reduced by competition with the weed species. During the growing period, soil solution N and K concentrations decreased several-fold in both soils; however, the magnitude of decrease was comparatively higher in the weed treatments. Nitrogen, P and K uptake by hybrid poplar was greater in the SHP treatment in both the soils (337–425, 38–49 and 396–463 mg pot−1, respectively) compared to the weed treatments (4–28, 0.4–6.2 and 0.6–54.0 mg pot−1, respectively) by the end of the experiment. The presence of quackgrass and dandelion severely affects the growth of hybrid poplar by causing intense below-ground competition for nutrients. Responsible Editor: Ismael Cakmak.  相似文献   

15.
Empty achenes in sunflower, particularly in the centre of the capitulum, may be caused by poor vascularization. This hypothesis was tested by microscopic examination and translocation experiments. Phloem and xylem were identified by fluorescence of aniline-blue-stained callose and autofluorescence, respectively. Vascular strands that extended from the receptacle into empty achenes were regularly found in longitudinal sections. The phloem-mobile probe, carboxyfluorescein, was translocated from the receptacle to the pericarp and the testa of empty achenes. Similarly, (14)CO(2)-derived (14)C-photoassimilates moved into empty achenes. The observations suggest that empty achenes are both structurally and functionally connected with the vascular system of the receptacle. Hence, deficient vascular connections do not prevent seed filling in sunflower.  相似文献   

16.
Chrysothamnus nauseosus (Asteraceae) is a complex polymorphic shrub species widely distributed in western North America. In a study of 86 populations belonging to 15 subspecies, achene mass varied among populations over a sevenfold range. Achene mass was closely correlated with capitulum size at the subspecies level, varied little between wild-growing and common-garden-grown members of a population, and was under strong genetic control. Subspecies with the heaviest achenes are restricted to specialized edaphic environments (dunes and badlands) or late seral montane riparian communities, while subspecies that are widely distributed and that occur in early seral habitats have less heavy achenes. Selection on achene mass has apparently been a notable feature of the adaptive radiation of Chrysothamnus nauseosus into the wide array of habitats it currently occupies. Within a wild population, achene mass was greater for plants fruiting in midautumn than for plants fruiting early or late in the autumn, and this same trend was observed within individual plants in garden populations, indicating environmental control, perhaps through resource limitation. Highly significant between-plant differences in achene mass were found in both wild and garden populations, suggesting that within-population genetic variation is sufficient to permit continuing selection.  相似文献   

17.
A field experiment conducted at Central Rice Research Institute, Cuttack, during three successive seasons showed that with the 120-day-duration variety Ratna two dual crops ofAzolla pinnata R. Brown (Bangkok isolate) could be achieved 25 and 50 days after transplanting (DAT) by inoculating 2.0 t ha−1 of fresh Azolla 10 and 30 DAT respectively. One basal crop of Azolla could also be grown using the same inoculum 20 days before transplanting (DBT) in fallow rice fields. The three crops of Azolla grown—once before transplanting and twice after transplanting—gave an average total biomass of 38–63 and 43–64 t ha−1 fresh Azolla containing 64–90 and 76–94 kg N ha−1 respectively in the square and rectangular spacings. Two crops of Azolla grown only as a dual crop, on the other hand, gave 26–39 and 29–41 t ha−1 fresh Azolla which contained 44–61 and 43–59 kg N ha−1 respectively. Growth and yield of rice were significantly higher in Azolla basal plus Azolla dual twice incorporated treatments than in the Azolla dual twice incorporation, Azolla basal plus 30 kg N ha−1 urea and 60 kg N ha−1 urea treatments. Azolla basal plus 30 kg N ha−1 urea and 60 kg N ha−1 urea showed similar yields but Azolla dual twice incorporation was significantly lower than those. The different spacing with same plant populations did not affect growth and yield significantly, whereas Azolla growth during dual cropping was 8.3 and 64% more in the rectangular spacing than in the square spacing in Azolla basal plus Azolla dual twice incorporation and Azolla dual twice incorporation treatments.  相似文献   

18.
To clarify the adaptive value of variation in capitulum size and achene mass, plants of Centaurea eriophora were studied in a glasshouse and in a natural population. C. eriophora plants consist of a basal leaf rosette from which an erect stem grows, with lateral branches of various orders ending in capitula of different orders. Primary, secondary and tertiary capitula are comparable in size and they produce similar numbers of achenes, which are similar in weight (large achenes). These capitula are formed during April, May and early June, and constitute the normal or primary flowering. Following ripening of tertiary capitula, leaves senesce, but, later during June and the first half of July, a secondary flowering of a variable number of smaller capitula may occur if wet conditions persist for longer than usual. Plants that have almost senesced develop small lateral branches 1-2 cm long bearing a few small leaves and ending in a capitulum about half the diameter of capitula from the primary flowering period. The number of achenes produced in these capitula (small achenes) and their weight are 70 and 30% less, respectively, than those of capitula formed during primary flowering. These reductions appear to result from restricted availability of resources. Large and small achenes have similar dispersal characteristics and possess similar germination potential. However, large achenes produce seedlings that are capable of emerging from greater burial depths, providing the resulting plants with a potential advantage. The normal flowering period coincides with the optimum time of year for flowering and fruiting in the south of Spain, and only if rainfall lasts longer than usual does secondary flowering occur. Secondary flowering extends the normal flowering and fruiting periods, thereby providing a supplementary crop of smaller, yet viable, fruits. It can be considered to be an adaptive response to the unpredictable Mediterranean climate, optimizing the use of available resources.  相似文献   

19.
A long-standing question in perennial grass breeding and physiology is whether yield improvement strategies could compromise winter survival. Since perennial grasses rely on stored carbohydrates for winter maintenance and spring regrowth, yield improvement strategies could reduce winter survival if they increase biomass and grain yields at the expense of carbon allocation to storage. Therefore, it is crucial to comprehend the dependence of regrowth on storage reserves. We experimentally depleted switchgrass (Panicum virgatum L.) rhizome reserves by storing rhizomes for 2 weeks at 5°C (control treatment) and 25°C (reserve-depleted treatment). During the storage period rhizome respiration was 5.3× higher at 25°C (0.010 μmol CO2 g−1 min−1 at 5°C vs. 0.054 μmol CO2 g−1 min−1 at 25°C; p < 0.0001) and the starch content was depleted by 30% by the end of storage. Surprisingly, reserve-depleted switchgrass had 60% larger leaf area (LA; LAcontrol = 149 cm2 pot−1 vs. LAdepleted = 239 cm2 pot−1; p = 0.013) and produced ~40% more aboveground biomass than control plants (9.46 g pot−1 vs. 6.63 g pot−1; p = 0.112). In addition, reserve-depleted switchgrass restored its rhizome starch reserves to pre-storage levels. Switchgrass showed a large plasticity among its source-sink components to buffer the imposed reserve depletion. It increased plant photosynthesis by increasing the photosynthetic leaf area while keeping photosynthesis constant on a leaf area basis and readjusted the timing and activity of sink organs. These results suggest that switchgrass, and potentially other perennial grasses, largely over-invest in storage reserves. Therefore, current breeding strategies in perennial grasses aimed to extend the aboveground growing season should not compromise crop persistence. Our study also has implications on long-term yield dynamics as it highlights sink limitations as potential driver of the yield decline commonly observed in perennial grasses 5+ years after cultivation.  相似文献   

20.
The effect of low (10°C) and high (30°C) temperature on in vivo oleate desaturation has been studied in developing sunflower ( Helianthus annuus L.) seeds under conditions of different oxygen availability (capitulum, detached achenes or peeled seeds). In seeds remaining in the capitulum, only a part of the oleate newly synthesized at high temperature was desaturated to linoleate, whereas more oleate than that synthesized de novo was desaturated at low temperature. Achenes were only able to significantly desaturate oleate at low temperatures. In contrast, oleate desaturation was detected in peeled seeds incubated at low and high temperatures, showing the highest rate at 20°C. Hull removing dramatically increased the activity of the microsomal oleate desaturase (FAD2, EC 1.3.1.35) at all studied temperatures, although a long-term inactivation of the enzyme was observed at high temperatures. Low oxygen concentration (1–2%) obtained by respiration of peeled seeds incubated in sealed vials, brought about the inactivation of the enzyme. All these data suggest that temperature regulates oleate desaturation controlling the amount of oleate and the FAD2 activity. In addition, this enzyme seems to be also regulated by the availability of oxygen, which is affected inside the achene by its diffusion through the hull, and the competition with respiration, both factors being temperature-dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号